As of October 6, 2022, 11,641 confirmed COVID-19 patients were in hospital in the United Kingdom. The number of COVID patients in hospitals first peaked at over 21.6 thousand on April 12, 2020 and dropped as low as 772 on September 11, 2020. However, the number of patients reached a new peak in the winter of 2020/21 with over 39.2 thousand patients in hospital on January 18, 2021.
The total number of cases in the UK can be found here. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Official statistics are produced impartially and free from political influence.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Covid 19 related hospital admissions to University Hospitals Leicester (UHL) for Leicester residents. Age band rates per 100,000 population are based on ONS 2019 population estimates.Data is updated weekly.Note: This dataset will soon be archived and not subject to updates. A replacement dataset is currently under development.
On January 12, 2021, over 4.5 thousand individuals in the UK were admitted to hospital with coronavirus (COVID-19), the highest single amount since the start of the pandemic. The daily hospital cases started to rise significantly at the end of 2020 and into January 2021, however since then the number of hospitalizations fell dramatically as the UK managed to vaccinate millions against COVID-19. Overall, since the pandemic started around 994 thousand people in the UK have been hospitalized with the virus.
The total number of cases in the UK can be found here. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
All data relating to “Coronavirus (COVID-19) hospital admissions by vaccination and pregnancy status, England”.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Daily hospital admissions to University Hospitals Leicester (UHL) of patients with Covid-19.Please note automatic updates to this dataset was discontinued on the 8th December 2023.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Number of weekly Covid-19 related hospital admissions to University Hospitals Leicester (UHL) for Leicester residents. Data where the count is less than 3 admissions have been suppressed to "..". Data is updated weekly and previous week data is subject to change when data is refreshed.Note: This dataset will soon be archived and not subject to updates. A replacement dataset is currently under development.
The data includes:
These reports summarise epidemiological data at lower-tier local authority (LTLA) level for England as at 10 December 2020 at 10am.
More detailed epidemiological charts and graphs are presented for areas in very high and high local COVID alert level areas.
These reports were used to give MPs an update on the status of COVID within their region for population case rate, hospital admissions and bed status, and COVID-related mortality.
See the detailed data on the https://coronavirus.data.gov.uk/" class="govuk-link">progress of the coronavirus pandemic.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This publication was archived on 12 October 2023. Please see the Viral Respiratory Diseases (Including Influenza and COVID-19) in Scotland publication for the latest data. This dataset provides information on number of new daily confirmed cases, negative cases, deaths, testing by NHS Labs (Pillar 1) and UK Government (Pillar 2), new hospital admissions, new ICU admissions, hospital and ICU bed occupancy from novel coronavirus (COVID-19) in Scotland, including cumulative totals and population rates at Scotland, NHS Board and Council Area levels (where possible). Seven day positive cases and population rates are also presented by Neighbourhood Area (Intermediate Zone 2011). Information on how PHS publish small are COVID figures is available on the PHS website. Information on demographic characteristics (age, sex, deprivation) of confirmed novel coronavirus (COVID-19) cases, as well as trend data regarding the wider impact of the virus on the healthcare system is provided in this publication. Data includes information on primary care out of hours consultations, respiratory calls made to NHS24, contact with COVID-19 Hubs and Assessment Centres, incidents received by Scottish Ambulance Services (SAS), as well as COVID-19 related hospital admissions and admissions to ICU (Intensive Care Unit). Further data on the wider impact of the COVID-19 response, focusing on hospital admissions, unscheduled care and volume of calls to NHS24, is available on the COVID-19 Wider Impact Dashboard. Novel coronavirus (COVID-19) is a new strain of coronavirus first identified in Wuhan, China. Clinical presentation may range from mild-to-moderate illness to pneumonia or severe acute respiratory infection. COVID-19 was declared a pandemic by the World Health Organisation on 12 March 2020. We now have spread of COVID-19 within communities in the UK. Public Health Scotland no longer reports the number of COVID-19 deaths within 28 days of a first positive test from 2nd June 2022. Please refer to NRS death certificate data as the single source for COVID-19 deaths data in Scotland. In the process of updating the hospital admissions reporting to include reinfections, we have had to review existing methodology. In order to provide the best possible linkage of COVID-19 cases to hospital admissions, each admission record is required to have a discharge date, to allow us to better match the most appropriate COVID positive episode details to an admission. This means that in cases where the discharge date is missing (either due to the patient still being treated, delays in discharge information being submitted or data quality issues), it has to be estimated. Estimating a discharge date for historic records means that the average stay for those with missing dates is reduced, and fewer stays overlap with records of positive tests. The result of these changes has meant that approximately 1,200 historic COVID admissions have been removed due to improvements in methodology to handle missing discharge dates, while approximately 820 have been added to the cumulative total with the inclusion of reinfections. COVID-19 hospital admissions are now identified as the following: A patient's first positive PCR or LFD test of the episode of infection (including reinfections at 90 days or more) for COVID-19 up to 14 days prior to admission to hospital, on the day of their admission or during their stay in hospital. If a patient's first positive PCR or LFD test of the episode of infection is after their date of discharge from hospital, they are not included in the analysis. Information on COVID-19, including stay at home advice for people who are self-isolating and their households, can be found on NHS Inform. Data visualisation of Scottish COVID-19 cases is available on the Public Health Scotland - Covid 19 Scotland dashboard. Further information on coronavirus in Scotland is available on the Scottish Government - Coronavirus in Scotland page, where further breakdown of past coronavirus data has also been published.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction: COVID-19 has had a huge impact on society and healthcare and it has been suggested that people with periodontal disease are at risk of having worse outcomes from the disease. The aim of this study was to quantify the impact of periodontal disease on hospital admission and mortality during the COVID-19 pandemic.Materials and Methods: The study extracted UK Biobank participants who had taken a COVID-19 test between March and June 2020 (n = 13,253), of which 1,616 were COVID-19 positive (12%) and 11,637 were COVID-19 negative (88%). Self-reported oral health indicators of painful or bleeding gums and loose teeth were used as surrogates for periodontal disease, participants who did not report any of the aforementioned indicators were used as controls. Multivariable logistic regressions were used to obtain crude and adjusted odds ratios of COVID-19 infection, subsequent hospital admission and mortality adjusted for demographics, BMI, biomarkers, lifestyle and co-morbidities.Results: Painful gums, bleeding gums and loose teeth were reported in 2.7, 11.2 and 3.3% of participants with COVID-19 infection, respectively. Risk of COVID-19 infection in participants with painful or bleeding gums and loose teeth compared to controls was not increased (odds ratio [OR]: 1.10, 95% CI: 0.72–1.69; OR: 1.15, 95% CI: 0.84–1.59). COVID-19 positive participants with painful or bleeding gums had a higher risk of mortality (OR: 1.71, 95% CI: 1.05–2.72) but not hospital admission (OR: 0.90, 95% CI: 0.59–1.37). Participants with loose teeth did not show higher risk of hospital admission or mortality compared to the control group (OR = 1.55, 95% CI: 0.87–2.77; OR: 1.85; 95% CI: 0.92–2.72).Conclusion: There was insufficient evidence to link periodontal disease with an increased risk of COVID-19 infection. However, amongst the COVID-19 positive, there was significantly higher mortality for participants with periodontal disease. Utilization of linked dental and hospital patient records would improve the understanding of the impact of periodontal disease on COVID-19 related outcomes.
The COVID-19 Hospitalisations dashboard, currently updated every Friday at 2pm, compares hospitalisation figures throughout the COVID-19 pandemic. This includes figures on hospital admissions, inpatients and discharges.
Following the profoundly sad announcement of the death of Her Majesty Queen Elizabeth II, all DoH statistical publications scheduled for Friday 09 September 2022 were postponed until Monday 12 September 2022.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Legacy unique identifier: P01844
The COVID-19 Health Inequalities Monitoring in England (CHIME) tool brings together data relating to the direct impacts of coronavirus (COVID-19) on factors such as mortality rates, hospital admissions, confirmed cases and vaccinations.
By presenting inequality breakdowns - including by age, sex, ethnic group, level of deprivation and region - the tool provides a single point of access to:
In the March 2023 update, data has been updated for deaths, hospital admissions and vaccinations. Data on inequalities in vaccination uptake within upper tier local authorities has been added to the tool for the first time. This replaces data for lower tier local authorities, published in December 2022, allowing the reporting of a wider range of inequality breakdowns within these areas.
Updates to the CHIME tool are paused pending the results of a review of the content and presentation of data within the tool. The tool has not been updated since the 16 March 2023.
Please send any questions or comments to PHA-OHID@dhsc.gov.uk
The number of admissions has increased year-on-year from 2000 to 2020. Due to the COVID-19 pandemic, hospital admission dropped in 2020/21. In 2023/24 there were around 17.6 million admissions* to NHS hospitals in England, showing that admission numbers have reached and exceeded pre-pandemic levels.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This open data publication has moved to COVID-19 Statistical Data in Scotland (from 02/11/2022) Novel coronavirus (COVID-19) is a new strain of coronavirus first identified in Wuhan, China. Clinical presentation may range from mild-to-moderate illness to pneumonia or severe acute respiratory infection. This dataset provides information on demographic characteristics (age, sex, deprivation) of confirmed novel coronavirus (COVID-19) cases, as well as trend data regarding the wider impact of the virus on the healthcare system. Data includes information on primary care out of hours consultations, respiratory calls made to NHS24, contact with COVID-19 Hubs and Assessment Centres, incidents received by Scottish Ambulance Services (SAS), as well as COVID-19 related hospital admissions and admissions to ICU (Intensive Care Unit). Further data on the wider impact of the COVID-19 response, focusing on hospital admissions, unscheduled care and volume of calls to NHS24, is available on the COVID-19 Wider Impact Dashboard. There is a large amount of data being regularly published regarding COVID-19 (for example, Coronavirus in Scotland - Scottish Government and Deaths involving coronavirus in Scotland - National Records of Scotland. Additional data sources relating to this topic area are provided in the Links section of the Metadata below. Information on COVID-19, including stay at home advice for people who are self-isolating and their households, can be found on NHS Inform. All publications and supporting material to this topic area can be found in the weekly COVID-19 Statistical Report. The date of the next release can be found on our list of forthcoming publications. Data visualisation is available to view in the interactive dashboard accompanying the COVID-19 Statistical Report. Please note information on COVID-19 in children and young people of educational age, education staff and educational settings is presented in a new COVID-19 Education Surveillance dataset going forward.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Estimates of the risk of hospital admission for coronavirus (COVID-19) and death involving COVID-19 by vaccination status, overall and by age group, using anonymised linked data from Census 2021. Experimental Statistics.
Outcome definitions
For this analysis, we define a death as involving COVID-19 if either of the ICD-10 codes U07.1 (COVID-19, virus identified) or U07.2 (COVID-19, virus not identified) is mentioned on the death certificate. Information on cause of death coding is available in the User Guide to Mortality Statistics. We use date of occurrance rather than date of registration to give the date of the death.
We define COVID-109 hospitalisation as an inpatient episode in Hospital Episode Statistics where the primary diagnosis was COVID-19, identified by the ICD-19 codes (COVID-19, virus identified) or U07.2 (COVID-19, virus not identified). Where an individual had experienced more than one COVID-19 hospitalisation, the earliest that occurred within the study period was used. We define the date of COVID-19 hospitalisation as the start of the hospital episode.
ICD-10 code
U07.1 :
COVID-19, virus identified
U07.2:
COVID-19, virus not identified
Vaccination status is defined by the dose and the time since the last dose received
Unvaccinated:
no vaccination to less than 21 days post first dose
First dose 21 days to 3 months:
more than or equal to 21 days post second dose to earliest of less than 91 days post first dose or less than 21 days post second dose
First dose 3+ months:
more than or equal to 91 days post first dose to less than 21 days post second dose
Second dose 21 days to 3 months:
more than or equal to 21 days post second dose to earliest of less than 91 days post second dose or less than 21 days post third dose
Second dose 3-6 months:
more than or equal to 91 days post second dose to earliest of less than 182 days post second dose or less than 21 days post third dose
Second dose 6+ months:
more than or equal to 182 days post second dose to less than 21 days post third dose
Third dose 21 days to 3 months:
more than or equal to 21 days post third dose to less than 91 days post third dose
Third dose 3+ months:
more than or equal to 91 days post third dose
Model adjustments
Three sets of model adjustments were used
Age adjusted:
age (as a natural spline)
Age, socio-demographics adjusted:
age (as a natural spline), plus socio-demographic characteristics (sex, region, ethnicity, religion, IMD decile, NSSEC category, highest qualification, English language proficiency, key worker status)
Fully adjusted:
age (as a natural spline), plus socio-demographic characteristics (sex, region, ethnicity, religion, IMD decile, NSSEC category, highest qualification, English language proficiency, key worker status), plus health-related characteristics (disability, self-reported health, care home residency, number of QCovid comorbidities (grouped), BMI category, frailty flag and hospitalisation within the last 21 days.
Age
Age in years is defined on the Census day 2021 (21 March 2021). Age is included in the model as a natural spline with boundary knots at the 10th and 90th centiles and internal knots at the 25th, 50th and 75th centiles. The positions of the knots are calculated separately for the overall model and for each age group for the stratified model.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Directly age and sex standardised admission rate for emergency admissions for acute conditions that should not usually require hospital admission per 100,000 registered patients, 95% confidence intervals (CI). March 2022 - The coronavirus (COVID-19) pandemic began to have an impact on Hospital Episode Statistics (HES) data late in the 2019-20 financial year, which continued into the 2020-21 financial year. This means we are seeing different patterns in the submitted data, for example, fewer patients being admitted to hospital, and therefore statistics which contain data from this period should be interpreted with care. Further information is available in the annual HES publication: https://digital.nhs.uk/data-and-information/publications/statistical/hospital-admitted-patient-care-activity/2020-21/covid-19-impact As of the October 2020 release, the CCG OIS is now published on an annual basis, as a result provisional data periods will no longer be published. The annual update will be based on finalised data for the April to March reporting period each year. As of the March 2020 release, the data included in the December 2019 publication for the 2018/19, July 2018 to June 2019 (Provisional) and October 2018 to September 2019 (Provisional) data periods has been revised. This is due to a revision of a large proportion of records for East Sussex Healthcare NHS Trust (RXC) which had missing information for the condition the patient was in hospital for and other conditions the patients suffer from. The revised data for these reporting periods also differs from that originally published in December 2019 in that the HES database is routinely updated (overwritten) on a monthly basis for the year in progress. Data for the two provisional periods remain provisional, but is now more complete than it was when the December 2019 publication was released. This effect cannot be readily separated from the effect of the East Sussex Healthcare NHS Trust (RXC) resubmission which also took place after processing for the December 2019 publication. Legacy unique identifier: P01844
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete COVID-19 dataset is a collection of the COVID-19 data maintained by Our World in Data. It is updated daily and includes data on confirmed cases, deaths, hospitalizations, testing, and vaccinations as well as other variables of potential interest.
The variables represent all data related to confirmed cases, deaths, hospitalizations, and testing, as well as other variables of potential interest.
the columns are: iso_code
, continent
, location
, date
, total_cases
, new_cases
, new_cases_smoothed
, total_deaths
, new_deaths
, new_deaths_smoothed
, total_cases_per_million
, new_cases_per_million
, new_cases_smoothed_per_million
, total_deaths_per_million
, new_deaths_per_million
, new_deaths_smoothed_per_million
, reproduction_rate
, icu_patients
, icu_patients_per_million
, hosp_patients
, hosp_patients_per_million
, weekly_icu_admissions
, weekly_icu_admissions_per_million
, weekly_hosp_admissions
, weekly_hosp_admissions_per_million
, total_tests
, new_tests
, total_tests_per_thousand
, new_tests_per_thousand
, new_tests_smoothed
, new_tests_smoothed_per_thousand
, positive_rate
, tests_per_case
, tests_units
, total_vaccinations
, people_vaccinated
, people_fully_vaccinated
, new_vaccinations
, new_vaccinations_smoothed
, total_vaccinations_per_hundred
, people_vaccinated_per_hundred
, people_fully_vaccinated_per_hundred
, new_vaccinations_smoothed_per_million
, stringency_index
, population
, population_density
, median_age
, aged_65_older
, aged_70_older
, gdp_per_capita
, extreme_poverty
, cardiovasc_death_rate
, diabetes_prevalence
, female_smokers
, male_smokers
, handwashing_facilities
, hospital_beds_per_thousand
, life_expectancy
, human_development_index
https://systems.jhu.edu/research/public-health/ncov/ https://www.ecdc.europa.eu/en/publications-data/download-data-hospital-and-icu-admission-rates-and-current-occupancy-covid-19 https://coronavirus.data.gov.uk/details/healthcare https://covid19tracker.ca/ https://healthdata.gov/dataset/covid-19-reported-patient-impact-and-hospital-capacity-state-timeseries https://ourworldindata.org/coronavirus-testing#our-checklist-for-covid-19-testing-data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundPredicting the future UK COVID-19 epidemic provides a baseline of a vaccine-only mitigation policy from which to judge the effects of additional public health interventions. A previous 12-month prediction of the size of the epidemic to October 2022 underestimated its sequelae by a fifth. This analysis seeks to explain the reasons for the underestimation before offering new long-term predictions.MethodsA Dynamic Causal Model was used to identify changes in COVID-19 transmissibility and the public's behavioral response in the 12-months to October 2022. The model was then used to predict the future trends in infections, long-COVID, hospital admissions and deaths over 12-months to October 2023.FindingsThe model estimated that the secondary attack rate increased from 0.4 to 0.5, the latent period shortened from 2.7 to 2.6 and the incubation period shortened from 2.0 to 1.95 days between October 2021 and October 2022. During this time the model also estimated that antibody immunity waned from 177 to 160 days and T-cell immunity from 205 to 180 days. This increase in transmissibility was associated with a reduction in pathogenicity with the proportion of infections developing acute respiratory distress syndrome falling for 6–2% in the same twelve-month period. Despite the wave of infections, the public response was to increase the tendency to expose themselves to a high-risk environment (e.g., leaving home) each day from 33–58% in the same period.The predictions for October 2023 indicate a wave of infections three times larger this coming year than last year with significant health and economic consequences such as 120,000 additional COVID-19 related deaths, 800,000 additional hospital admissions and 3.5 million people suffering acute-post-COVID-19 syndrome lasting more than 12 weeks.InterpretationThe increase in transmissibility together with the public's response provide plausible explanations for why the model underestimated the 12-month predictions to October 2022. The 2023 projection could well-underestimate the predicted substantial next wave of COVID-19 infection. Vaccination alone will not control the epidemic. The UK COVID-19 epidemic is not over. The results call for investment in precautionary public health interventions.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Update 2 March 2023: Following the merger of NHS Digital and NHS England on 1st February 2023 we are reviewing the future presentation of the NHS Outcomes Framework indicators. As part of this review, the annual publication which was due to be released in March 2023 has been delayed. Further announcements about this dataset will be made on this page in due course. The indicator measures the number of emergency admissions to hospital in England for acute conditions such as ear/nose/throat infections, kidney/urinary tract infections and angina, among others, that could potentially have been avoided if the patient had been better managed in primary care. This indicator aims to measure the reduction in emergency admissions for conditions that should usually be managed outside hospital. Where an individual has been admitted for one of these conditions, it may indicate that they have deteriorated more than should have been allowed by the adequate provision of healthcare in primary care or as a hospital outpatient. The coronavirus (COVID-19) pandemic began to have an impact on Hospital Episode Statistics (HES) data late in the 2019/20 financial year, which continued into the 2020/21 financial year. This means we are seeing different patterns in the submitted data, for example, fewer patients being admitted to hospital, and therefore statistics which contain data from this period should be interpreted with care. Legacy unique identifier: P01757
As of October 6, 2022, 11,641 confirmed COVID-19 patients were in hospital in the United Kingdom. The number of COVID patients in hospitals first peaked at over 21.6 thousand on April 12, 2020 and dropped as low as 772 on September 11, 2020. However, the number of patients reached a new peak in the winter of 2020/21 with over 39.2 thousand patients in hospital on January 18, 2021.
The total number of cases in the UK can be found here. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.