As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.
COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.
Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.
In 2021, 41 percent of respondents in Hungary reported they felt free in terms of leading their life as they see fit despite the COVID-19 related restrictions in their country, the highest share the European countries surveyed. On the other hand, 49 percent of respondents in German said they did not feel free as a result of COVID-19 restrictions.
This feature layer contains the most up-to-date COVID-19 cases and latest trend plot. It covers China, the US, Canada, Australia (at province/state level), and the rest of the world (at country level, represented by either the country centroids or their capitals). Data sources are WHO, US CDC, China NHC, ECDC, and DXY. The China data is automatically updating at least once per hour, and non China data is updating manually. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact us.The data is processed from JHU Services and filtered for the Middle East and Africa Region.
https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
The outbreak of the novel coronavirus in Wuhan, China, saw infection cases spread throughout the Asia-Pacific region. By April 13, 2024, India had faced over 45 million coronavirus cases. South Korea followed behind India as having had the second highest number of coronavirus cases in the Asia-Pacific region, with about 34.6 million cases. At the same time, Japan had almost 34 million cases. At the beginning of the outbreak, people in South Korea had been optimistic and predicted that the number of cases would start to stabilize. What is SARS CoV 2?Novel coronavirus, officially known as SARS CoV 2, is a disease which causes respiratory problems which can lead to difficulty breathing and pneumonia. The illness is similar to that of SARS which spread throughout China in 2003. After the outbreak of the coronavirus, various businesses and shops closed to prevent further spread of the disease. Impacts from flight cancellations and travel plans were felt across the Asia-Pacific region. Many people expressed feelings of anxiety as to how the virus would progress. Impact throughout Asia-PacificThe Coronavirus and its variants have affected the Asia-Pacific region in various ways. Out of all Asia-Pacific countries, India was highly affected by the pandemic and experienced more than 50 thousand deaths. However, the country also saw the highest number of recoveries within the APAC region, followed by South Korea and Japan.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
After three years of around-the-clock tracking of COVID-19 data from around the world, Johns Hopkins has discontinued the Coronavirus Resource Center’s operations.
The site’s two raw data repositories will remain accessible for information collected from 1/22/20 to 3/10/23 on cases, deaths, vaccines, testing and demographics.
Novel Corona Virus (COVID-19) epidemiological data since 22 January 2020. The data is compiled by the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) from various sources including the World Health Organization (WHO), DXY.cn, BNO News, National Health Commission of the People’s Republic of China (NHC), China CDC (CCDC), Hong Kong Department of Health, Macau Government, Taiwan CDC, US CDC, Government of Canada, Australia Government Department of Health, European Centre for Disease Prevention and Control (ECDC), Ministry of Health Singapore (MOH), and others. JHU CCSE maintains the data on the 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository on Github.
Fields available in the data include Province/State, Country/Region, Last Update, Confirmed, Suspected, Recovered, Deaths.
On 23/03/2020, a new data structure was released. The current resources for the latest time series data are:
---DEPRECATION WARNING---
The resources below ceased being updated on 22/03/2020 and were removed on 26/03/2020:
2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Downloadable data:
https://github.com/CSSEGISandData/COVID-19
Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov
This Master COVID-19 Dataset contains a combination of primary datasets (originally identified by the COVID-19 Task Force Strategic Analysis team and currently maintained by the PPL Metrics Team) grouped by factors, cleaned, and ready for on-demand analytics products. This list is organized into seven Factors, covering the range of first-order and second-order impacts, host country and donor responses, underlying vulnerabilities, and broader country contextual factors that are influencing and influenced by the COVID-19 crisis. The Factors are delineated by those pertaining to first-order impacts and second-order impacts, even though the two issue sets are highly interrelated. Note that this resource is internal to USAID.
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases for the US and Canada. Data sources: WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, state and national government health departments, and local media reports. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by the Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact Johns Hopkins.IMPORTANT NOTICE: 1. Fields for Active Cases and Recovered Cases are set to 0 in all locations. John Hopkins has not found a reliable source for this information at the county level but will continue to look and carry the fields.2. Fields for Incident Rate and People Tested are placeholders for when this becomes available at the county level.3. In some instances, cases have not been assigned a location at the county scale. those are still assigned a state but are listed as unassigned and given a Lat Long of 0,0.Data Field Descriptions by Alias Name:Province/State: (Text) Country Province or State Name (Level 2 Key)Country/Region: (Text) Country or Region Name (Level 1 Key)Last Update: (Datetime) Last data update Date/Time in UTCLatitude: (Float) Geographic Latitude in Decimal Degrees (WGS1984)Longitude: (Float) Geographic Longitude in Decimal Degrees (WGS1984)Confirmed: (Long) Best collected count of Confirmed Cases reported by geographyRecovered: (Long) Not Currently in Use, JHU is looking for a sourceDeaths: (Long) Best collected count for Case Deaths reported by geographyActive: (Long) Confirmed - Recovered - Deaths (computed) Not Currently in Use due to lack of Recovered dataCounty: (Text) US County Name (Level 3 Key)FIPS: (Text) US State/County CodesCombined Key: (Text) Comma separated concatenation of Key Field values (L3, L2, L1)Incident Rate: (Long) People Tested: (Long) Not Currently in Use Placeholder for additional dataPeople Hospitalized: (Long) Not Currently in Use Placeholder for additional data
As of November 18, 2022, the number of confirmed COVID-19 cases in Africa amounted to around 12.7 million, which represented around two percent of the infections around the world. By the same date, coronavirus cases globally were over 640 million, deaths were over six million, while approximately 620 million people recovered from the disease. On the African continent, South Africa was the most drastically affected country, with more than 3.6 million infections.
The African continent fighting the pandemic
The African continent first came in contact with the coronavirus pandemic on February 14, 2020, in the northernmost part, particularly Egypt. Since then, the different governments took severe restrictive measures to try to curb the spread of the disease. Moreover, the official numbers of the African continent are significantly lower than those of Europe, North America, South America, and Asia. Nevertheless, the infectious disease still managed to have its effects on several countries. South Africa had the highest number of deaths. Morocco and Tunisia, the second and third most affected in Africa, recorded 16,002 and 27,824 deaths, respectively, while Egypt registered at 24,132 as of March 02, 2022.
The light at the end of the tunnel
Although the African countries still have a long way to fully combat the virus, vaccination programs have been rolled out in the majority of Africa. Also, according to a survey, public opinion in several African countries shows a high willingness to be vaccinated, with Ethiopia having numbers as high as 94 percent. As of March 2022, Egypt was the country administering the highest number of vaccine doses, however, Seychelles had the highest per rate per 100 people .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Method
The dataset contains several confirmed COVID-19 cases, number of deaths, and death rate in six regions. The objective of the study is to compare the number of confirmed cases in Africa to other regions.
Death rate = Total number of deaths from COVID-19 divided by the Total Number of infected patients.
The study provides evidence for the country-level in six regions by the World Health Organisation's classification.
Findings
Based on the descriptive data provided above, we conclude that the lack of tourism is one of the key reasons why COVID-19 reported cases are low in Africa compared to other regions. We also justified this claim by providing evidence from the economic freedom index, which indicates that the vast majority of African countries recorded a low index for a business environment. On the other hand, we conclude that the death rate is higher in the African region compared to other regions. This points to issues concerning health-care expenditure, low capacity for testing for COVID-19, and poor infrastructure in the region.
Apart from COVID-19, there are significant pre-existing diseases, namely; Malaria, Flu, HIV/AIDS, and Ebola in the continent. This study, therefore, invites the leaders to invest massively in the health-care system, infrastructure, and human capital in order to provide a sustainable environment for today and future generations. Lastly, policy uncertainty has been a major issue in determining a sustainable development goal on the continent. This uncertainty has differentiated Africa to other regions in terms of stepping up in the time of global crisis.
Note: The cumulative case count for some counties (with small population) is higher than expected due to the inclusion of non-permanent residents in COVID-19 case counts.
Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported through a robust process with the following steps:
This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues. CDC also worked with jurisdictions after the end of the public health emergency declaration to finalize county data.
Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the daily archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.
The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implement these case classifications. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.
Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, counts of confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions reported probable cases and deaths to CDC. Confirmed and probable case definition criteria are described here: "https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-covid-19/">Coronavirus Disease 2019 (COVID-19) 2023 Case Definition | CDC Council of State and Territorial Epidemiologists (ymaws.com).
Deaths COVID-19 deaths were reported to CDC from several sources since the beginning of the pandemic including aggregate death data and NCHS Provisional Death Counts. Historic information presented on the COVID Data Tracker pages were based on the same source (Aggregate Data) as the present dataset until the expiration of the public health emergency declaration on May 11, 2023; however, the NCHS Death Counts are based on death certificate data that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Counts from previous weeks were continually revised as more records were received and processed.
Number of Jurisdictions Reporting There were 60 public health jurisdictions that reported cases and deaths of COVID-19. This included the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. In total there were 3,222 counties for which counts were tracked within the 60 public health jurisdictions.
Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.
Note: In early 2020, Alaska enacted changes to their counties/boroughs due to low populations in certain areas:
Case and death counts for Yakutat City and Borough, Alaska, are shown as 0 by default. Case and death counts for Hoonah-Angoon Census Area, Alaska, represent total cases and deaths in residents of Hoonah-Angoon Census Area, Alaska, and Yakutat City and Borough, Alaska. Case and death counts for Bristol Bay Borough, Alaska, are shown as 0 by default. Case and death counts for Lake and Peninsula Borough, Alaska, represent total cases and deaths in residents of Lake and Peninsula Borough, Alaska, and Bristol Bay Borough, Alaska.
Historical cases and deaths are not tracked separately in the county level datasets, and differences in weekly new cases and deaths could exist when county-level data are aggregated to the state-level (i.e., when compared to this dataset: https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36).
Over 340 million tests for coronavirus (COVID-19) were conducted in Russia as of the end of July 2023. Russia had fifth-largest number of COVID-19 tests performed worldwide and the third largest in Europe. Russia’s COVID-19 testing rate per one million population was lower than in several other European countries and the United States.
COVID-19 test systems in Russia The State Research Center of Virology and Biotechnology Vector, located in Novosibirsk, developed test systems able to identify the RNA of the SARS-CoV-2 based on the polymerase chain reaction (PCR) in end-January 2020. Prior to March 20, 2020, test samples from all over the country had to be sent to Vector for verification. After that date, a positive test confirmed in the regional laboratories became sufficient to diagnose COVID-19. State-funded and private laboratories across the country could apply to for a permission to become COVID-19 testing centers. As of February 2, 2023, a total of 1,263 such labs operated in Russia.
Scale of COVID-19 testing in Russia Most COVID-19 tests in Russia were conducted in Moscow, which also had the largest count of infected population since the outbreak of the disease. The testing capacity per 100 thousand population was the highest in the Sverdlovsk Oblast. Starting from July 16, 2020, Moscow introduced a free of charge mass COVID-19 testing in more than 200 centers. Furthermore, citizens of the Russian capital could get a free public antibody test. In mid-July, Russia imposed mandatory COVID-19 testing on arrival for nationals and foreign citizens.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary of positives and coronaviruses detected in bats in Myanmar.
The COVID-19 Vaccination Survey in China was conducted in July 2021 to understand refugees' accessibility and willingness to receive a COVID-19 vaccination in China. UNHCR stresses that no one can be left behind in the global effort against COVID-19 and is monitoring the inclusion of refugees and asylum seekers in vaccination plans around the world. At the time, Chinese government policy did not provide free vaccines for foreigners without social security. The survey results however show that this policy was implemented with some flexibility, because among the few that were vaccinated already, more than half received a free COVID-19 vaccine. Some refugees reported difficulties or lack of information about vaccine registration or identity documents to book an appointment. Results further show that even though most are willing to get vaccinated, anti-vaccine sentiments are driven by fear of side effects.
The survey covers 24 provinces with most respondents residing in the province of Guangdong.
Households
The survey was distributed to all 1017 refugees and asylum seekers.
Census/enumeration data [cen]
No sampling was implemented.
Self-administered questionnaire: Web-based
Out of 1017 distributed surveys, UNHCR received 455 answers (45%). Of those, 30 respondents did not provide consent to participate in the survey.
This feature layer contains the most up-to-date COVID-19 cases for the US, Canada. Data sources: WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, state and national government health departments, and local media reports. The China data is automatically updating at least once per hour, and non China data is updating manually. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact Johns Hopkins.
IMPORTANT NOTICE:
1. Fields for Active Cases and Recovered Cases are set to 0 in all locations. John Hopkins has not found a reliable source for this information at the county level but will continue to look and carry the fields.
2. Fields for Incident Rate and People Tested are placeholders for when this becomes available at the county level.
3. In some instances, cases have not been assigned a location at the county scale. those are still assigned a state but are listed as unassigned and given a Lat Long of 0,0.
Data Field Descriptions by Alias Name:
As global communities responded to COVID-19, we heard from public health officials that the same type of aggregated, anonymized insights we use in products such as Google Maps would be helpful as they made critical decisions to combat COVID-19. These Community Mobility Reports aimed to provide insights into what changed in response to policies aimed at combating COVID-19. The reports charted movement trends over time by geography, across different categories of places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.
Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:
Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:
Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:
Council of State and Territorial Epidemiologists (ymaws.com).
Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (total case counts) as the present dataset; however, NCHS Death Counts are based on death certificates that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Data from each of these pages are considered provisional (not complete and pending verification) and are therefore subject to change. Counts from previous weeks are continually revised as more records are received and processed.
Number of Jurisdictions Reporting There are currently 60 public health jurisdictions reporting cases of COVID-19. This includes the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. New York State’s reported case and death counts do not include New York City’s counts as they separately report nationally notifiable conditions to CDC.
CDC COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths, available by state and by county. These and other data on COVID-19 are available from multiple public locations, such as:
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
https://www.cdc.gov/covid-data-tracker/index.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html
https://www.cdc.gov/coronavirus/2019-ncov/php/open-america/surveillance-data-analytics.html
Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.
Archived Data Notes:
November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 3, 2022, instead of the customary 7 days’ worth of data.
November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 10, 2022, instead of the customary 7 days’ worth of data.
November 10, 2022: Per the request of the jurisdiction, cases and deaths among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case and death counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases and deaths.
November 17, 2022: Two new columns, weekly historic cases and weekly historic deaths, were added to this dataset on November 17, 2022. These columns reflect case and death counts that were reported that week but were historical in nature and not reflective of the current burden within the jurisdiction. These historical cases and deaths are not included in the new weekly case and new weekly death columns; however, they are reflected in the cumulative totals provided for each jurisdiction. These data are used to account for artificial increases in case and death totals due to batched reporting of historical data.
December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the data released on December 1, 2022.
January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case and death data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case and death metrics will appear higher than expected in the January 5, 2023, weekly release.
January 12, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0. As a result, case and death metrics will appear lower than expected in the January 12, 2023, weekly release.
January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case and death data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release.
January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties (Livingston and Washtenaw) were higher than expected in the January 19, 2023 weekly release.
January 26, 2023: Due to a backlog of historic COVID-19 cases being reported this week, aggregate case and death counts in Charlotte County and Sarasota County, Florida, will appear higher than expected in the January 26, 2023 weekly release.
January 26, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0 in the weekly release posted on January 26, 2023.
February 2, 2023: As of the data collection deadline, CDC observed an abnormally large increase in aggregate COVID-19 cases and deaths reported for Washington State. In response, totals for new cases and new deaths released on February 2, 2023, have been displayed as zero at the state level until the issue is addressed with state officials. CDC is working with state officials to address the issue.
February 2, 2023: Due to a decrease reported in cumulative case counts by Wyoming, case rates will be reported as 0 in the February 2, 2023, weekly release. CDC is working with state officials to verify the data submitted.
February 16, 2023: Due to data processing delays, Utah’s aggregate case and death data will be reported as 0 in the weekly release posted on February 16, 2023. As a result, case and death metrics will appear lower than expected and should be interpreted with caution.
February 16, 2023: Due to a reporting cadence change, Maine’s
Various population statistics, including structured demographics data.
Attitudes towards the Coronavirus (COVID-19) pandemic. Topics: satisfaction with the national government in general; satisfaction with the measures of the national government to fight the Coronavirus pandemic; preferred statement with regard to the consequences of the restriction measures in the own country: health benefits are greater than economic damage, economic damage is greater than health benefits; satisfaction with solidarity between EU member states in fighting the Coronavirus pandemic; awareness of measures taken by the EU to respond to the Coronavirus pandemic; satisfaction with these measures; EU should have more competences to deal with crises such as the Coronavirus pandemic; preferred EU measures to respond to the Corona crisis; preferred statement: EU should have greater financial means to be able to overcome the consequences of the Coronavirus pandemic, EU has sufficient financial means to be able to overcome the consequences of the Coronavirus pandemic; preferred fields on which to spend most of the EU budget on; preferred statement: fight against the Coronavirus pandemic fully justifies recent limitations to individual freedom, fully opposed to any limitation of individual freedom regardless of the pandemic; attitude towards public authorities using mobile phone applications of citizens to fight the virus’ expansion; current emotional status; personally experienced effects of the Coronavirus pandemic in the own country: loss of income, difficulties paying rent or bills or bank loans, use of personal savings sooner than planned, unemployment, bankruptcy, difficulties having proper and decent-quality meals, asked for financial help to family or friends, other financial issues; use of selected online social networks in the last week; most trustworthy persons or institutions with regard to information about the Coronavirus pandemic; attitude towards the European Union; change in feeling of attachment since the start of the beginning of the pandemic in the own country with regard to: local community, own country, EU; EU image; impact of the pandemic on EU image; participation in the last elections to the European Parliament. Demography: sex; age; age at end of education; head of household; occupation of main income earner in the household; professional position of main income earner in the household; employment status; marital status; household composition and household size; region. Additionally coded was: respondent ID; country; date of interview; weighting factor. Einstellungen zur Corona-Pandemie (COVID-19). Themen: Zufriedenheit mit der nationalen Regierung im Allgemeinen; Zufriedenheit mit den Maßnahmen der nationalen Regierung zur Bekämpfung der Corona-Pandemie; präferierte Aussage im Hinblick auf die Konsequenzen der beschlossenen Einschränkungen im eigenen Land: gesundheitlicher Nutzen ist größer als der wirtschaftliche Schaden, wirtschaftlicher Schaden ist größer als der gesundheitliche Nutzen; Zufriedenheit mit der Solidarität unter den EU-Mitgliedstaaten bei der Bekämpfung der Corona-Pandemie; Kenntnis über Maßnahmen der EU zur Bewältigung der Corona-Pandemie; Zufriedenheit mit diesen Maßnahmen; EU sollte mehr Kompetenzen im Umgang mit Krisen wie der Corona-Pandemie haben; präferierte EU-Maßnahmen zur Bewältigung der Corona-Krise; präferierte Aussage: EU sollte mehr finanzielle Mittel zur Bewältigung der Auswirkungen der Coronavirus-Pandemie zur Verfügung haben, EU hat ausreichend finanzielle Mittel zur Bewältigung der Auswirkungen der Coronavirus-Pandemie zur Verfügung; präferierte Bereiche, für die der größte Teil des Haushalts ausgegeben werden sollte; präferierte Aussage: Kampf gegen die Corona-Pandemie rechtfertigt die kürzlichen Einschränkungen der individuellen Freiheit vollkommen, Ablehnen jeglicher Einschränkungen der individueller Freiheit unabhängig von der Pandemie; Einstellung zur Nutzung spezieller Apps auf den Mobiltelefonen der Bürger durch öffentliche Behörden zur Verhinderung der Verbreitung des Virus; derzeitiger Gefühlszustand; persönliche Erfahrungen mit den Auswirkungen der Corona-Pandemie im eigenen Land: Einkommensverlust, Schwierigkeiten bei der Bezahlung von Mieten oder Rechnungen oder Darlehen, Verwendung von Ersparnissen früher als geplant, Arbeitslosigkeit, Konkurs, keine vernünftigen Mahlzeiten, Bitte um finanzielle Unterstützung durch Familie oder Freunde, andere finanzielle Angelegenheiten; Nutzung ausgewählter sozialer Netzwerke im Internet in der letzten Woche; vertrauenswürdigste Personen oder Institutionen im Hinblick auf Informationen zur Coronavirus-Pandemie; Einstellung zur Europäischen Union; Veränderung des Gefühls der Verbundenheit seit Beginn der Pandemie im eigenen Land mit: lokaler Gemeinschaft, eigenem Land, EU; Image der EU; Auswirkungen der Pandemie auf das Image der EU; Teilnahme an den letzten Europawahlen. Demographie: Geschlecht; Alter; Alter bei Beendigung der Ausbildung; Haushaltsvorstand; Beruf des Haupteinkommensbeziehers im Haushalt; berufliche Stellung des Haupteinkommensbeziehers im Haushalt; Beschäftigungsstatus; Familienstand; Haushaltszusammensetzung und Haushaltsgröße; Region. Zusätzlich vercodet wurde: Befragten-ID; Land; Interviewdatum; Gewichtungsfaktor.
As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.
COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.
Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.