Facebook
TwitterBased on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Facebook
TwitterOn March 4, 2020, the first death as a result of coronavirus (COVID-19) was recorded in the United Kingdom (UK). The number of deaths in the UK has increased significantly since then. As of January 13, 2023, the number of confirmed deaths due to coronavirus in the UK amounted to 202,157. On January 21, 2021, 1,370 deaths were recorded, which was the highest total in single day in the UK since the outbreak began.
Number of deaths among highest in Europe
The UK has had the highest number of deaths from coronavirus in western Europe. In terms of rate of coronavirus deaths, the UK has recorded 297.8 deaths per 100,000 population.
Cases in the UK The number of confirmed cases of coronavirus in the UK was 24,243,393 as of January 13, 2023. The South East has the highest number of first-episode confirmed cases of the virus in the UK with 3,123,050 cases, while London and the North West have 2,912,859 and 2,580,090 confirmed cases respectively. As of January 16, the UK has had 50 new cases per 100,000 in the last seven days.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The number of deaths registered in England and Wales due to and involving coronavirus (COVID-19). Breakdowns include age, sex, region, local authority, Middle-layer Super Output Area (MSOA), indices of deprivation and place of death. Includes age-specific and age-standardised mortality rates.
Facebook
TwitterAs of January 13, 2023, Bulgaria had the highest rate of COVID-19 deaths among its population in Europe at 548.6 deaths per 100,000 population. Hungary had recorded 496.4 deaths from COVID-19 per 100,000. Furthermore, Russia had the highest number of confirmed COVID-19 deaths in Europe, at over 394 thousand.
Number of cases in Europe During the same period, across the whole of Europe, there have been over 270 million confirmed cases of COVID-19. France has been Europe's worst affected country with around 38.3 million cases, this translates to an incidence rate of approximately 58,945 cases per 100,000 population. Germany and Italy had approximately 37.6 million and 25.3 million cases respectively.
Current situation In March 2023, the rate of cases in Austria over the last seven days was 224 per 100,000 which was the highest in Europe. Luxembourg and Slovenia both followed with seven day rates of infections at 122 and 108 respectively.
Facebook
TwitterThis mapping tool enables you to see how COVID-19 deaths in your area may relate to factors in the local population, which research has shown are associated with COVID-19 mortality. It maps COVID-19 deaths rates for small areas of London (known as MSOAs) and enables you to compare these to a number of other factors including the Index of Multiple Deprivation, the age and ethnicity of the local population, extent of pre-existing health conditions in the local population, and occupational data. Research has shown that the mortality risk from COVID-19 is higher for people of older age groups, for men, for people with pre-existing health conditions, and for people from BAME backgrounds. London boroughs had some of the highest mortality rates from COVID-19 based on data to April 17th 2020, based on data from the Office for National Statistics (ONS). Analysis from the ONS has also shown how mortality is also related to socio-economic issues such as occupations classified ‘at risk’ and area deprivation. There is much about COVID-19-related mortality that is still not fully understood, including the intersection between the different factors e.g. relationship between BAME groups and occupation. On their own, none of these individual factors correlate strongly with deaths for these small areas. This is most likely because the most relevant factors will vary from area to area. In some cases it may relate to the age of the population, in others it may relate to the prevalence of underlying health conditions, area deprivation or the proportion of the population working in ‘at risk occupations’, and in some cases a combination of these or none of them. Further descriptive analysis of the factors in this tool can be found here: https://data.london.gov.uk/dataset/covid-19--socio-economic-risk-factors-briefing
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Number of excess deaths, including deaths due to coronavirus (COVID-19) and due to other causes. Including breakdowns by age, sex and geography.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
11th January 2020 Change to vaccination data made available by UK gov - now just cumulative number of vaccines delivered are available for both first and second doses. For the devolved nations the cumulative totals are available for the dates from when given, however for the UK as a whole the total doses given is just on the last date of the index, regardless of when those vaccines were given.
4th January 2020 VACCINATION DATA ADDED - New and Cumulative First Dose Vaccination Data added to UK_National_Total_COVID_Dataset.csv and UK_Devolved_Nations_COVID_Dataset.csv
2nd December 2020:
NEW population, land area and population density data added in file NEW_Official_Population_Data_ONS_mid-2019.csv. This data is scraped from the Office for National Statistics and covers the UK, devolved UK nations, regions and local authorities (boroughs).
20th November 2020:
With European governments struggling with a 'second-wave' of rising cases, hospitalisations and deaths resulting from the SARS-CoV-2 virus (COVID-19), I wanted to make a comparative analysis between the data coming out of major European nations since the start of the pandemic.
I started by creating a Sweden COVID-19 dataset and now I'm looking at my own country, the United Kingdom.
The data comes from https://coronavirus.data.gov.uk/ and I used the Developer's Guide to scrape the data, so it was a fairly simple process. The notebook that scapes the data is public and can be found here. Further information about data collection methodologies and definitions can be found here.
The data includes the overall numbers for the UK as a whole, the numbers for each of the devolved UK nations (Eng, Sco, Wal & NI), English Regions and Upper Tier Local Authorities (UTLA) for all of the UK (what we call Boroughs). I have also included a small table with the populations of the 4 devolved UK nations, used to calculate the death rates per 100,000 population.
As I've said for before - I am not an Epidemiologist, Sociologist or even a Data Scientist. I am actually a Mechanical Engineer! The objective here is to improve my data science skills and maybe provide some useful data to the wider community.
Any questions, comments or suggestions are most welcome! I am open to requests and collaborations! Stay Safe!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The features in the order shown under “Feature name” are: GDP, inter-state distance based on lat-long coordinates, gender, ethnicity, quality of health care facility, number of homeless people, total infected and death, population density, airport passenger traffic, age group, days for infection and death to peak, number of people tested for COVID-19, days elapsed between first reported infection and the imposition of lockdown measures at a given state.
Facebook
TwitterCOVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
A word on the flaws of numbers like this
People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.
Facebook
TwitterThe data includes:
See the https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-hospital-activity/">detailed data on hospital activity
See the detailed data on the https://coronavirus.data.gov.uk/?_ga=2.59248237.1996501647.1611741463-1961839927.1610968060">progress of the coronavirus pandemic. This includes the number of people testing positive, case rates and deaths within 28 days of positive test by upper tier local authority.
See the latest lower-tier local authority watchlist. This includes epidemiological charts containing case numbers, case rates, persons tested and positivity at lower-tier local authority level.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Trends in Covid total deaths per million. The latest data for over 100 countries around the world.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Pre-existing conditions of people who died due to COVID-19, broken down by country, broad age group, and place of death occurrence, usual residents of England and Wales.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Multiple linear regression table with R2, coefficient and p value for input features (population density, normalized busy airport, pre-infected count, pre-death count) and observed factors (post-infected count and post-death count).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Values of parameters.
Facebook
TwitterVaccinations in London Between 8 December 2020 and 15 September 2021 5,838,305 1st doses and 5,232,885 2nd doses have been administered to London residents.
Differences in vaccine roll out between London and the Rest of England London Rest of England Priority Group Vaccinations given Percentage vaccinated Vaccinations given Percentage vaccinated Group 1 Older Adult Care Home Residents 21,883 95% 275,964 96% Older Adult Care Home Staff 29,405 85% 381,637 88% Group 2 80+ years 251,021 83% 2,368,284 93% Health Care Worker 174,944 99% 1,139,243 100%* Group 3 75 - 79 years 177,665 90% 1,796,408 99% Group 4 70 - 74 years 252,609 90% 2,454,381 97% Clinically Extremely Vulnerable 278,967 88% 1,850,485 95% Group 5 65 - 69 years 285,768 90% 2,381,250 97% Group 6 At Risk or Carer (Under 65) 983,379 78% 6,093,082 88% Younger Adult Care Home Residents 3,822 92% 30,321 93% Group 7 60 - 64 years 373,327 92% 2,748,412 98% Group 8 55 - 59 years 465,276 91% 3,152,412 97% Group 9 50 - 54 years 510,132 90% 3,141,219 95% Data as at 15 September 2021 for age based groups and as at 12 September 2021 for non-age based groups * The number who have received their first dose exceeds the latest official estimate of the population for this group There is considerable uncertainty in the population denominators used to calculate the percentage vaccinated. Comparing implied vaccination rates for multiple sources of denominators provides some indication of uncertainty in the true values. Confidence is higher where the results from multiple sources agree more closely. Because the denominator sources are not fully independent of one another, users should interpret the range of values across sources as indicating the minimum range of uncertainty in the true value. The following datasets can be used to estimate vaccine uptake by age group for London:
ONS 2020 mid-year estimates (MYE). This is the population estimate used for age groups throughout the rest of the analysis.
Number of people ages 18 and over on the National Immunisation Management Service (NIMS)
ONS Public Health Data Asset (PHDA) dataset. This is a linked dataset combining the 2011 Census, the General Practice Extraction Service (GPES) data for pandemic planning and research and the Hospital Episode Statistics (HES). This data covers a subset of the population.
Vaccine roll out in London by Ethnic Group Understanding how vaccine uptake varies across different ethnic groups in London is complicated by two issues:
Ethnicity information for recipients is unavailable for a very large number of the vaccinations that have been delivered. As a result, estimates of vaccine uptake by ethnic group are highly sensitive to the assumptions about and treatment of the Unknown group in calculations of rates.
For vaccinations given to people aged 50 and over in London nearly 10% do not have ethnicity information available,
The accuracy of available population denominators by ethnic group is limited. Because ethnicity information is not captured in official estimates of births, deaths, and migration, the available population denominators typically rely on projecting forward patterns captured in the 2011 Census. Subsequent changes to these patterns, particularly with respect to international migration, leads to increasing uncertainty in the accuracy of denominators sources as we move further away from 2011.
Comparing estimated population sizes and implied vaccination rates for multiple sources of denominators provides some indication of uncertainty in the true values. Confidence is higher where the results from multiple sources agree more closely. Because the denominator sources are not fully independent of one another, users should interpret the range of values across sources as indicating the minimum range of uncertainty in the true value. The following population estimates are available by Ethnic group for London:
GLA Ethnic group population projections - 2016 as at 2021
ONS Population Denominators produced for Race Disparity Audit as at 2018
ETHPOP population projections produced by the University of Leeds as at 2020
Antibody prevalence estimates As part of the ONS Coronavirus (COVID-19) Infection Survey ONS publish a modelled estimate of the percent of the adult population testing positive for antibodies to Coronavirus by region. Antibodies can be generated by vaccination or previous infection.
Vaccine effects on cases, hospitalisations and deaths When the vaccine roll out began in December 2020 coronavirus cases, hospital admissions and deaths were rising steeply. The peak of infections came in London in early January 2021, before reducing during the national lockdown and as the vaccine roll out progressed. As the vaccine roll out began in older age groups the effect of vaccinations can be separated from the effect of national lockdown by comparing changes in cases, admissions and deaths
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete COVID-19 dataset is a collection of the COVID-19 data maintained by Our World in Data. It is updated daily and includes data on confirmed cases, deaths, hospitalizations, testing, and vaccinations as well as other variables of potential interest.
The variables represent all data related to confirmed cases, deaths, hospitalizations, and testing, as well as other variables of potential interest.
the columns are: iso_code, continent, location, date, total_cases, new_cases, new_cases_smoothed, total_deaths, new_deaths, new_deaths_smoothed, total_cases_per_million, new_cases_per_million, new_cases_smoothed_per_million, total_deaths_per_million, new_deaths_per_million, new_deaths_smoothed_per_million, reproduction_rate, icu_patients, icu_patients_per_million, hosp_patients, hosp_patients_per_million, weekly_icu_admissions, weekly_icu_admissions_per_million, weekly_hosp_admissions, weekly_hosp_admissions_per_million, total_tests, new_tests, total_tests_per_thousand, new_tests_per_thousand, new_tests_smoothed, new_tests_smoothed_per_thousand, positive_rate, tests_per_case, tests_units, total_vaccinations, people_vaccinated, people_fully_vaccinated, new_vaccinations, new_vaccinations_smoothed, total_vaccinations_per_hundred, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, new_vaccinations_smoothed_per_million, stringency_index, population, population_density, median_age, aged_65_older, aged_70_older, gdp_per_capita, extreme_poverty, cardiovasc_death_rate, diabetes_prevalence, female_smokers, male_smokers, handwashing_facilities, hospital_beds_per_thousand, life_expectancy, human_development_index
https://systems.jhu.edu/research/public-health/ncov/ https://www.ecdc.europa.eu/en/publications-data/download-data-hospital-and-icu-admission-rates-and-current-occupancy-covid-19 https://coronavirus.data.gov.uk/details/healthcare https://covid19tracker.ca/ https://healthdata.gov/dataset/covid-19-reported-patient-impact-and-hospital-capacity-state-timeseries https://ourworldindata.org/coronavirus-testing#our-checklist-for-covid-19-testing-data
Facebook
TwitterIn early-February 2020, the first cases of COVID-19 in the United Kingdom (UK) were confirmed. The number of cases in the UK increased significantly at the end of 2021. On January 13, 2023, the number of confirmed cases in the UK amounted to 24,243,393. COVID deaths among highest in Europe There were 202,157 confirmed coronavirus deaths in the UK as of January 13, 2023. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Current infection rate in Europe The current infection rate in the UK was 50 cases per 100,000 population in the last seven days as of January 16. San Marino had the highest seven day rate of infections in Europe at 336.
Facebook
TwitterThe data includes:
See the https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-hospital-activity/" class="govuk-link">detailed data on hospital activity.
See the detailed data on the https://coronavirus.data.gov.uk/?_ga=2.59248237.1996501647.1611741463-1961839927.1610968060" class="govuk-link">progress of the coronavirus pandemic. This includes the number of people testing positive, case rates and deaths within 28 days of positive test by upper tier local authority.
See the latest lower-tier local authority watchlist. This includes epidemiological charts containing case numbers, case rates, persons tested and positivity at lower-tier local authority level.
Facebook
TwitterIn early-February 2020, the first cases of COVID-19 in the United Kingdom (UK) were confirmed. As of December 2023, the South East had the highest number of confirmed first episode cases of the virus in the UK with 3,180,101 registered cases, while London had 2,947,727 confirmed first-time cases. Overall, there has been 24,243,393 confirmed cases of COVID-19 in the UK as of January 13, 2023.
COVID deaths in the UK COVID-19 was responsible for 202,157 deaths in the UK as of January 13, 2023, and the UK had the highest death toll from coronavirus in western Europe. The incidence of deaths in the UK was 297.8 per 100,000 population as January 13, 2023.
Current infection rate in Europe The infection rate in the UK was 43.3 cases per 100,000 population in the last seven days as of March 13, 2023. Austria had the highest rate at 224 cases per 100,000 in the last week.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterBased on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.