Facebook
TwitterBased on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Trends in Covid total deaths per million. The latest data for over 100 countries around the world.
Facebook
TwitterAs of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had spread to almost every country in the world, and more than 6.86 million people had died after contracting the respiratory virus. Over 1.16 million of these deaths occurred in the United States.
Waves of infections Almost every country and territory worldwide have been affected by the COVID-19 disease. At the end of 2021 the virus was once again circulating at very high rates, even in countries with relatively high vaccination rates such as the United States and Germany. As rates of new infections increased, some countries in Europe, like Germany and Austria, tightened restrictions once again, specifically targeting those who were not yet vaccinated. However, by spring 2022, rates of new infections had decreased in many countries and restrictions were once again lifted.
What are the symptoms of the virus? It can take up to 14 days for symptoms of the illness to start being noticed. The most commonly reported symptoms are a fever and a dry cough, leading to shortness of breath. The early symptoms are similar to other common viruses such as the common cold and flu. These illnesses spread more during cold months, but there is no conclusive evidence to suggest that temperature impacts the spread of the SARS-CoV-2 virus. Medical advice should be sought if you are experiencing any of these symptoms.
Facebook
TwitterAs of January 13, 2023, Bulgaria had the highest rate of COVID-19 deaths among its population in Europe at 548.6 deaths per 100,000 population. Hungary had recorded 496.4 deaths from COVID-19 per 100,000. Furthermore, Russia had the highest number of confirmed COVID-19 deaths in Europe, at over 394 thousand.
Number of cases in Europe During the same period, across the whole of Europe, there have been over 270 million confirmed cases of COVID-19. France has been Europe's worst affected country with around 38.3 million cases, this translates to an incidence rate of approximately 58,945 cases per 100,000 population. Germany and Italy had approximately 37.6 million and 25.3 million cases respectively.
Current situation In March 2023, the rate of cases in Austria over the last seven days was 224 per 100,000 which was the highest in Europe. Luxembourg and Slovenia both followed with seven day rates of infections at 122 and 108 respectively.
Facebook
TwitterCOVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
A word on the flaws of numbers like this
People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.
Facebook
TwitterBy Valtteri Kurkela [source]
The dataset is constantly updated and synced hourly to ensure up-to-date information. With over several columns available for analysis and exploration purposes, users can extract valuable insights from this extensive dataset.
Some of the key metrics covered in the dataset include:
Vaccinations: The dataset covers total vaccinations administered worldwide as well as breakdowns of people vaccinated per hundred people and fully vaccinated individuals per hundred people.
Testing & Positivity: Information on total tests conducted along with new tests conducted per thousand people is provided. Additionally, details on positive rate (percentage of positive Covid-19 tests out of all conducted) are included.
Hospital & ICU: Data on ICU patients and hospital patients are available along with corresponding figures normalized per million people. Weekly admissions to intensive care units and hospitals are also provided.
Confirmed Cases: The number of confirmed Covid-19 cases globally is captured in both absolute numbers as well as normalized values representing cases per million people.
5.Confirmed Deaths: Total confirmed deaths due to Covid-19 worldwide are provided with figures adjusted for population size (total deaths per million).
6.Reproduction Rate: The estimated reproduction rate (R) indicates the contagiousness of the virus within a particular country or region.
7.Policy Responses: Besides healthcare-related metrics, this comprehensive dataset includes policy responses implemented by countries or regions such as lockdown measures or travel restrictions.
8.Other Variables of InterestThe data encompasses various socioeconomic factors that may influence Covid-19 outcomes including population density,membership in a continent,gross domestic product(GDP)per capita;
For demographic factors: -Age Structure : percentage populations aged 65 and older,aged (70)older,median age -Gender-specific factors: Percentage of female smokers -Lifestyle-related factors: Diabetes prevalence rate and extreme poverty rate
- Excess Mortality: The dataset further provides insights into excess mortality rates, indicating the percentage increase in deaths above the expected number based on historical data.
The dataset consists of numerous columns providing specific information for analysis, such as ISO code for countries/regions, location names,and units of measurement for different parameters.
Overall,this dataset serves as a valuable resource for researchers, analysts, and policymakers seeking to explore various aspects related to Covid-19
Introduction:
Understanding the Basic Structure:
- The dataset consists of various columns containing different data related to vaccinations, testing, hospitalization, cases, deaths, policy responses, and other key variables.
- Each row represents data for a specific country or region at a certain point in time.
Selecting Desired Columns:
- Identify the specific columns that are relevant to your analysis or research needs.
- Some important columns include population, total cases, total deaths, new cases per million people, and vaccination-related metrics.
Filtering Data:
- Use filters based on specific conditions such as date ranges or continents to focus on relevant subsets of data.
- This can help you analyze trends over time or compare data between different regions.
Analyzing Vaccination Metrics:
- Explore variables like total_vaccinations, people_vaccinated, and people_fully_vaccinated to assess vaccination coverage in different countries.
- Calculate metrics such as people_vaccinated_per_hundred or total_boosters_per_hundred for standardized comparisons across populations.
Investigating Testing Information:
- Examine columns such as total_tests, new_tests, and tests_per_case to understand testing efforts in various countries.
- Calculate rates like tests_per_case to assess testing efficiency or identify changes in testing strategies over time.
Exploring Hospitalization and ICU Data:
- Analyze variables like hosp_patients, icu_patients, and hospital_beds_per_thousand to understand healthcare systems' strain.
- Calculate rates like icu_patients_per_million or hosp_patients_per_million for cross-country comparisons.
Assessing Covid-19 Cases and Deaths:
- Analyze variables like total_cases, new_ca...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Mortality statistics due to COVID-19 worldwide are compared, by adjusting for the size of the population and the stage of the pandemic. Data from the European Centre for Disease Control and Prevention, and Our World in Data websites were used. Analyses are based on number of deaths per one million inhabitants. In order to account for the stage of the pandemic, the baseline date was defined as the day in which the 10th death was reported. The analyses included 78 countries and territories which reported 10 or more deaths by April 9. On day 10, India had 0.06 deaths per million, Belgium had 30.46 and San Marino 618.78. On day 20, India had 0.27 deaths per million, China had 0.71 and Spain 139.62. On day 30, four Asian countries had the lowest mortality figures, whereas eight European countries had the highest ones. In Italy and Spain, mortality on day 40 was greater than 250 per million, whereas in China and South Korea, mortality was below 4 per million. Mortality on day 10 was moderately correlated with life expectancy, but not with population density. Asian countries presented much lower mortality figures as compared to European ones. Life expectancy was found to be correlated with mortality.
Facebook
TwitterAs of May 11, 2025, nearly 1.8 million people have died due COVID-19 in Latin America and the Caribbean. The country with the highest number was Brazil, reporting around 700,000 deaths. As a result of the pandemic, Brazil's GDP was forecast to decline by approximately six percent in 2020. Meanwhile, Mexico ranked second in number of deaths, with approximately 335 thousand occurrences. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
Twitterhttps://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5505749%2F2b83271d61e47e2523e10dc9c28e545c%2F600x200.jpg?generation=1599042483103679&alt=media" alt="">
Daily global COVID-19 data for all countries, provided by Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE). If you want to use the update version of the data, you can use our daily updated data with the help of api key by entering it via Altadata.
In this data product, you may find the latest and historical global daily data on the COVID-19 pandemic for all countries.
The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). The outbreak was first identified in December 2019 in Wuhan, China. The World Health Organization declared the outbreak a Public Health Emergency of International Concern on 30 January 2020 and a pandemic on 11 March. As of 12 August 2020, more than 20.2 million cases of COVID‑19 have been reported in more than 188 countries and territories, resulting in more than 741,000 deaths; more than 12.5 million people have recovered.
The Johns Hopkins Coronavirus Resource Center is a continuously updated source of COVID-19 data and expert guidance. They aggregate and analyze the best data available on COVID-19 - including cases, as well as testing, contact tracing and vaccine efforts - to help the public, policymakers and healthcare professionals worldwide respond to the pandemic.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset contains two files that provide detailed information on Covid-19 deaths and vaccinations worldwide. The first file contains data on the number of Covid-19 deaths, including total deaths and new deaths, across different locations and time periods. The second file contains data on Covid-19 vaccinations, including total vaccinations, people vaccinated, people fully vaccinated, and total boosters, across different locations and time periods. By analyzing this data, you can uncover insights into the global impact of Covid-19 and explore the relationship between vaccinations and deaths. This dataset is a valuable resource for researchers, data analysts, and anyone interested in understanding the ongoing pandemic.
COVID DEATHS
- iso_code: The ISO 3166-1 alpha-3 code of the country or territory.
- continent: The continent of the location.
- location: The name of the country or territory.
- date: The date of the observation.
- population: The population of the country or territory.
- total_cases: The total number of confirmed cases of Covid-19.
- new_cases: The number of new confirmed cases of Covid-19.
- new_cases_smoothed: The 7-day smoothed average of new confirmed cases of Covid-19.
- total_deaths: The total number of deaths due to Covid-19.
- new_deaths: The number of new deaths due to Covid-19.
- new_deaths_smoothed: The 7-day smoothed average of new deaths due to Covid-19.
- total_cases_per_million: The total number of confirmed cases of Covid-19 per million people.
- new_cases_per_million: The number of new confirmed cases of Covid-19 per million people.
- new_cases_smoothed_per_million: The 7-day smoothed average of new confirmed cases of Covid-19 per million people.
- total_deaths_per_million: The total number of deaths due to Covid-19 per million people.
- new_deaths_per_million: The number of new deaths due to Covid-19 per million people.
- new_deaths_smoothed_per_million: The 7-day smoothed average of new deaths due to Covid-19 per million people.
- reproduction_rate: The estimated average number of people each infected person infects (the "R" number).
- icu_patients: The number of patients in intensive care units (ICU) with Covid-19 on the given date.
- icu_patients_per_million: The number of patients in intensive care units (ICU) with Covid-19 on the given date, per million people.
- hosp_patients: The number of patients in hospital with Covid-19 on the given date.
- hosp_patients_per_million: The number of patients in hospital with Covid-19 on the given date, per million people.
- weekly_icu_admissions: The weekly number of patients admitted to intensive care units (ICU) with Covid-19.
- weekly_icu_admissions_per_million: The weekly number of patients admitted to intensive care units (ICU) with Covid-19, per million people.
- weekly_hosp_admissions: The weekly number of patients admitted to hospital with Covid-19.
- weekly_hosp_admissions_per_million: The weekly number of patients admitted to hospital with Covid-19, per million people.
COVID VACCINATIONS
total_tests: The total number of tests for Covid-19.new_tests: The number of new tests for Covid-19.total_tests_per_thousand: The total number of tests for Covid-19 per thousand people.new_tests_per_thousand: The number of new tests for Covid-19 per thousand people.new_tests_smoothed: The 7-day smoothed average of new tests for Covid-19.new_tests_smoothed_per_thousand: The 7-day smoothed average of new tests for Covid-19 per thousand people.positive_rate: The share of Covid-19 tests that are positive, given as a rolling 7-day average.tests_per_case: The number of tests conducted per confirmed case of Covid-19, given as a rolling 7-day average.tests_units: The units used by the location to report its testing data.total_vaccinations: The total number of doses of Covid-19 vaccines administered.people_vaccinated: The total number of people who have received at least one dose of a Covid-19 vaccine.people_fully_vaccinated: The total number of people who have received all doses prescribed by the vaccination protocol.total_boosters: The total number of booster doses administered (doses administered after the prescribed number of doses for full vaccination).new_vaccinations: The number of doses of Covid-19 vaccines administered on the given date.new_vaccinations_smoothed: The 7-day smoothed average of new doses of Covid-19 vaccines administered.total_vaccinations_per_hundred: The total number of doses of Covid-19 vaccines administered per hundred people in the total population.people_vaccinated_per_hundred: The total number of people who have received at least one dose of a Covid-19 vaccine per hundred people in the total population.people_fully_vaccinated_per_hundred: The total number of people who hav...
Facebook
TwitterAs of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Number of reported cases and deaths from the SARS-CoV-2 virus that causes Covid-19 for each country in the world
Includes Country, Total Cases, New Cases, Total Deaths, New Deatch, Total Recovered, New Recovered, Active Cases, Serious or Critical, Total Cases per 1 Million population, Deaths per 1 Million population, Total Tests, Tests per 1 Million population, and Population of the country.
Data as of 6th of August 2023.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Accountability for global health issues such as a pandemic and its devastating consequences are usually ascribed to a virus, but a comprehensive view should also take into account the state of the host. Data suggests that excessive nutrition is to blame for a yet unknown but not negligible portion of deaths attributed to severe acute respiratory syndrome coronavirus 2. We analyzed the correlation between mean body mass index (BMI) and 2-year coronavirus disease 2019 (COVID-19) mortality rates reported by 181 countries worldwide. Almost two thirds of the countries included had a mean BMI greater or equal to 25, with death rates ranging from 3 to 6,280 per million. Death rates in countries with a mean BMI below 25 ranged from 3 to 1,533. When the analysis was restricted to countries where the extent of testing was deemed more representative of actual mortality, only 20.1% had a mean BMI
Facebook
TwitterAs of January 13, 2023, there had been over 270 million confirmed cases of COVID-19 across the whole of Europe since the first confirmed case in January, 2020. Cyprus has the highest incidence of COVID-19 cases among its population in Europe at 71,853 per 100,000 people, followed by a rate of 64,449 in Austria. Slovenia has recorded the third highest rate of cases in Europe at 62,834 cases per 100,000. With almost 38.3 million confirmed cases, France has been the worst affected country in Europe, which translates into a rate of 58,945 cases per 100,000 population.
Current infection rate in Europe San Marino had the highest rate of cases per 100,000 in the past week at 336, as of January 16, 2023. Cyprus and Slovenia had seven day rates of infections at 278 and 181 respectively.
Coronavirus deaths in Europe There have been 2,169,191 recorded COVID-19 deaths in Europe since the beginning of the pandemic. Russia has the highest number of deaths recorded in a European country at over 394 thousand. Bulgaria has the highest death rate from the virus in Europe with approximately 549 deaths per 100,000 as of January 13, followed by Hungary with 496 deaths per 100,000. For further information about the coronavirus pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains information on the 14-day notification rate of newly reported COVID-19 cases per 100 000 population and the 14-day notification rate of reported deaths per million population by week and Country.
It is based on data originally downloaded by the site https://www.ecdc.europa.eu/en/covid-19.
Raw data from ECDC, harmonization and homogenization of data from UNIPV - Laboratory of Geomatics
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data files contain information on the 14-day notification rate of newly reported COVID-19 cases per 100 000 population and the 14-day notification rate of reported deaths per million population by week and country. Each row contains the corresponding data for a certain day and per country. The file is updated weekly.
Disclaimer: The figures in the files may differ slightly from those displayed in the latest ECDC Weekly country overviews in the event of retrospective corrections of the data after the country overview has been published.
If you reuse or enrich this dataset, please share it with us.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
"COVID-19 mortality correlation with cloudiness, sunlight, latitude in European countries"
Dataset for preprint titled "COVID-19 mortality: positive correlation with cloudiness but no correlation with sunlight and latitude in Europe" https://doi.org/10.1101/2021.01.27.21250658
by SECIL OMER, ADRIAN IFTIME, VICTOR BURCEA
Corresponding author: A. Iftime, University of Medicine and Pharmacy "Carol Davila", Biophysics Department, 8 Blvd. Eroii Sanitari, 050474 Bucharest, Romania. Email address: adrian.iftime [at] umfcd.ro.
===========
Dataset file: 2.0.0.COVID-19_Mortality_Cloudiness_Insolation_EUROPE_March_December_2020.csv
Dataset graphical preview: 2.0.0.INFOGRAPHIC_CloudFraction_vs_COVID-19_mortality_Europe_March-December_2020.png
DATASET: 444 rows (records), with the following fields:
"Country" : Country name; 37 European countries included.
"Date": Date stamp at the collection time. Data collection was performed in the last day of every month. Date format: YYYY-MM-DD
"Month_Key" : Date stamp at the collection time, formatted for easier monthly time series analysis. Date format: YYYY-MM
"Month_Fct2020" Date stamp at the collection time,formatted for easier graphing, as a string with names of the months (in English).
"Deaths_per_1Mpop" : Monthly mortality from COVID-19 raported in the country, reported as number of COVID-19 deaths per 1 million population of the country, in that particular month / country. NB: it is reported as million population, not patients.
"LogDeaths_per_1Mpop" : Log10 transformation of "Deaths_per_1Mpop"
"Insolation_Average" : Insolation average (solar irradiance at ground level), in that particular month / country. It is expressed in Watt / square meter of the ground surface. Data derived from data avaialble at NASA Langley Research Center, NASA’s Earth Observatory, CERES / FLASHFlux team, 2020, https://neo.gsfc.nasa.gov/view.php?datasetId=CERES_INSOL_M (old link: https://neo.sci.gsfc.nasa.gov/view.php?datasetId=CERES_INSOL_M )
"Cloud_Fraction" : Cloudiness (also known as cloud fraction, cloud cover, cloud amount or sky cover), as decimal fraction of the sky obscured by clouds, in that particular month / country. Data derived from NASA Goddard Space Flight Center, NASA’s Earth Observatory, MODIS Atmosphere Science Team, 2020, https://neo.gsfc.nasa.gov/view.php?datasetId=MODAL2_M_CLD_FR (old link: https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MODAL2_M_CLD_FR )
"CENTR_latitude" and
"CENTR_longitude" :
Latitude and Longitude of the country centroid, for each country.
Data derived from Google LLC, "Dataset publishing language: country centroids",
https://developers.google.com/public-data/docs/canonical/countries_csv
NOTE: This is identical in every month (obviuously);
it is redundantly included for easier monthly sectional analysis of the data.
===========
Versioning of the dataset: MAJOR: changes yearly; 1 = 2020 MINOR: changes if new monthly data is added in that particular year. PATCH: Changes only if errors or minor edits were performed.
===========
CHANGELOG:
Version 2.0.0.COVID-19_Mortality_Cloudiness_Insolation_EUROPE_March_December_2020.csv - CERES/FLASHFLUX data for August-December 2020 became available at new links at nasa.gov - These data were gathered, analyzed and introduced in this dataset (2.0.0). - updated links for CERES/FLASHFLUX and MODIS dataset - added DOI link for preprint - minor edits on text. -Dataset file source for this version (internal analysis source file): db_covid_all-ANALYSIS.2020-all-year_versiunea18d.csv
Version 1.0.0.COVID-19_Mortality_Cloudiness_Insolation_EUROPE_March_August_2020.csv First version Dataset file source for this version (internal analysis source file): db_covid_all-ANALYSIS.2020-09-22_r10.csv
Facebook
TwitterBased on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.