100+ datasets found
  1. O

    CDC COVID-19 Community Levels by County

    • opendata.ramseycountymn.gov
    csv, xlsx, xml
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Center for Disease Control and Prevention (2025). CDC COVID-19 Community Levels by County [Dataset]. https://opendata.ramseycountymn.gov/Public-Health/CDC-COVID-19-Community-Levels-by-County/uazb-iwdp
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    Center for Disease Control and Prevention
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties. This dataset contains the same values used to display information available on the COVID Data Tracker at: https://covid.cdc.gov/covid-data-tracker/#county-view?list_select_state=all_states&list_select_county=all_counties&data-type=CommunityLevels The data are updated weekly.

    CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge. Using these data, the COVID-19 community level is classified as low, medium, or high. COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    For more details on the Minnesota Department of Health COVID-19 thresholds, see COVID-19 Public Health Risk Measures: Data Notes (Updated 4/13/22). https://mn.gov/covid19/assets/phri_tcm1148-434773.pdf

    Note: This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022. March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released. March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate. March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset. March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases. March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average). March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior. April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

  2. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +4more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  3. Meteorological measures and COVID-19 cases

    • kaggle.com
    zip
    Updated Jul 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JoJo Chien (2021). Meteorological measures and COVID-19 cases [Dataset]. https://www.kaggle.com/jojochien/meteorological-measures-and-covid19-cases
    Explore at:
    zip(1518306 bytes)Available download formats
    Dataset updated
    Jul 1, 2021
    Authors
    JoJo Chien
    Description

    Context

    This dataset was collected for the study "**Lagged meteorological impacts on COVID-19 incidence among high-risk counties in the United States – A spatiotemporal analysis**", which was published in the Journal of Exposure Science and Environmental Epidemiology on July 1, 2021. Now the paper is available online: https://doi.org/10.1038/s41370-021-00356-y

    Content

    The data set contain 16 daily meteorological variables and COVID-19 cases (confirmed and death) in high-prevalent counties in the United States from March to October in 2020. The data sources were the New York Times COVID Github, Weather Underground, and American Community Survey. Notice that not all variables were applied in the study, but we still share everything we got from the three data sources. Notice that there are 204 high-prevalent counties identified, but only 203 counties were used in the publication because of a high proportion of missing data in 1 county (Lake County, TN).

    Inspiration

    We hope some people can be inspired to expand the database for all counties in the United States.

  4. f

    Table_1_Classification Schemes of COVID-19 High Risk Areas and Resulting...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Feb 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Uthman, Olalekan A.; Hanefeld, Johanna; Al-Awlaqi, Sameh; Adetokunboh, Olatunji O.; Wiysonge, Charles Shey; Bcheraoui, Charbel El (2022). Table_1_Classification Schemes of COVID-19 High Risk Areas and Resulting Policies: A Rapid Review.DOCX [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000199199
    Explore at:
    Dataset updated
    Feb 25, 2022
    Authors
    Uthman, Olalekan A.; Hanefeld, Johanna; Al-Awlaqi, Sameh; Adetokunboh, Olatunji O.; Wiysonge, Charles Shey; Bcheraoui, Charbel El
    Description

    The COVID-19 pandemic has posed a significant global health threat since January 2020. Policies to reduce human mobility have been recognized to effectively control the spread of COVID-19; although the relationship between mobility, policy implementation, and virus spread remains contentious, with no clear pattern for how countries classify each other, and determine the destinations to- and from which to restrict travel. In this rapid review, we identified country classification schemes for high-risk COVID-19 areas and associated policies which mirrored the dynamic situation in 2020, with the aim of identifying any patterns that could indicate the effectiveness of such policies. We searched academic databases, including PubMed, Scopus, medRxiv, Google Scholar, and EMBASE. We also consulted web pages of the relevant government institutions in all countries. This rapid review's searches were conducted between October 2020 and December 2021. Web scraping of policy documents yielded additional 43 country reports on high-risk area classification schemes. In 43 countries from which relevant reports were identified, six issued domestic classification schemes. International classification schemes were issued by the remaining 38 countries, and these mainly used case incidence per 100,000 inhabitants as key indicator. The case incidence cut-off also varied across the countries, ranging from 20 cases per 100,000 inhabitants in the past 7 days to more than 100 cases per 100,000 inhabitants in the past 28 days. The criteria used for defining high-risk areas varied across countries, including case count, positivity rate, composite risk scores, community transmission and satisfactory laboratory testing. Countries either used case incidence in the past 7, 14 or 28 days. The resulting policies included restrictions on internal movement and international travel. The quarantine policies can be summarized into three categories: (1) 14 days self-isolation, (2) 10 days self-isolation and (3) 14 days compulsory isolation.

  5. US Covid 19 Risk Assessment Data

    • kaggle.com
    zip
    Updated Apr 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James Tourkistas (2020). US Covid 19 Risk Assessment Data [Dataset]. https://www.kaggle.com/jtourkis/covid19-us-major-city-density-data
    Explore at:
    zip(17414 bytes)Available download formats
    Dataset updated
    Apr 5, 2020
    Authors
    James Tourkistas
    Area covered
    United States
    Description

    Context

    Dataset aims to facilitate a state by state comparison of potential risk factors that may heighten Covid 19 transmission rates or deaths. It includes state by state estimates of: covid 19 positives/deaths, flu/pneumonia deaths, major city population densities, available hospital resources, high risk health condition prevalance, population over 60, means of work transportation rates, housing characteristics (ie number of large apartment complexes/seniors living alone), and industry information.

    Content

    The Data Includes:

    1) Covid 19 Outcome Stats:

    Covid_Death : Covid Deaths by State

    Covid_Positive : Covid Positive Tests by State

    2) US Major City Population Density by State: CBSA_Major_City_max_weighted_density

    3) KFF Estimates of Total Hospital Beds by State:

    Kaiser_Total_Hospital_Beds

    4) 2018 Season Flu and Pneumonia Death Stats:

    FLUVIEW_TOTAL_PNEUMONIA_DEATHS_Season_2018

    FLUVIEW_TOTAL_INFLUENZA_DEATHS_Season_2018

    5)US Total Rates of Flu Hospitalization by Underlying Condition:

    Fluview_US_FLU_Hospitalization_Rate_....

    6) State by State BRFSS Prevalance Rates of Conditions Associated with Higher Flu Hospitalization Rates

    BRFSS_Diabetes_Prevalance BRFSS_Asthma_Prevalance BRFSS_COPD_Prevalance
    BRFSS_Obesity BMI Prevalance BRFSS_Other_Cancer_Prevalance BRFSS_Kidney_Disease_Prevalance BRFSS_Obesity BMI Prevalance BRFSS_2017_High_Cholestoral_Prevalance BRFSS_2017_High_Blood_Pressure_Prevalance Census_Population_Over_60

    7)State by state breakdown of Means of Work Transpotation:

    COMMUTE_Census_Worker_Public_Transportation_Rate

    8) State by state breakdown of Housing Characteristics

    9) State by State breakdown of Industry Information

    Acknowledgements

    Links to data sources:

    https://worldpopulationreview.com/states/

    https://covidtracking.com/data/

    https://gis.cdc.gov/GRASP/Fluview/FluHospRates.html https://www.kff.org/health-costs/issue-brief/state-data-and-policy-actions-to-address-coronavirus/#stateleveldata

    https://data.census.gov/cedsci/table?q=United%20States&tid=ACSDP1Y2018.DP05&hidePreview=true&vintage=2018&layer=VT_2018_040_00_PY_D1&cid=S0103_C01_001E

    Census Tables: ACSST1Y2018.S1811 ACSST1Y2018.S0102 ACSST1Y2018.S2403 ACSST1Y2018.S2501 ACSST1Y2018.S2504

    https://www.census.gov/library/visualizations/2012/dec/c2010sr-01-density.html

    https://gis.cdc.gov/grasp/fluview/mortality.html

    Inspiration

    I hope to show the existence of correlations that warrant a deeper county by county analysis to identify areas of increased risk requiring increased resource allocation or increased attention to preventative measures.

  6. s

    CoVid Plots and Analysis

    • orda.shef.ac.uk
    • datasetcatalog.nlm.nih.gov
    • +2more
    txt
    Updated Feb 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colin Angus (2023). CoVid Plots and Analysis [Dataset]. http://doi.org/10.15131/shef.data.12328226.v60
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 26, 2023
    Dataset provided by
    The University of Sheffield
    Authors
    Colin Angus
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    COVID-19Plots and analysis relating to the coronavirus pandemic. Includes five sets of plots and associated R code to generate them.1) HeatmapsUpdated every few days - heatmaps of COVID-19 case and death trajectories for Local Authorities (or equivalent) in England, Wales, Scotland, Ireland and Germany.2) All cause mortalityUpdated on Tuesday (for England & Wales), Wednesday (for Scotland) and Friday (for Northern Ireland) - analysis and plots of weekly all-cause deaths in 2020 compared to previous years by country, age, sex and region. Also a set of international comparisons using data from mortality.org3) ExposuresNo longer updated - mapping of potential COVID-19 mortality exposure at local levels (LSOAs) in England based on the age-sex structure of the population and levels of poor health.There is also a Shiny app which creates slightly lower resolution versions of the same plots online, which you can find here: https://victimofmaths.shinyapps.io/covidmapper/, on GitHub https://github.com/VictimOfMaths/COVIDmapper and uploaded to this record4) Index of Multiple Deprivation No longer updated - preliminary analysis of the inequality impacts of COVID-19 based on Local Authority level cases and levels of deprivation. 5) Socioeconomic inequalities. No longer updated (unless ONS release more data) - Analysis of published ONS figures of COVID-19 and other cause mortality in 2020 compared to previous years by deprivation decile.Latest versions of plots and associated analysis can be found on Twitter: https://twitter.com/victimofmathsThis work is described in more detail on the UK Data Service Impact and Innovation Lab blog: https://blog.ukdataservice.ac.uk/visualising-high-risk-areas-for-covid-19-mortality/Adapted from data from the Office for National Statistics licensed under the Open Government Licence v.1.0.http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

  7. U.S. State, Territorial, and County Stay-At-Home Orders: March 15-May 5 by...

    • catalog.data.gov
    • data.virginia.gov
    • +5more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). U.S. State, Territorial, and County Stay-At-Home Orders: March 15-May 5 by County by Day [Dataset]. https://catalog.data.gov/dataset/u-s-state-territorial-and-county-stay-at-home-orders-march-15-may-5-county-and-july-7-stat
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    State, territorial, and county executive orders, administrative orders, resolutions, and proclamations are collected from government websites and cataloged and coded using Microsoft Excel by one coder with one or more additional coders conducting quality assurance. Data were collected to determine when individuals in states, territories, and counties were subject to executive orders, administrative orders, resolutions, and proclamations for COVID-19 that require or recommend people stay in their homes. These data are derived from the publicly available state, territorial, and county executive orders, administrative orders, resolutions, and proclamations (“orders”) for COVID-19 that expressly require or recommend individuals stay at home found by the CDC, COVID-19 Community Intervention and At-Risk Task Force, Monitoring and Evaluation Team & CDC, Center for State, Tribal, Local, and Territorial Support, Public Health Law Program from March 15 through May 5, 2020. These data will be updated as new orders are collected. Any orders not available through publicly accessible websites are not included in these data. Only official copies of the documents or, where official copies were unavailable, official press releases from government websites describing requirements were coded; news media reports on restrictions were excluded. Recommendations not included in an order are not included in these data. These data do not include mandatory business closures, curfews, or limitations on public or private gatherings. These data do not necessarily represent an official position of the Centers for Disease Control and Prevention.

  8. a

    COVID-19 Vulnerability and Recovery Index

    • hub.arcgis.com
    • data.lacounty.gov
    • +2more
    Updated Aug 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2021). COVID-19 Vulnerability and Recovery Index [Dataset]. https://hub.arcgis.com/datasets/7ca7bb20987f425581c150513381d327
    Explore at:
    Dataset updated
    Aug 5, 2021
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    The COVID-19 Vulnerability and Recovery Index uses Tract and ZIP Code-level data* to identify California communities most in need of immediate and long-term pandemic and economic relief. Specifically, the Index is comprised of three components — Risk, Severity, and Recovery Need with the last scoring the ability to recover from the health, economic, and social costs of the pandemic. Communities with higher Index scores face a higher risk of COVID-19 infection and death and a longer uphill economic recovery. Conversely, those with lower scores are less vulnerable.

    The Index includes one overarching Index score as well as a score for each of the individual components. Each component includes a set of indicators we found to be associated with COVID-19 risk, severity, or recovery in our review of existing indices and independent analysis. The Risk component includes indicators related to the risk of COVID-19 infection. The Severity component includes indicators designed to measure the risk of severe illness or death from COVID-19. The Recovery Need component includes indicators that measure community needs related to economic and social recovery. The overarching Index score is designed to show level of need from Highest to Lowest with ZIP Codes in the Highest or High need categories, or top 20th or 40th percentiles of the Index, having the greatest need for support.

    The Index was originally developed as a statewide tool but has been adapted to LA County for the purposes of the Board motion. To distinguish between the LA County Index and the original Statewide Index, we refer to the revised Index for LA County as the LA County ARPA Index.

    *Zip Code data has been crosswalked to Census Tract using HUD methodology

    Indicators within each component of the LA County ARPA Index are:Risk: Individuals without U.S. citizenship; Population Below 200% of the Federal Poverty Level (FPL); Overcrowded Housing Units; Essential Workers Severity: Asthma Hospitalizations (per 10,000); Population Below 200% FPL; Seniors 75 and over in Poverty; Uninsured Population; Heart Disease Hospitalizations (per 10,000); Diabetes Hospitalizations (per 10,000)Recovery Need: Single-Parent Households; Gun Injuries (per 10,000); Population Below 200% FPL; Essential Workers; Unemployment; Uninsured PopulationData are sourced from US Census American Communities Survey (ACS) and the OSHPD Patient Discharge Database. For ACS indicators, the tables and variables used are as follows:

    Indicator

    ACS Table/Years

    Numerator

    Denominator

    Non-US Citizen

    B05001, 2019-2023

    b05001_006e

    b05001_001e

    Below 200% FPL

    S1701, 2019-2023

    s1701_c01_042e

    s1701_c01_001e

    Overcrowded Housing Units

    B25014, 2019-2023

    b25014_006e + b25014_007e + b25014_012e + b25014_013e

    b25014_001e

    Essential Workers

    S2401, 2019-2023

    s2401_c01_005e + s2401_c01_011e + s2401_c01_013e + s2401_c01_015e + s2401_c01_019e + s2401_c01_020e + s2401_c01_023e + s2401_c01_024e + s2401_c01_029e + s2401_c01_033e

    s2401_c01_001

    Seniors 75+ in Poverty

    B17020, 2019-2023

    b17020_008e + b17020_009e

    b17020_008e + b17020_009e + b17020_016e + b17020_017e

    Uninsured

    S2701, 2019-2023

    s2701_c05_001e

    NA, rate published in source table

    Single-Parent Households

    S1101, 2019-2023

    s1101_c03_005e + s1101_c04_005e

    s1101_c01_001e

    Unemployment

    S2301, 2019-2023

    s2301_c04_001e

    NA, rate published in source table

    The remaining indicators are based data requested and received by Advancement Project CA from the OSHPD Patient Discharge database. Data are based on records aggregated at the ZIP Code level:

    Indicator

    Years

    Definition

    Denominator

    Asthma Hospitalizations

    2017-2019

    All ICD 10 codes under J45 (under Principal Diagnosis)

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    Gun Injuries

    2017-2019

    Principal/Other External Cause Code "Gun Injury" with a Disposition not "Died/Expired". ICD 10 Code Y38.4 and all codes under X94, W32, W33, W34, X72, X73, X74, X93, X95, Y22, Y23, Y35 [All listed codes with 7th digit "A" for initial encounter]

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    Heart Disease Hospitalizations

    2017-2019

    ICD 10 Code I46.2 and all ICD 10 codes under I21, I22, I24, I25, I42, I50 (under Principal Diagnosis)

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    Diabetes (Type 2) Hospitalizations

    2017-2019

    All ICD 10 codes under E11 (under Principal Diagnosis)

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    For more information about this dataset, please contact egis@isd.lacounty.gov.

  9. Leading metropolitan areas by jobs in industries at risk from COVID-19 U.S....

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading metropolitan areas by jobs in industries at risk from COVID-19 U.S. 2020 [Dataset]. https://www.statista.com/statistics/1107291/covid-19-leading-metropolitan-areas-share-jobs-high-risk-industries-us/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    United States
    Description

    According to a study in mid-March 2020, the metropolitan area most at risk of job losses in the United States is Midland, Texas, where **** percent of the workforce are employed in industries most at risk from the global coronavirus pandemic (COVID-19). The industries identified as most at risk are: employment services, leisure & hospitality, mining, transportation, and travel arrangements.

  10. a

    Florida COVID19 05012021 ByCounty

    • hub.arcgis.com
    • covid19-usflibrary.hub.arcgis.com
    Updated May 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of South Florida GIS (2021). Florida COVID19 05012021 ByCounty [Dataset]. https://hub.arcgis.com/datasets/44e7641e6dab44faa7918a6a3517735d
    Explore at:
    Dataset updated
    May 2, 2021
    Dataset authored and provided by
    University of South Florida GIS
    Area covered
    Florida
    Description

    Florida COVID-19 Cases by County exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu.Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2020. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/ . https://doi.org/10.5038/USF-COVID-19-GISLive FDOH DataSource: https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_COVID19_Cases/FeatureServerFor data 5/10/2020 or after: Archived data was exported directly from the live FDOH layer into the archive. For data prior to 5/10/2020: Data was exported by the University of South Florida - Digital Heritage and Humanities Collection using ArcGIS Pro Software. Data was then converted to shapefile and csv and uploaded into ArcGIS Online archive. Up until 3/25 the FDOH Cases by County layer was updated twice a day, archives are taken from the 11AM update.For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from FDOH.Persons Under Investigation/Surveillance (PUI):Essentially, PUIs are any person who has been or is waiting to be tested. This includes: persons who are considered high-risk for COVID-19 due to recent travel, contact with a known case, exhibiting symptoms of COVID-19 as determined by a healthcare professional, or some combination thereof. PUI’s also include people who meet laboratory testing criteria based on symptoms and exposure, as well as confirmed cases with positive test results. PUIs include any person who is or was being tested, including those with negative and pending results. All PUIs fit into one of three residency types: 1. Florida residents tested in Florida2. Non-Florida residents tested in Florida3. Florida residents tested outside of Florida Florida Residents Tested Elsewhere: The total number of Florida residents with positive COVID-19 test results who were tested outside of Florida, and were not exposed/infectious in Florida.Non-Florida Residents Tested in Florida: The total number of people with positive COVID-19 test results who were tested, exposed, and/or infectious while in Florida, but are legal residents of another state. Total Cases: The total (sum) number of Persons Under Investigation (PUI) who tested positive for COVID-19 while in Florida, as well as Florida residents who tested positive or were exposed/contagious while outside of Florida, and out-of-state residents who were exposed, contagious and/or tested in Florida.Deaths: The Deaths by Day chart shows the total number of Florida residents with confirmed COVID-19 that died on each calendar day (12:00 AM - 11:59 PM). Caution should be used in interpreting recent trends, as deaths are added as they are reported to the Department. Death data often has significant delays in reporting, so data within the past two weeks will be updated frequently.Prefix guide: "PUI" = PUI: Persons under surveillance (any person for which we have data about)"T_ " = Testing: Testing information for all PUIs and cases."C_" = Cases only: Information about cases, which are those persons who have COVID-19 positive test results on file“W_” = Surveillance and syndromic dataKey Data about Testing:T_negative : Testing: Total negative persons tested for all Florida and non-Florida residents, including Florida residents tested outside of the state, and those tested at private facilities.T_positive : Testing: Total positive persons tested for all Florida and non-Florida resident types, including Florida residents tested outside of the state, and those tested at private facilities.PUILab_Yes : All persons tested with lab results on file, including negative, positive and inconclusive. This total does NOT include those who are waiting to be tested or have submitted tests to labs for which results are still pending.Key Data about Confirmed COVID-19 Positive Cases: CasesAll: Cases only: The sum total of all positive cases, including Florida residents in Florida, Florida residents outside Florida, and non-Florida residents in FloridaFLResDeaths: Deaths of Florida ResidentsC_Hosp_Yes : Cases (confirmed positive) with a hospital admission notedC_AgeRange Cases Only: Age range for all cases, regardless of residency typeC_AgeMedian: Cases Only: Median range for all cases, regardless of residency typeC_AllResTypes : Cases Only: Sum of COVID-19 positive Florida Residents; includes in and out of state Florida residents, but does not include out-of-state residents who were treated/tested/isolated in Florida. All questions regarding this dataset should be directed to the Florida Department of Health.

  11. Data from: COVID-19 Case Surveillance Public Use Data with Geography

    • data.virginia.gov
    • healthdata.gov
    • +5more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). COVID-19 Case Surveillance Public Use Data with Geography [Dataset]. https://data.virginia.gov/dataset/covid-19-case-surveillance-public-use-data-with-geography
    Explore at:
    json, xsl, rdf, csvAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.

    Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.

    This case surveillance public use dataset has 19 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors.

    Currently, CDC provides the public with three versions of COVID-19 case surveillance line-listed data: this 19 data element dataset with geography, a 12 data element public use dataset, and a 33 data element restricted access dataset.

    The following apply to the public use datasets and the restricted access dataset:

    Overview

    The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (<a href="https://cdn.ymaws.com/www.cste.org/resource/resmgr/ps/positionstatement2020/Interim-20-ID-01_COVID

  12. a

    Florida COVID19 12112020 ByCounty CSV

    • hub.arcgis.com
    • covid19-usflibrary.hub.arcgis.com
    Updated Dec 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of South Florida GIS (2020). Florida COVID19 12112020 ByCounty CSV [Dataset]. https://hub.arcgis.com/datasets/69016783b5204f6aa85dd679e65a363a
    Explore at:
    Dataset updated
    Dec 12, 2020
    Dataset authored and provided by
    University of South Florida GIS
    Area covered
    Description

    Florida COVID-19 Cases by County exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu.Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2020. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/ . https://doi.org/10.5038/USF-COVID-19-GISLive FDOH DataSource: https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_COVID19_Cases/FeatureServerFor data 5/10/2020 or after: Archived data was exported directly from the live FDOH layer into the archive. For data prior to 5/10/2020: Data was exported by the University of South Florida - Digital Heritage and Humanities Collection using ArcGIS Pro Software. Data was then converted to shapefile and csv and uploaded into ArcGIS Online archive. Up until 3/25 the FDOH Cases by County layer was updated twice a day, archives are taken from the 11AM update.For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from FDOH.Persons Under Investigation/Surveillance (PUI):Essentially, PUIs are any person who has been or is waiting to be tested. This includes: persons who are considered high-risk for COVID-19 due to recent travel, contact with a known case, exhibiting symptoms of COVID-19 as determined by a healthcare professional, or some combination thereof. PUI’s also include people who meet laboratory testing criteria based on symptoms and exposure, as well as confirmed cases with positive test results. PUIs include any person who is or was being tested, including those with negative and pending results. All PUIs fit into one of three residency types: 1. Florida residents tested in Florida2. Non-Florida residents tested in Florida3. Florida residents tested outside of Florida Florida Residents Tested Elsewhere: The total number of Florida residents with positive COVID-19 test results who were tested outside of Florida, and were not exposed/infectious in Florida.Non-Florida Residents Tested in Florida: The total number of people with positive COVID-19 test results who were tested, exposed, and/or infectious while in Florida, but are legal residents of another state. Total Cases: The total (sum) number of Persons Under Investigation (PUI) who tested positive for COVID-19 while in Florida, as well as Florida residents who tested positive or were exposed/contagious while outside of Florida, and out-of-state residents who were exposed, contagious and/or tested in Florida.Deaths: The Deaths by Day chart shows the total number of Florida residents with confirmed COVID-19 that died on each calendar day (12:00 AM - 11:59 PM). Caution should be used in interpreting recent trends, as deaths are added as they are reported to the Department. Death data often has significant delays in reporting, so data within the past two weeks will be updated frequently.Prefix guide: "PUI" = PUI: Persons under surveillance (any person for which we have data about)"T_ " = Testing: Testing information for all PUIs and cases."C_" = Cases only: Information about cases, which are those persons who have COVID-19 positive test results on file“W_” = Surveillance and syndromic dataKey Data about Testing:T_negative : Testing: Total negative persons tested for all Florida and non-Florida residents, including Florida residents tested outside of the state, and those tested at private facilities.T_positive : Testing: Total positive persons tested for all Florida and non-Florida resident types, including Florida residents tested outside of the state, and those tested at private facilities.PUILab_Yes : All persons tested with lab results on file, including negative, positive and inconclusive. This total does NOT include those who are waiting to be tested or have submitted tests to labs for which results are still pending.Key Data about Confirmed COVID-19 Positive Cases: CasesAll: Cases only: The sum total of all positive cases, including Florida residents in Florida, Florida residents outside Florida, and non-Florida residents in FloridaFLResDeaths: Deaths of Florida ResidentsC_Hosp_Yes : Cases (confirmed positive) with a hospital admission notedC_AgeRange Cases Only: Age range for all cases, regardless of residency typeC_AgeMedian: Cases Only: Median range for all cases, regardless of residency typeC_AllResTypes : Cases Only: Sum of COVID-19 positive Florida Residents; includes in and out of state Florida residents, but does not include out-of-state residents who were treated/tested/isolated in Florida. All questions regarding this dataset should be directed to the Florida Department of Health.

  13. n

    Data from: Spatial modeling of sociodemographic risk for COVID-19 mortality

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erich Seamon; Benjamin J. Ridenhour; Craig R. Miller; Jennifer Johnson-Leung (2024). Spatial modeling of sociodemographic risk for COVID-19 mortality [Dataset]. http://doi.org/10.5061/dryad.4j0zpc8j1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    University of Idaho
    Authors
    Erich Seamon; Benjamin J. Ridenhour; Craig R. Miller; Jennifer Johnson-Leung
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Background: In early 2020, the Coronavirus Disease 2019 (COVID-19) rapidly spread across the United States (US), exhibiting significant geographic variability. While several studies have examined the predictive relationships of differing factors on COVID-19, few have looked at spatiotemporal variation of COVID-19 deaths at refined geographic scales. Methods: The objective of this analysis is to examine the spatiotemporal variation in COVID-19 deaths with respect to socioeconomic, health, demographic, and political factors. We use multivariate regression applied to Health and Human Services (HHS) regions as well as nationwide county-level geographically weighted random forest (GWRF) models. Analyses were performed on data from three separate time frames which correspond to the spread of distinct viral variants in the US: pandemic onset until May 2021, May 2021 through November 2021, and December 2021 until April 2022. Spatial autocorrelation was additionally examined using a local and global Moran’s I test statistic. Results: Multivariate regression results for all regions across three time windows suggest that existing measures of social vulnerability for disaster preparedness (SVI) are predictive of a higher degree of mortality from COVID-19. In comparison, GWRF models provide a more robust evaluation of feature importance and prediction, exposing the value of local features for prediction, such as obesity, which is obscured by coarse-grained analysis. Spatial autocorrelation indicates positive spatial clustering,with a progression from positively clustered low deaths for liberal counties (cold spots) to positively clustered high deaths for conservative counties (hot spots). Conclusion: GWRF results indicate that a more nuanced modeling strategy is useful for determining spatial variation versus regional modeling approaches which may not capture feature clustering along border areas. Spatially explicit modeling approaches, such as GWRF, provide a more robust feature importance assessment of sociodemographic risk factors in predicting COVID-19 mortality. Methods The attached zip file contains the full GitHub repository, which includes data, the supplemental code, and an output HTML. The GitHub repository can be additionally viewed at: http://github.com/erichseamon/COVIDriskpaper. A README is provided as part of the repository, which describes each dataset, including all variable names and their unit of measure. All data used to generate the supplemental materials is located in the /data folder.

  14. US Counties: COVID19 + Weather + Socio/Health data

    • kaggle.com
    zip
    Updated Dec 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Davis (2020). US Counties: COVID19 + Weather + Socio/Health data [Dataset]. https://www.kaggle.com/johnjdavisiv/us-counties-covid19-weather-sociohealth-data
    Explore at:
    zip(619906810 bytes)Available download formats
    Dataset updated
    Dec 5, 2020
    Authors
    John Davis
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    The notebook that generates this dataset is here: https://www.kaggle.com/johnjdavisiv/us-counties-weather-sociohealth-location-data

    For an introduction to the data, check out this notebook: https://www.kaggle.com/johnjdavisiv/intro-to-the-us-counties-covid19-data

    The 3,142 counties of the United States span a diverse range of social, economic, health, and weather conditions. Because of the COVID19 pandemic, over 2,400 of these counties have already experienced some COVID19 cases.

    Combining county-level data on health, socioeconomics, and weather can help us address identify which populations are at risk for COVID19 and help prepare high-risk communities.

    Temperature and humidity may affect the transmissibility of COVID19, but in the United States, warmer regions also tend to have markedly different socioeconomic and health demographics. As such, it's important to be able to control for factors like obesity, diabetes, access to healthcare, and poverty rates, since these factors themselves likely play a role in COVID19 transmission and fatality rates.

    This dataset provides all of this information, formatted, cleaned, and ready for analysis. Most columns have little or no missing data. A small number have larger amounts of missing data; see the kernel that generated this dataset for details.

  15. r

    Florida COVID19 05192021 Case Line Data

    • opendata.rcmrd.org
    • covid19-usflibrary.hub.arcgis.com
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of South Florida GIS (2021). Florida COVID19 05192021 Case Line Data [Dataset]. https://opendata.rcmrd.org/datasets/0d1e9e011c364ec9b5a557c512da3a8c
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset authored and provided by
    University of South Florida GIS
    Area covered
    Florida
    Description

    Florida COVID-19 Case Line data, exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu. Starting on 4/6/2021, the Florida Department of Health (FDOH) changed the way they provide COVID-19 caseline data. Beginning with this date the caseline data is being archived as two separate files, one for 2020 and one for 2021. The 2021 file will only include data from 1/1/2021 onward. In addition, FDOH has added two Object ID fields to their dataset. These caseline data are being preserved as they are provided by the FDOH, with a daily archive captured by the USF Libraries DHHC.Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2021. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/. https://doi.org/10.5038/USF-COVID-19-GISLive FDOH Data Source: https://www.arcgis.com/home/item.html?id=7a0c74a551904761812dc6b8bd620ee1 or Direct Download at: https://open-fdoh.hub.arcgis.com/datasets/7a0c74a551904761812dc6b8bd620ee1_0.

    Archives for this data layer begin on 5/11/2020. Archived data was exported directly from the live FDOH layer into the archive by the University of South Florida Libraries - Digital Heritage and Humanities Collection.For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from the Florida Department of Health. This data table represents all laboratory-confirmed cases of COVID-19 in Florida tabulated from the previous day's totals by the Florida Department of Health. Persons Under Investigation/Surveillance (PUI):Essentially, PUIs are any person who has been or is waiting to be tested. This includes: persons who are considered high-risk for COVID-19 due to recent travel, contact with a known case, exhibiting symptoms of COVID-19 as determined by a healthcare professional, or some combination thereof. PUI’s also include people who meet laboratory testing criteria based on symptoms and exposure, as well as confirmed cases with positive test results. PUIs include any person who is or was being tested, including those with negative and pending results.All PUIs fit into one of three residency types:1. Florida residents tested in Florida2. Non-Florida residents tested in Florida 3. Florida residents tested outside of Florida Florida Residents Tested Elsewhere: The total number of Florida residents with positive COVID-19 test results who were tested outsideof Florida, and were not exposed/infectious in Florida. Non-Florida Residents Tested in Florida: The total number of people with positive COVID-19 test results who were tested, exposed, and/or infectious while in Florida, but are legal residents of another state.Table Guide for Records of Confirmed Positive Cases of COVID-19"County": The Florida county where the individual with COVID-19's case has been processed. "Jurisdiction" of the case:"FL resident" -- a resident of Florida"Non-FL resident" -- someone who resides outside of Florida "Travel_Related": Whether or not the positive case of COVID-19 is designated as related to recent travel by the individual. "No" -- Case designated as not being a risk related to recent travel"Unknown" -- Case designated where a travel-related designation has not yet been made."Yes" -- Case is designated as travel-related for a person who recently traveled overseas or to an area with community"Origin": Where the person likely contracted the virus before arriving / returning to Florida."EDvisit": Whether or not an individual who tested positive for coronavirus visited and was admitted to an Emergency Department related to health conditions surrounding COVID-19."No" -- Individual was not admitted to an emergency department relating to health conditions surrounding the contraction of COVID-19"Unknown" -- It is unknown whether the individual was admitted to an emergency department relating to health conditions surrounding the contraction of COVID-19"Yes" -- Individual was admitted to an emergency department relating to health conditions surrounding the contraction of COVID-19“Hospitalized”: Whether or not a patient who receives a positive laboratory confirmed test for COVID-19 receives inpatient care at a hospital at any time during illness. These people may no longer be hospitalized. This information does not indicate that a COVID-19 positive person is currently hospitalized, only that they have been hospitalized for health conditions relating to COVID-19 at some point during their illness. "No" -- Individual was not admitted for inpatient care at a hospital at any time during illness "Unknown" -- It is unknown whether the individual was admitted for inpatient care at a hospital at any time during illness "Yes" -- Individual was admitted for inpatient care at a hospital at some point during the illness "Died": Whether or not the individual who tested positive for COVID-19 died as a result of health complications from the viral infection. "NA" -- Not applicable / resident has not died "Yes" -- Individual died of a health complication resulting from COVID-19 "Contact": Whether the person contracted COVID-19 from contact with current or previously confirmedcases."No" -- Case with no known contact with current or previously confirmed cases"Yes" -- Case with known contact with current or previously confirmed cases"Unknown" -- Case where contact with current or previous confirmedcases is not known or under investigation"Case_": The date the positive laboratory result was received in the Department of Health’s database system and became a “confirmed case.” This is not the date a person contracted the virus, became symptomatic, or was treated. Florida does not create a case or count suspected/probable cases in the case counts without a confirmed-positive lab result. "EventDate": When the individual reported likely first experiencing symptoms related to COVID-19. "ChartDate": Also the date the positive laboratory result for an individual was received in the Department ofHealth’s database system and became a recorded, “confirmed case” of COVID-19 in the state. Data definitions updated by the FDOH on 5/13/2020.

  16. Social and Economic Inequities and COVID-19 Outcomes

    • data.kingcounty.gov
    • catalog.data.gov
    csv, xlsx, xml
    Updated Sep 22, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public Health – Seattle & King County (PHSKC) (2021). Social and Economic Inequities and COVID-19 Outcomes [Dataset]. https://data.kingcounty.gov/w/h5ux-n3kr/shwn-npxw?cur=0_Vv_oBYKbJ&from=XClixbmtdON
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Sep 22, 2021
    Dataset provided by
    Public Health – Seattle & King County
    Authors
    Public Health – Seattle & King County (PHSKC)
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Locally and across the United States, social and economic inequities have placed certain communities at higher risk of COVID-19. Public Health - Seattle & King County developed a social and economic risk index (SERI) to examine social and economic disparities in COVID-19 outcomes. This dashboard shows the index at census tract-level for King County.

    Higher scores on SERI indicate communities with higher levels of social and economic risk, and lower scores indicate lower levels of risk.

  17. a

    ABQ Metro Area Sub-County COVID-19 Risk Dashboard

    • chi-phi-nmcdc.opendata.arcgis.com
    Updated May 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2020). ABQ Metro Area Sub-County COVID-19 Risk Dashboard [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/items/b739141b78394166a7095dfa88e54d7c
    Explore at:
    Dataset updated
    May 26, 2020
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Albuquerque
    Description

    Contains the following information:COVID cases, case prevalence over different time spans, current COVID hotspots, and number of tests for the ABQ metro area at zip code level. Social vulnerability factors for the ABQ metro area at zip code level. COVID deaths at the small area level. The location of testing sites (updated regularly as new sites and information are found)The spread of COVID, testing, deaths, and PPE supply information by nursing homes (updated regularly)The locations of summer meal sites. This dashboard runs in this app: https://nmcdc.maps.arcgis.com/apps/MapSeries/index.html?appid=1ff0aa71c0ae427cbb5753d08ae19eabThis dashboard runs the following maps:Social Vulnerability Index, Albuquerque Metro Area, Census Tracts & Zip Codes, 2018 - https://nmcdc.maps.arcgis.com/home/item.html?id=850e8f2e7c394fb99041b94f813cb5faCOVID-19 Testing Locations - New Mexico - https://nmcdc.maps.arcgis.com/home/item.html?id=aace827af8fa4d2d9037ce5c7fb0e880COVID Deaths, NM Small Areas - CABQ - https://nmcdc.maps.arcgis.com/home/item.html?id=a56dab27204b4573a7f8d1663bc95844COVID-19 TESTING & CASES by TIME PERIODS, ZIP CODES - v1 - https://nmcdc.maps.arcgis.com/home/item.html?id=14e05ddda38d40cb9746750072d00c80Summer Meal Sites - CABQ - https://nmcdc.maps.arcgis.com/home/item.html?id=5fb8f3e689df4f03ab8be107d04fcd30Nursing Homes, COVID-19 Cases and Deaths, New Mexico and USA - https://nmcdc.maps.arcgis.com/home/item.html?id=8e74a05a32324aa3bcc07e2b1545d446

  18. r

    Florida COVID19 05262021 ByCounty

    • opendata.rcmrd.org
    Updated May 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of South Florida GIS (2021). Florida COVID19 05262021 ByCounty [Dataset]. https://opendata.rcmrd.org/datasets/685ea3b6112345bab7ffcb97c35fe15d
    Explore at:
    Dataset updated
    May 26, 2021
    Dataset authored and provided by
    University of South Florida GIS
    Area covered
    Florida
    Description

    Florida COVID-19 Cases by County exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu.Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2020. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/ . https://doi.org/10.5038/USF-COVID-19-GISLive FDOH DataSource: https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_COVID19_Cases/FeatureServerFor data 5/10/2020 or after: Archived data was exported directly from the live FDOH layer into the archive. For data prior to 5/10/2020: Data was exported by the University of South Florida - Digital Heritage and Humanities Collection using ArcGIS Pro Software. Data was then converted to shapefile and csv and uploaded into ArcGIS Online archive. Up until 3/25 the FDOH Cases by County layer was updated twice a day, archives are taken from the 11AM update.For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from FDOH.Persons Under Investigation/Surveillance (PUI):Essentially, PUIs are any person who has been or is waiting to be tested. This includes: persons who are considered high-risk for COVID-19 due to recent travel, contact with a known case, exhibiting symptoms of COVID-19 as determined by a healthcare professional, or some combination thereof. PUI’s also include people who meet laboratory testing criteria based on symptoms and exposure, as well as confirmed cases with positive test results. PUIs include any person who is or was being tested, including those with negative and pending results. All PUIs fit into one of three residency types: 1. Florida residents tested in Florida2. Non-Florida residents tested in Florida3. Florida residents tested outside of Florida Florida Residents Tested Elsewhere: The total number of Florida residents with positive COVID-19 test results who were tested outside of Florida, and were not exposed/infectious in Florida.Non-Florida Residents Tested in Florida: The total number of people with positive COVID-19 test results who were tested, exposed, and/or infectious while in Florida, but are legal residents of another state. Total Cases: The total (sum) number of Persons Under Investigation (PUI) who tested positive for COVID-19 while in Florida, as well as Florida residents who tested positive or were exposed/contagious while outside of Florida, and out-of-state residents who were exposed, contagious and/or tested in Florida.Deaths: The Deaths by Day chart shows the total number of Florida residents with confirmed COVID-19 that died on each calendar day (12:00 AM - 11:59 PM). Caution should be used in interpreting recent trends, as deaths are added as they are reported to the Department. Death data often has significant delays in reporting, so data within the past two weeks will be updated frequently.Prefix guide: "PUI" = PUI: Persons under surveillance (any person for which we have data about)"T_ " = Testing: Testing information for all PUIs and cases."C_" = Cases only: Information about cases, which are those persons who have COVID-19 positive test results on file“W_” = Surveillance and syndromic dataKey Data about Testing:T_negative : Testing: Total negative persons tested for all Florida and non-Florida residents, including Florida residents tested outside of the state, and those tested at private facilities.T_positive : Testing: Total positive persons tested for all Florida and non-Florida resident types, including Florida residents tested outside of the state, and those tested at private facilities.PUILab_Yes : All persons tested with lab results on file, including negative, positive and inconclusive. This total does NOT include those who are waiting to be tested or have submitted tests to labs for which results are still pending.Key Data about Confirmed COVID-19 Positive Cases: CasesAll: Cases only: The sum total of all positive cases, including Florida residents in Florida, Florida residents outside Florida, and non-Florida residents in FloridaFLResDeaths: Deaths of Florida ResidentsC_Hosp_Yes : Cases (confirmed positive) with a hospital admission notedC_AgeRange Cases Only: Age range for all cases, regardless of residency typeC_AgeMedian: Cases Only: Median range for all cases, regardless of residency typeC_AllResTypes : Cases Only: Sum of COVID-19 positive Florida Residents; includes in and out of state Florida residents, but does not include out-of-state residents who were treated/tested/isolated in Florida. All questions regarding this dataset should be directed to the Florida Department of Health.

  19. r

    Florida COVID19 04092021 ByCounty

    • opendata.rcmrd.org
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    Updated Apr 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of South Florida GIS (2021). Florida COVID19 04092021 ByCounty [Dataset]. https://opendata.rcmrd.org/datasets/7f2ff4042d4e4931a5a8dbfb7494ca4d
    Explore at:
    Dataset updated
    Apr 10, 2021
    Dataset authored and provided by
    University of South Florida GIS
    Area covered
    Florida
    Description

    Florida COVID-19 Cases by County exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu.Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2020. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/ . https://doi.org/10.5038/USF-COVID-19-GISLive FDOH DataSource: https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_COVID19_Cases/FeatureServerFor data 5/10/2020 or after: Archived data was exported directly from the live FDOH layer into the archive. For data prior to 5/10/2020: Data was exported by the University of South Florida - Digital Heritage and Humanities Collection using ArcGIS Pro Software. Data was then converted to shapefile and csv and uploaded into ArcGIS Online archive. Up until 3/25 the FDOH Cases by County layer was updated twice a day, archives are taken from the 11AM update.For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from FDOH.Persons Under Investigation/Surveillance (PUI):Essentially, PUIs are any person who has been or is waiting to be tested. This includes: persons who are considered high-risk for COVID-19 due to recent travel, contact with a known case, exhibiting symptoms of COVID-19 as determined by a healthcare professional, or some combination thereof. PUI’s also include people who meet laboratory testing criteria based on symptoms and exposure, as well as confirmed cases with positive test results. PUIs include any person who is or was being tested, including those with negative and pending results. All PUIs fit into one of three residency types: 1. Florida residents tested in Florida2. Non-Florida residents tested in Florida3. Florida residents tested outside of Florida Florida Residents Tested Elsewhere: The total number of Florida residents with positive COVID-19 test results who were tested outside of Florida, and were not exposed/infectious in Florida.Non-Florida Residents Tested in Florida: The total number of people with positive COVID-19 test results who were tested, exposed, and/or infectious while in Florida, but are legal residents of another state. Total Cases: The total (sum) number of Persons Under Investigation (PUI) who tested positive for COVID-19 while in Florida, as well as Florida residents who tested positive or were exposed/contagious while outside of Florida, and out-of-state residents who were exposed, contagious and/or tested in Florida.Deaths: The Deaths by Day chart shows the total number of Florida residents with confirmed COVID-19 that died on each calendar day (12:00 AM - 11:59 PM). Caution should be used in interpreting recent trends, as deaths are added as they are reported to the Department. Death data often has significant delays in reporting, so data within the past two weeks will be updated frequently.Prefix guide: "PUI" = PUI: Persons under surveillance (any person for which we have data about)"T_ " = Testing: Testing information for all PUIs and cases."C_" = Cases only: Information about cases, which are those persons who have COVID-19 positive test results on file“W_” = Surveillance and syndromic dataKey Data about Testing:T_negative : Testing: Total negative persons tested for all Florida and non-Florida residents, including Florida residents tested outside of the state, and those tested at private facilities.T_positive : Testing: Total positive persons tested for all Florida and non-Florida resident types, including Florida residents tested outside of the state, and those tested at private facilities.PUILab_Yes : All persons tested with lab results on file, including negative, positive and inconclusive. This total does NOT include those who are waiting to be tested or have submitted tests to labs for which results are still pending.Key Data about Confirmed COVID-19 Positive Cases: CasesAll: Cases only: The sum total of all positive cases, including Florida residents in Florida, Florida residents outside Florida, and non-Florida residents in FloridaFLResDeaths: Deaths of Florida ResidentsC_Hosp_Yes : Cases (confirmed positive) with a hospital admission notedC_AgeRange Cases Only: Age range for all cases, regardless of residency typeC_AgeMedian: Cases Only: Median range for all cases, regardless of residency typeC_AllResTypes : Cases Only: Sum of COVID-19 positive Florida Residents; includes in and out of state Florida residents, but does not include out-of-state residents who were treated/tested/isolated in Florida. All questions regarding this dataset should be directed to the Florida Department of Health.

  20. r

    Florida COVID19 05262021 ByCounty CSV

    • opendata.rcmrd.org
    • covid19-usflibrary.hub.arcgis.com
    • +1more
    Updated May 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of South Florida GIS (2021). Florida COVID19 05262021 ByCounty CSV [Dataset]. https://opendata.rcmrd.org/datasets/10f330c721584bd6995abce090980075
    Explore at:
    Dataset updated
    May 26, 2021
    Dataset authored and provided by
    University of South Florida GIS
    Area covered
    Florida
    Description

    Florida COVID-19 Cases by County exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu.Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2020. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/ . https://doi.org/10.5038/USF-COVID-19-GISLive FDOH DataSource: https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_COVID19_Cases/FeatureServerFor data 5/10/2020 or after: Archived data was exported directly from the live FDOH layer into the archive. For data prior to 5/10/2020: Data was exported by the University of South Florida - Digital Heritage and Humanities Collection using ArcGIS Pro Software. Data was then converted to shapefile and csv and uploaded into ArcGIS Online archive. Up until 3/25 the FDOH Cases by County layer was updated twice a day, archives are taken from the 11AM update.For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from FDOH.Persons Under Investigation/Surveillance (PUI):Essentially, PUIs are any person who has been or is waiting to be tested. This includes: persons who are considered high-risk for COVID-19 due to recent travel, contact with a known case, exhibiting symptoms of COVID-19 as determined by a healthcare professional, or some combination thereof. PUI’s also include people who meet laboratory testing criteria based on symptoms and exposure, as well as confirmed cases with positive test results. PUIs include any person who is or was being tested, including those with negative and pending results. All PUIs fit into one of three residency types: 1. Florida residents tested in Florida2. Non-Florida residents tested in Florida3. Florida residents tested outside of Florida Florida Residents Tested Elsewhere: The total number of Florida residents with positive COVID-19 test results who were tested outside of Florida, and were not exposed/infectious in Florida.Non-Florida Residents Tested in Florida: The total number of people with positive COVID-19 test results who were tested, exposed, and/or infectious while in Florida, but are legal residents of another state. Total Cases: The total (sum) number of Persons Under Investigation (PUI) who tested positive for COVID-19 while in Florida, as well as Florida residents who tested positive or were exposed/contagious while outside of Florida, and out-of-state residents who were exposed, contagious and/or tested in Florida.Deaths: The Deaths by Day chart shows the total number of Florida residents with confirmed COVID-19 that died on each calendar day (12:00 AM - 11:59 PM). Caution should be used in interpreting recent trends, as deaths are added as they are reported to the Department. Death data often has significant delays in reporting, so data within the past two weeks will be updated frequently.Prefix guide: "PUI" = PUI: Persons under surveillance (any person for which we have data about)"T_ " = Testing: Testing information for all PUIs and cases."C_" = Cases only: Information about cases, which are those persons who have COVID-19 positive test results on file“W_” = Surveillance and syndromic dataKey Data about Testing:T_negative : Testing: Total negative persons tested for all Florida and non-Florida residents, including Florida residents tested outside of the state, and those tested at private facilities.T_positive : Testing: Total positive persons tested for all Florida and non-Florida resident types, including Florida residents tested outside of the state, and those tested at private facilities.PUILab_Yes : All persons tested with lab results on file, including negative, positive and inconclusive. This total does NOT include those who are waiting to be tested or have submitted tests to labs for which results are still pending.Key Data about Confirmed COVID-19 Positive Cases: CasesAll: Cases only: The sum total of all positive cases, including Florida residents in Florida, Florida residents outside Florida, and non-Florida residents in FloridaFLResDeaths: Deaths of Florida ResidentsC_Hosp_Yes : Cases (confirmed positive) with a hospital admission notedC_AgeRange Cases Only: Age range for all cases, regardless of residency typeC_AgeMedian: Cases Only: Median range for all cases, regardless of residency typeC_AllResTypes : Cases Only: Sum of COVID-19 positive Florida Residents; includes in and out of state Florida residents, but does not include out-of-state residents who were treated/tested/isolated in Florida. All questions regarding this dataset should be directed to the Florida Department of Health.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Center for Disease Control and Prevention (2025). CDC COVID-19 Community Levels by County [Dataset]. https://opendata.ramseycountymn.gov/Public-Health/CDC-COVID-19-Community-Levels-by-County/uazb-iwdp

CDC COVID-19 Community Levels by County

Explore at:
csv, xlsx, xmlAvailable download formats
Dataset updated
Dec 2, 2025
Dataset authored and provided by
Center for Disease Control and Prevention
License

https://www.usa.gov/government-workshttps://www.usa.gov/government-works

Description

This public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties. This dataset contains the same values used to display information available on the COVID Data Tracker at: https://covid.cdc.gov/covid-data-tracker/#county-view?list_select_state=all_states&list_select_county=all_counties&data-type=CommunityLevels The data are updated weekly.

CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge. Using these data, the COVID-19 community level is classified as low, medium, or high. COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information.

For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

For more details on the Minnesota Department of Health COVID-19 thresholds, see COVID-19 Public Health Risk Measures: Data Notes (Updated 4/13/22). https://mn.gov/covid19/assets/phri_tcm1148-434773.pdf

Note: This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022. March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released. March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate. March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset. March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases. March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average). March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior. April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

Search
Clear search
Close search
Google apps
Main menu