100+ datasets found
  1. COVID-19 deaths reported in the U.S. as of June 14, 2023, by age

    • statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, COVID-19 deaths reported in the U.S. as of June 14, 2023, by age [Dataset]. https://www.statista.com/statistics/1191568/reported-deaths-from-covid-by-age-us/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2020 - Jun 14, 2023
    Area covered
    United States
    Description

    Between the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.

  2. Coronavirus (COVID-19) death numbers by gender and age Germany 2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Coronavirus (COVID-19) death numbers by gender and age Germany 2024 [Dataset]. https://www.statista.com/statistics/1105512/coronavirus-covid-19-deaths-by-gender-germany/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Germany
    Description

    The coronavirus (COVID-19) has led to over 183,000 deaths in Germany, as of 2024. When looking at the distribution of deaths by age, based on the figures currently available, most death occurred in the age group 80 years and older at approximately 118,938 deaths.

  3. Single year of age and average age of death of people whose death was due to...

    • ons.gov.uk
    xlsx
    Updated Aug 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Single year of age and average age of death of people whose death was due to or involved coronavirus (COVID-19) [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/singleyearofageandaverageageofdeathofpeoplewhosedeathwasduetoorinvolvedcovid19
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 23, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional deaths registration data for single year of age and average age of death (median and mean) of persons whose death involved coronavirus (COVID-19), England and Wales. Includes deaths due to COVID-19 and breakdowns by sex.

  4. Share of U.S. COVID-19 cases resulting in death from Feb. 12 to Mar. 16, by...

    • statista.com
    Updated Aug 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Share of U.S. COVID-19 cases resulting in death from Feb. 12 to Mar. 16, by age [Dataset]. https://www.statista.com/statistics/1105431/covid-case-fatality-rates-us-by-age-group/
    Explore at:
    Dataset updated
    Aug 28, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 12, 2020 - Mar 16, 2020
    Area covered
    United States
    Description

    Among COVID-19 patients in the United States from February 12 to March 16, 2020, estimated case-fatality rates were highest for adults aged 85 years and older. Younger people appeared to have milder symptoms, and there were no deaths reported among persons aged 19 years and under.

    Tracking the virus in the United States The outbreak of a previously unknown viral pneumonia was first reported in China toward the end of December 2019. The first U.S. case of COVID-19 was recorded in mid-January 2020, confirmed in a patient who had returned to the United States from China. The virus quickly started to spread, and the first community-acquired case was confirmed one month later in California. Overall, there had been approximately 4.5 million coronavirus cases in the country by the start of August 2020.

    U.S. health care system stretched California, Florida, and Texas are among the states with the most coronavirus cases. Even the best-resourced hospitals in the United States have struggled to cope with the crisis, and certain areas of the country were dealt further blows by new waves of infections in July 2020. Attention is rightly focused on fighting the pandemic, but as health workers are redirected to care for COVID-19 patients, the United States must not lose sight of other important health care issues.

  5. Number of coronavirus (COVID-19) deaths in Sweden 2023, by age groups

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of coronavirus (COVID-19) deaths in Sweden 2023, by age groups [Dataset]. https://www.statista.com/statistics/1107913/number-of-coronavirus-deaths-in-sweden-by-age-groups/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 11, 2023
    Area covered
    Sweden
    Description

    As of January 11, 2023, the highest number of deaths due to the coronavirus in Sweden was among individuals aged 80 to 90 years old. In this age group there were 9,124 deaths as a result of the virus. The overall Swedish death toll was 22,645 as of January 11, 2023.

    The first case of coronavirus (COVID-19) in Sweden was confirmed on February 4, 2020. The number of cases has since risen to over 2.68 million, as of January 2023. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  6. T

    World Coronavirus COVID-19 Deaths

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). World Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/world/coronavirus-deaths
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Mar 9, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    World
    Description

    The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  7. O

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • data.ct.gov
    • s.cnmilf.com
    • +2more
    csv, xlsx, xml
    Updated Jun 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-and-Deaths-by-Race-Ethnicity-ARCHIV/7rne-efic
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.

    The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf

    Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics

    Data are subject to future revision as reporting changes.

    Starting in July 2020, this dataset will be updated every weekday.

    Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.

    A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.

    Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

  8. COVID-19 death counts by age and sex

    • figshare.com
    txt
    Updated Jan 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arianna Caporali; Jenny Garcia; Etienne Couppié; Svitlana Poniakina; Magali Barbieri; Florian Bonnet; Carlo Giovanni Camarda; Emmanuelle Cambois; Iris Hourani; Daria Korotkova; France Meslé; Olga Penina; Jean-Marie Robine; Markus Sauerberg; Catalina Torres (2022). COVID-19 death counts by age and sex [Dataset]. http://doi.org/10.6084/m9.figshare.18986855.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 25, 2022
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Arianna Caporali; Jenny Garcia; Etienne Couppié; Svitlana Poniakina; Magali Barbieri; Florian Bonnet; Carlo Giovanni Camarda; Emmanuelle Cambois; Iris Hourani; Daria Korotkova; France Meslé; Olga Penina; Jean-Marie Robine; Markus Sauerberg; Catalina Torres
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pooled data file containing COVID-19 cumulative death counts by age and sex for all countries covered by the database.

  9. Provisional COVID-19 death counts and rates by month, jurisdiction of...

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Sep 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 death counts and rates by month, jurisdiction of residence, and demographic characteristics [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-and-rates-by-month-jurisdiction-of-residence-and-demogra
    Explore at:
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains COVID-19 death counts and rates by month and year of death, jurisdiction of residence (U.S., HHS Region) and demographic characteristics (sex, age, race and Hispanic origin, and age/race and Hispanic origin). United States death counts and rates include the 50 states, plus the District of Columbia. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across jurisdictions. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rate are based on deaths occurring in the specified week and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

  10. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  11. Deaths Involving COVID-19 by Vaccination Status

    • open.canada.ca
    • gimi9.com
    • +1more
    csv, docx, html, xlsx
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://open.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    docx, csv, html, xlsxAvailable download formats
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  12. m

    Data for: COVID-19 Dataset: Worldwide Spread Log Including Countries First...

    • data.mendeley.com
    Updated Jul 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hasmot Ali (2020). Data for: COVID-19 Dataset: Worldwide Spread Log Including Countries First Case And First Death [Dataset]. http://doi.org/10.17632/vw427wzzkk.5
    Explore at:
    Dataset updated
    Jul 20, 2020
    Authors
    Hasmot Ali
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Contain informative data related to COVID-19 pandemic. Specially, figure out about the First Case and First Death information for every single country. The datasets mainly focus on two major fields first one is First Case which consists of information of Date of First Case(s), Number of confirm Case(s) at First Day, Age of the patient(s) of First Case, Last Visited Country and the other one First Death information consist of Date of First Death and Age of the Patient who died first for every Country mentioning corresponding Continent. The datasets also contain the Binary Matrix of spread chain among different country and region.

    *This is not a country. This is a ship. The name of the Cruise Ship was not given from the government.
    "N+": the age is not specified but greater than N
    “No Trace”: some data was not found
    “Unspecified”: not available from the authority
    “N/A”: for “Last Visited Country(s) of Confirmed Case(s)” column, “N/A” indicates that the confirmed case(s) of those countries do not have any travel history in recent past; in “Age of First Death(s)” column “N/A” indicates that those countries do not have may death case till May 16, 2020.

  13. Deaths by vaccination status, England

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Aug 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Deaths by vaccination status, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsbyvaccinationstatusengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.

  14. Global Covid-19 Data

    • kaggle.com
    zip
    Updated Dec 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Global Covid-19 Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/global-covid-19-data
    Explore at:
    zip(15394324 bytes)Available download formats
    Dataset updated
    Dec 3, 2023
    Authors
    The Devastator
    Description

    Global Covid-19 Data

    Global Covid-19 data on cases, deaths, vaccinations, and more

    By Valtteri Kurkela [source]

    About this dataset

    The dataset is constantly updated and synced hourly to ensure up-to-date information. With over several columns available for analysis and exploration purposes, users can extract valuable insights from this extensive dataset.

    Some of the key metrics covered in the dataset include:

    1. Vaccinations: The dataset covers total vaccinations administered worldwide as well as breakdowns of people vaccinated per hundred people and fully vaccinated individuals per hundred people.

    2. Testing & Positivity: Information on total tests conducted along with new tests conducted per thousand people is provided. Additionally, details on positive rate (percentage of positive Covid-19 tests out of all conducted) are included.

    3. Hospital & ICU: Data on ICU patients and hospital patients are available along with corresponding figures normalized per million people. Weekly admissions to intensive care units and hospitals are also provided.

    4. Confirmed Cases: The number of confirmed Covid-19 cases globally is captured in both absolute numbers as well as normalized values representing cases per million people.

    5.Confirmed Deaths: Total confirmed deaths due to Covid-19 worldwide are provided with figures adjusted for population size (total deaths per million).

    6.Reproduction Rate: The estimated reproduction rate (R) indicates the contagiousness of the virus within a particular country or region.

    7.Policy Responses: Besides healthcare-related metrics, this comprehensive dataset includes policy responses implemented by countries or regions such as lockdown measures or travel restrictions.

    8.Other Variables of InterestThe data encompasses various socioeconomic factors that may influence Covid-19 outcomes including population density,membership in a continent,gross domestic product(GDP)per capita;

    For demographic factors: -Age Structure : percentage populations aged 65 and older,aged (70)older,median age -Gender-specific factors: Percentage of female smokers -Lifestyle-related factors: Diabetes prevalence rate and extreme poverty rate

    1. Excess Mortality: The dataset further provides insights into excess mortality rates, indicating the percentage increase in deaths above the expected number based on historical data.

    The dataset consists of numerous columns providing specific information for analysis, such as ISO code for countries/regions, location names,and units of measurement for different parameters.

    Overall,this dataset serves as a valuable resource for researchers, analysts, and policymakers seeking to explore various aspects related to Covid-19

    How to use the dataset

    Introduction:

    • Understanding the Basic Structure:

      • The dataset consists of various columns containing different data related to vaccinations, testing, hospitalization, cases, deaths, policy responses, and other key variables.
      • Each row represents data for a specific country or region at a certain point in time.
    • Selecting Desired Columns:

      • Identify the specific columns that are relevant to your analysis or research needs.
      • Some important columns include population, total cases, total deaths, new cases per million people, and vaccination-related metrics.
    • Filtering Data:

      • Use filters based on specific conditions such as date ranges or continents to focus on relevant subsets of data.
      • This can help you analyze trends over time or compare data between different regions.
    • Analyzing Vaccination Metrics:

      • Explore variables like total_vaccinations, people_vaccinated, and people_fully_vaccinated to assess vaccination coverage in different countries.
      • Calculate metrics such as people_vaccinated_per_hundred or total_boosters_per_hundred for standardized comparisons across populations.
    • Investigating Testing Information:

      • Examine columns such as total_tests, new_tests, and tests_per_case to understand testing efforts in various countries.
      • Calculate rates like tests_per_case to assess testing efficiency or identify changes in testing strategies over time.
    • Exploring Hospitalization and ICU Data:

      • Analyze variables like hosp_patients, icu_patients, and hospital_beds_per_thousand to understand healthcare systems' strain.
      • Calculate rates like icu_patients_per_million or hosp_patients_per_million for cross-country comparisons.
    • Assessing Covid-19 Cases and Deaths:

      • Analyze variables like total_cases, new_ca...
  15. d

    Replication Data for: Two years of Covid-19 pandemic : A higher prevalence...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Errasfa, Mourad (2023). Replication Data for: Two years of Covid-19 pandemic : A higher prevalence of the disease was associated with higher geographic latitudes, lower temperatures, and unfavorable epidemiologic and demographic conditions. [Dataset]. http://doi.org/10.7910/DVN/JYYZEI
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Errasfa, Mourad
    Description

    ABSTRACT Background : The Covid-19 pandemic associated with the SARS-CoV-2 has caused very high death tolls in many countries, while it has had less prevalence in other countries of Africa and Asia. Climate and geographic conditions, as well as other epidemiologic and demographic conditions, were a matter of debate on whether or not they could have an effect on the prevalence of Covid-19. Objective : In the present work, we sought a possible relevance of the geographic location of a given country on its Covid-19 prevalence. On the other hand, we sought a possible relation between the history of epidemiologic and demographic conditions of the populations and the prevalence of Covid-19 across four continents (America, Europe, Africa, and Asia). We also searched for a possible impact of pre-pandemic alcohol consumption in each country on the two year death tolls across the four continents. Methods : We have sought the death toll caused by Covid-19 in 39 countries and obtained the registered deaths from specialized web pages. For every country in the study, we have analysed the correlation of the Covid-19 death numbers with its geographic latitude, and its associated climate conditions, such as the mean annual temperature, the average annual sunshine hours, and the average annual UV index. We also analyzed the correlation of the Covid-19 death numbers with epidemiologic conditions such as cancer score and Alzheimer score, and with demographic parameters such as birth rate, mortality rate, fertility rate, and the percentage of people aged 65 and above. In regard to consumption habits, we searched for a possible relation between alcohol intake levels per capita and the Covid-19 death numbers in each country. Correlation factors and determination factors, as well as analyses by simple linear regression and polynomial regression, were calculated or obtained by Microsoft Exell software (2016). Results : In the present study, higher numbers of deaths related to Covid-19 pandemic were registered in many countries in Europe and America compared to other countries in Africa and Asia. The analysis by polynomial regression generated an inverted bell-shaped curve and a significant correlation between the Covid-19 death numbers and the geographic latitude of each country in our study. Higher death numbers were registered in the higher geographic latitudes of both hemispheres, while lower scores of deaths were registered in countries located around the equator line. In a bell shaped curve, the latitude levels were negatively correlated to the average annual levels (last 10 years) of temperatures, sunshine hours, and UV index of each country, with the highest scores of each climate parameter being registered around the equator line, while lower levels of temperature, sunshine hours, and UV index were registered in higher latitude countries. In addition, the linear regression analysis showed that the Covid-19 death numbers registered in the 39 countries of our study were negatively correlated with the three climate factors of our study, with the temperature as the main negatively correlated factor with Covid-19 deaths. On the other hand, cancer and Alzheimer's disease scores, as well as advanced age and alcohol intake, were positively correlated to Covid-19 deaths, and inverted bell-shaped curves were obtained when expressing the above parameters against a country’s latitude. Instead, the (birth rate/mortality rate) ratio and fertility rate were negatively correlated to Covid-19 deaths, and their values gave bell-shaped curves when expressed against a country’s latitude. Conclusion : The results of the present study prove that the climate parameters and history of epidemiologic and demographic conditions as well as nutrition habits are very correlated with Covid-19 prevalence. The results of the present study prove that low levels of temperature, sunshine hours, and UV index, as well as negative epidemiologic and demographic conditions and high scores of alcohol intake may worsen Covid-19 prevalence in many countries of the northern hemisphere, and this phenomenon could explain their high Covid-19 death tolls. Keywords : Covid-19, Coronavirus, SARS-CoV-2, climate, temperature, sunshine hours, UV index, cancer, Alzheimer disease, alcohol.

  16. Pre-existing conditions of people who died due to coronavirus (COVID-19),...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jul 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Pre-existing conditions of people who died due to coronavirus (COVID-19), England and Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/preexistingconditionsofpeoplewhodiedduetocovid19englandandwales
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 21, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Pre-existing conditions of people who died due to COVID-19, broken down by country, broad age group, and place of death occurrence, usual residents of England and Wales.

  17. COVID-19 death counts by place of deaths

    • figshare.com
    txt
    Updated Jan 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arianna Caporali; Jenny Garcia; Etienne Couppié; Svitlana Poniakina; Magali Barbieri; Florian Bonnet; Carlo Giovanni Camarda; Emmanuelle Cambois; Iris Hourani; Daria Korotkova; France Meslé; Olga Penina; Jean-Marie Robine; Markus Sauerberg; Catalina Torres (2022). COVID-19 death counts by place of deaths [Dataset]. http://doi.org/10.6084/m9.figshare.18986864.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 25, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Arianna Caporali; Jenny Garcia; Etienne Couppié; Svitlana Poniakina; Magali Barbieri; Florian Bonnet; Carlo Giovanni Camarda; Emmanuelle Cambois; Iris Hourani; Daria Korotkova; France Meslé; Olga Penina; Jean-Marie Robine; Markus Sauerberg; Catalina Torres
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pooled data file containing COVID-19 cumulative death counts by place of death, for all the countries covered in the database for which data by place of death are available.

  18. COVID-19 worldometer daily snapshots

    • kaggle.com
    zip
    Updated Oct 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Beniaguev (2020). COVID-19 worldometer daily snapshots [Dataset]. https://www.kaggle.com/selfishgene/covid19-worldometer-snapshots-since-april-18
    Explore at:
    zip(1204483 bytes)Available download formats
    Dataset updated
    Oct 13, 2020
    Authors
    David Beniaguev
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Manually collected daily snapshots of worldometer COVID-19 data (since April 18)

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F128750%2F66baee67b3e35bf9656ff816e692527e%2Fsnapshot_worldometer_july4.png?generation=1593988535797227&alt=media" alt="">

    Content

    The dataset contains data about the numbers of tests, cases, deaths, serious/critical cases, active cases and recovered cases in each country for every day since April 18, and also contains the population of each country to calculate per-capita penetration of the virus

    I've removed data from the "Diamond Princess" and "MS Zaandam" since they are not countries

    Additionally, an auxiliray table with information about the fraction of the general population at different age groups for every country is added (taken from Wikipedia). This is specifically relevant since COVID-19 death rate is very much age dependent.

    Acknowledgements

    The people at "www.worldometers.info" collecting and maintaining this site really are doing very important work "https://www.worldometers.info/coronavirus/#countries">https://www.worldometers.info/coronavirus/#countries

    Data about age structure for every country comes from wikipedia

    Inspiration

    It's possible to use this dataset for various purposes and analyses My goal will be to use the additional data about the number of tests performed in each country to estimate the true death and infection rates of COVID-19

  19. Life table data for "Bounce backs amid continued losses: Life expectancy...

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jul 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonas Schöley; Jonas Schöley; José Manuel Aburto; José Manuel Aburto; Ilya Kashnitsky; Ilya Kashnitsky; Maxi S. Kniffka; Maxi S. Kniffka; Luyin Zhang; Luyin Zhang; Hannaliis Jaadla; Hannaliis Jaadla; Jennifer B. Dowd; Jennifer B. Dowd; Ridhi Kashyap; Ridhi Kashyap (2022). Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19" [Dataset]. http://doi.org/10.5281/zenodo.6241025
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 19, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jonas Schöley; Jonas Schöley; José Manuel Aburto; José Manuel Aburto; Ilya Kashnitsky; Ilya Kashnitsky; Maxi S. Kniffka; Maxi S. Kniffka; Luyin Zhang; Luyin Zhang; Hannaliis Jaadla; Hannaliis Jaadla; Jennifer B. Dowd; Jennifer B. Dowd; Ridhi Kashyap; Ridhi Kashyap
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19"

    cc-by Jonas Schöley, José Manuel Aburto, Ilya Kashnitsky, Maxi S. Kniffka, Luyin Zhang, Hannaliis Jaadla, Jennifer B. Dowd, and Ridhi Kashyap. "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    These are CSV files of life tables over the years 2015 through 2021 across 29 countries analyzed in the paper "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    40-lifetables.csv

    Life table statistics 2015 through 2021 by sex and region with uncertainty quantiles based on Poisson replication of death counts.

    30-lt_input.csv

    Life table input data.

    • `id`: unique row identifier
    • `region_iso`: iso3166-2 region codes
    • `sex`: Male, Female, Total
    • `year`: iso year
    • `age_start`: start of age group
    • `age_width`: width of age group, Inf for age_start 100, otherwise 1
    • `nweeks_year`: number of weeks in that year, 52 or 53
    • `death_total`: number of deaths by any cause
    • `population_py`: person-years of exposure (adjusted for leap-weeks and missing weeks in input data on all cause deaths)
    • `death_total_nweeksmiss`: number of weeks in the raw input data with at least one missing death count for this region-sex-year stratum. missings are counted when the week is implicitly missing from the input data or if any NAs are encounted in this week or if age groups are implicitly missing for this week in the input data (e.g. 40-45, 50-55)
    • `death_total_minnageraw`: the minimum number of age-groups in the raw input data within this region-sex-year stratum
    • `death_total_maxnageraw`: the maximum number of age-groups in the raw input data within this region-sex-year stratum
    • `death_total_minopenageraw`: the minimum age at the start of the open age group in the raw input data within this region-sex-year stratum
    • `death_total_maxopenageraw`: the maximum age at the start of the open age group in the raw input data within this region-sex-year stratum
    • `death_total_source`: source of the all-cause death data
    • `population_midyear`: midyear population (July 1st)
    • `population_source`: source of the population count/exposure data
    • `death_covid`: number of deaths due to covid
    • `death_covid_date`: number of deaths due to covid as of
    • `death_covid_nageraw`: the number of age groups in the covid input data
    • `ex_wpp_estimate`: life expectancy estimates from the World Population prospects for a five year period, merged at the midpoint year
    • `ex_hmd_estimate`: life expectancy estimates from the Human Mortality Database
    • `nmx_hmd_estimate`: death rate estimates from the Human Mortality Database
    • `nmx_cntfc`: Lee-Carter death rate projections based on trend in the years 2015 through 2019

    Deaths

    • source:
    • STMF:
      • harmonized to single ages via pclm
      • pclm iterates over country, sex, year, and within-year age grouping pattern and converts irregular age groupings, which may vary by country, year and week into a regular age grouping of 0:110
      • smoothing parameters estimated via BIC grid search seperately for every pclm iteration
      • last age group set to [110,111)
      • ages 100:110+ are then summed into 100+ to be consistent with mid-year population information
      • deaths in unknown weeks are considered; deaths in unknown ages are not considered
    • ONS:
      • data already in single ages
      • ages 100:105+ are summed into 100+ to be consistent with mid-year population information
      • PCLM smoothing applied to for consistency reasons
    • CDC:
      • The CDC data comes in single ages 0:100 for the US. For 2020 we only have the STMF data in a much coarser age grouping, i.e. (0, 1, 5, 15, 25, 35, 45, 55, 65, 75, 85+). In order to calculate life-tables in a manner consistent with 2020, we summarise the pre 2020 US death counts into the 2020 age grouping and then apply the pclm ungrouping into single year ages, mirroring the approach to the 2020 data

    Population

    • source:
      • for years 2000 to 2019: World Population Prospects 2019 single year-age population estimates 1950-2019
      • for year 2020: World Population Prospects 2019 single year-age population projections 2020-2100
    • mid-year population
      • mid-year population translated into exposures:
        • if a region reports annual deaths using the Gregorian calendar definition of a year (365 or 366 days long) set exposures equal to mid year population estimates
        • if a region reports annual deaths using the iso-week-year definition of a year (364 or 371 days long), and if there is a leap-week in that year, set exposures equal to 371/364\*mid_year_population to account for the longer reporting period. in years without leap-weeks set exposures equal to mid year population estimates. further multiply by fraction of observed weeks on all weeks in a year.

    COVID deaths

    • source: COVerAGE-DB (https://osf.io/mpwjq/)
    • the data base reports cumulative numbers of COVID deaths over days of a year, we extract the most up to date yearly total

    External life expectancy estimates

  20. s

    CoVid Plots and Analysis

    • orda.shef.ac.uk
    • datasetcatalog.nlm.nih.gov
    • +2more
    txt
    Updated Feb 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colin Angus (2023). CoVid Plots and Analysis [Dataset]. http://doi.org/10.15131/shef.data.12328226.v60
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 26, 2023
    Dataset provided by
    The University of Sheffield
    Authors
    Colin Angus
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    COVID-19Plots and analysis relating to the coronavirus pandemic. Includes five sets of plots and associated R code to generate them.1) HeatmapsUpdated every few days - heatmaps of COVID-19 case and death trajectories for Local Authorities (or equivalent) in England, Wales, Scotland, Ireland and Germany.2) All cause mortalityUpdated on Tuesday (for England & Wales), Wednesday (for Scotland) and Friday (for Northern Ireland) - analysis and plots of weekly all-cause deaths in 2020 compared to previous years by country, age, sex and region. Also a set of international comparisons using data from mortality.org3) ExposuresNo longer updated - mapping of potential COVID-19 mortality exposure at local levels (LSOAs) in England based on the age-sex structure of the population and levels of poor health.There is also a Shiny app which creates slightly lower resolution versions of the same plots online, which you can find here: https://victimofmaths.shinyapps.io/covidmapper/, on GitHub https://github.com/VictimOfMaths/COVIDmapper and uploaded to this record4) Index of Multiple Deprivation No longer updated - preliminary analysis of the inequality impacts of COVID-19 based on Local Authority level cases and levels of deprivation. 5) Socioeconomic inequalities. No longer updated (unless ONS release more data) - Analysis of published ONS figures of COVID-19 and other cause mortality in 2020 compared to previous years by deprivation decile.Latest versions of plots and associated analysis can be found on Twitter: https://twitter.com/victimofmathsThis work is described in more detail on the UK Data Service Impact and Innovation Lab blog: https://blog.ukdataservice.ac.uk/visualising-high-risk-areas-for-covid-19-mortality/Adapted from data from the Office for National Statistics licensed under the Open Government Licence v.1.0.http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista, COVID-19 deaths reported in the U.S. as of June 14, 2023, by age [Dataset]. https://www.statista.com/statistics/1191568/reported-deaths-from-covid-by-age-us/
Organization logo

COVID-19 deaths reported in the U.S. as of June 14, 2023, by age

Explore at:
44 scholarly articles cite this dataset (View in Google Scholar)
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jan 1, 2020 - Jun 14, 2023
Area covered
United States
Description

Between the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.

Search
Clear search
Close search
Google apps
Main menu