Facebook
TwitterBetween the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.
Facebook
TwitterIn 2023, the leading causes of death for children aged one to four years in the United States were unintentional injuries and congenital malformations, deformations, and chromosomal abnormalities. At that time, around 31 percent of all deaths among these children were caused by unintentional injuries. Differences in causes of death among children by age Just as unintentional injuries are the leading cause of death among children aged one to four, it is also the leading cause of death for the age groups five to nine and 10 to 14. However, congenital malformations, deformations, and chromosomal abnormalities account for fewer deaths as children become older, while the share of deaths caused by cancer is higher among those aged five to nine and 10 to 14. In fact, cancer is the second leading cause of death among five to nine-year-olds, accounting for around 16 percent of all deaths. Sadly, the second leading cause of death among children aged 10 to 14 is intentional self-harm, with 14 percent of all deaths among those in this age group caused by suicide. Leading causes of death in the United States The leading causes of death in the United States are heart disease and malignant neoplasms. Together, these two diseases accounted for around 42 percent of all deaths in the United States in 2023. In 2023, the lifetime odds that the average person in the United States would die from heart disease was one in six, while the odds for cancer were one in seven.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
Effective June 28, 2023, this dataset will no longer be updated. Similar data are accessible from CDC WONDER (https://wonder.cdc.gov/mcd-icd10-provisional.html).
Deaths involving coronavirus disease 2019 (COVID-19) with a focus on ages 0-18 years in the United States.
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Facebook
TwitterAs of April 26, 2023, around 27 percent of total COVID-19 deaths in the United States have been among adults 85 years and older, despite this age group only accounting for two percent of the U.S. population. This statistic depicts the distribution of total COVID-19 deaths in the United States as of April 26, 2023, by age group.
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe SARS-CoV-2 pandemic remains a critical global health concern, with older adults being the most vulnerable group. Nonetheless, it is crucial to recognize that COVID-19 has caused numerous deaths in children worldwide. Emerging evidence indicates that infants and breastfeeding children, particularly those aged below one year, face a greater risk of hospitalization and mortality than older children with COVID-19.ObjectiveThis study aimed to describe the epidemiology of COVID-19 among children during the early phase of the pandemic in Ecuador.MethodsWe conducted a country-wide population-based analysis of the epidemiology of COVID-19, using incidence and mortality data reported from Ecuador between February 15, 2020 and May 14 2021. Measurements of frequency, central tendency, dispersion, and absolute differences were calculated for all categorical and continuous variables.ResultsAt least 34,001 cases (23,587 confirmed cases, 5,315 probable and 5,099 suspected) and 258 COVID-19 related deaths have been reported among children in Ecuador during the first 16 months of the pandemic. The overall incidence rate was 612 cases per 100,000 children, the mortality rate was 3 per 100,000, while the case fatality rate was 0.76%. The highest risk group for infection was children and adolescents between 15 and 19 years of age; however, the highest mortality rate occurred in children under one year of age. The largest provinces, such as Pichincha, Guavas and Manabí, were the ones that reported the highest number of cases, 27%, 12.1% and 10.8%, respectively.ConclusionsThis study is the first to report on COVID-19 epidemics among children in Ecuador. Our findings reveal that younger children have a lower risk of SARS-CoV-2 infection, but a higher risk of mortality compared to older children and adolescents. Additionally, we observed significant disparities in infection rates and outcomes among children living in rural areas, those with comorbidities, and those from indigenous ethnic groups.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Objectives: to describe epidemiological characteristics and deaths in children with cancer and COVID-19 at a reference hospital in Recife, Brazil. Methods: cohort involving children under the age of 19 underwent cancer treatment during April to July 2020. During the pandemic, real-time reverse transcriptase polymerase chain reaction assay (RT-PCR) for severe acute respiratory syndrome coronavirus 2 (SARS -CoV-2) in nasal / oropharyngeal swab were collected in symptomatic patients or before hospitalization. Those with detectable results were included in this cohort study. The outcomes were delayed on cancer treatment and death. Descriptive analysis was performed and presented in preliminary results. Results: 48 children participated in the cohort, mostly with hematological neoplasms (66.6%.),69% were male, median age was 5.5 years. The most frequent symptoms were fever (58.3%) and coughing (27.7%);72.9% required hospitalization, 20% had support in ICU and 10.5% on invasive ventilatory assistance.66.6% of the patients had their oncological treatment postponed, 16.6% died within 60 days after confirmation of SARS-CoV-2 infection. Conclusions: COVID-19 led a delay in the oncological treatment for children with cancer and a higher mortality frequency when compared to the historical series of the service. It would be important to analyze the risk factors to determine the survival impact.
Facebook
TwitterThe coronavirus (COVID-19) has led to over 183,000 deaths in Germany, as of 2024. When looking at the distribution of deaths by age, based on the figures currently available, most death occurred in the age group 80 years and older at approximately 118,938 deaths.
Facebook
TwitterAs of January 11, 2023, the highest number of deaths due to the coronavirus in Sweden was among individuals aged 80 to 90 years old. In this age group there were 9,124 deaths as a result of the virus. The overall Swedish death toll was 22,645 as of January 11, 2023.
The first case of coronavirus (COVID-19) in Sweden was confirmed on February 4, 2020. The number of cases has since risen to over 2.68 million, as of January 2023. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterIntroductionRecent reviews summarize evidence that some vaccines have heterologous or non-specific effects (NSE), potentially offering protection against multiple pathogens. Numerous economic evaluations examine vaccines' pathogen-specific effects, but less than a handful focus on NSE. This paper addresses that gap by reporting economic evaluations of the NSE of oral polio vaccine (OPV) against under-five mortality and COVID-19.Materials and methodsWe studied two settings: (1) reducing child mortality in a high-mortality setting (Guinea-Bissau) and (2) preventing COVID-19 in India. In the former, the intervention involves three annual campaigns in which children receive OPV incremental to routine immunization. In the latter, a susceptible-exposed-infectious-recovered model was developed to estimate the population benefits of two scenarios, in which OPV would be co-administered alongside COVID-19 vaccines. Incremental cost-effectiveness and benefit-cost ratios were modeled for ranges of intervention effectiveness estimates to supplement the headline numbers and account for heterogeneity and uncertainty.ResultsFor child mortality, headline cost-effectiveness was $650 per child death averted. For COVID-19, assuming OPV had 20% effectiveness, incremental cost per death averted was $23,000–65,000 if it were administered simultaneously with a COVID-19 vaccine <200 days into a wave of the epidemic. If the COVID-19 vaccine availability were delayed, the cost per averted death would decrease to $2600–6100. Estimated benefit-to-cost ratios vary but are consistently high.DiscussionEconomic evaluation suggests the potential of OPV to efficiently reduce child mortality in high mortality environments. Likewise, within a broad range of assumed effect sizes, OPV (or another vaccine with NSE) could play an economically attractive role against COVID-19 in countries facing COVID-19 vaccine delays.FundingThe contribution by DTJ was supported through grants from Trond Mohn Foundation (BFS2019MT02) and Norad (RAF-18/0009) through the Bergen Center for Ethics and Priority Setting.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Examples of the different approaches to mitigate transmission of COVID-19 and provide information to children about COVID-19 (coronavirus) within the participating countries during the time of the study.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
Facebook
TwitterThe HM Prison and Probation Service (HMPPS) COVID-19 statistics provides monthly data on the HMPPS response to COVID-19. It addresses confirmed cases of the virus in prisons and the Youth Custody Service sites, deaths across HMPPS service users and mitigating action being taken to limit the spread of the virus and save lives.
Data includes:
In this release information on COVID-19 related deaths and confirmed COVID-19 cases at prison and Youth Custody Service establishment level up to 31 January 2021.
The bulletin was produced and handled by the ministry’s analytical professionals and production staff. For the bulletin pre-release access of up to 24 hours is granted to the following persons:
Lord Chancellor and Secretary of State for Justice; Parliamentary Under Secretary of State; Permanent Secretary; Minister and Permanent Secretary Private Secretaries (x8); Special Advisors (x2); Director General for Policy and Strategy Group; Deputy Director of Data and Evidence as a Service; Head of Profession, Statistics; Head of Prison Safety and Security Statistics; Head of News; Deputy Head of News and relevant press officers (x2).
Chief Executive Officer; Director General Prisons; Chief Executive and Director General Private Secretaries and Heads of Office (x4); Deputy Director of COVID-19 HMPPS Response; Deputy Director Joint COVID 19 Strategic Policy Unit (x2); Director General of Probation and Wales; Executive Director Probation and Women; Executive Director of Youth Custody Service; Executive Director HMPPS Wales; Executive Director, Performance Directorate; Head of Health, Social Care and Substance Misuse Services; Head of Capacity Management and Custodial Capacity Manager.
Prison estate expanded to protect NHS from coronavirus risk
Measures announced to protect NHS from coronavirus risk in prisons
Facebook
TwitterThroughout the depicted period in Panama, the rate of child mortality exhibited an initial increase, subsequently showcasing a downward trend, particularly during the COVID-19 pandemic, where it experienced a significant decline, hitting its nadir in 2020 at ****.
Facebook
TwitterAs of May 2, 2023, of 34,206 COVID-19 cases deceased in Canada, around 4,058 were aged 60 to 69 years. This statistic shows the number of COVID-19 deaths in Canada as of May 2, 2023, by age.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Information discussed between parents and children provide a foundation for children's developing understanding of health and illness. Parents of 3-to-7-year-old children (N = 516, 62% female, 78% White) residing in the United States were recruited using Amazon’s Mechanical Turk during July 29th– August 10th, 2020. We asked parents to report three questions that their children had asked about the COVID-19 pandemic and asked them to report how they responded to those questions. Children’s questions focused on lifestyle changes (22%), while parental responses were often about the virus (23%). We examined the stability of content of children’s questions and parental responses between the first peak and second peak of infection and death rates due to COVID-19 in the United States. The topic of children’s questions and the types of parental responses shifted between the two peaks, such that parents during the second peak of the pandemic reported their children asking more frequently about the virus and preventive measures than children in the first peak. Meanwhile, parents during the second peak of infection and death rates were more focused on responding to their children’s questions with information about the virus. We used Latent Class Analysis to explore overall patterns in children’s questions and parents’ responses. For children’s questions, three latent classes were obtained: (1) the virus [39%], (2) the virus/lifestyle changes [21%], and (3) lifestyle changes/preventive measures [40%]. For parents’ responses three latent classes were found: (1) the virus/self-protection [54%], (2) reassurance/the virus [28%], and (3) simple yes/no answers without further explanation [17%]. These results suggest that children’s questions and parental responses can be captured in terms of a discrete number of latent classes.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Children’s self-report of their access to information about COVID-19.
Facebook
TwitterThe COVID-19 pandemic increased the global death rate, reaching *** in 2021, but had little to no significant impact on birth rates, causing population growth to dip slightly. On a global level, population growth is determined by the difference between the birth and death rates, known as the rate of natural change. On a national or regional level, migration also affects population change. Ongoing trends Since the middle of the 20th century, the global birth rate has been well above the global death rate; however, the gap between these figures has grown closer in recent years. The death rate is projected to overtake the birth rate in the 2080s, which means that the world's population will then go into decline. In the future, death rates will increase due to ageing populations across the world and a plateau in life expectancy. Why does this change? There are many reasons for the decline in death and birth rates in recent decades. Falling death rates have been driven by a reduction in infant and child mortality, as well as increased life expectancy. Falling birth rates were also driven by the reduction in child mortality, whereby mothers would have fewer children as survival rates rose - other factors include the drop in child marriage, improved contraception access and efficacy, and women choosing to have children later in life.
Facebook
TwitterRank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Facebook
TwitterBetween the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.