Facebook
TwitterAs of October 6, 2022, 11,641 confirmed COVID-19 patients were in hospital in the United Kingdom. The number of COVID patients in hospitals first peaked at over 21.6 thousand on April 12, 2020 and dropped as low as 772 on September 11, 2020. However, the number of patients reached a new peak in the winter of 2020/21 with over 39.2 thousand patients in hospital on January 18, 2021.
The total number of cases in the UK can be found here. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterOfficial statistics are produced impartially and free from political influence.
Facebook
TwitterOn January 12, 2021, over 4.5 thousand individuals in the UK were admitted to hospital with coronavirus (COVID-19), the highest single amount since the start of the pandemic. The daily hospital cases started to rise significantly at the end of 2020 and into January 2021, however since then the number of hospitalizations fell dramatically as the UK managed to vaccinate millions against COVID-19. Overall, since the pandemic started around 994 thousand people in the UK have been hospitalized with the virus.
The total number of cases in the UK can be found here. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Daily official UK Covid data. The data is available per country (England, Scotland, Wales and Northern Ireland) and for different regions in England. The different regions are split into two different files as part of the data is directly gathered by the NHS (National Health Service). The files that contain the word 'nhsregion' in their name, include data related to hospitals only, such as number of admissions or number of people in respirators. The files containing the word 'region' in their name, include the rest of the data, such as number of cases, number of vaccinated people or number of tests performed per day. The next paragraphs describe the columns for the different file types.
Files related to regions (word 'region' included in the file name) have the following columns: - "date": date in YYYY-MM-DD format - "area type": type of area covered in the file (region or nation) - "area name": name of area covered in the file (region or nation name) - "daily cases": new cases on a given date - "cum cases": cumulative cases - "new deaths 28days": new deaths within 28 days of a positive test - "cum deaths 28days": cumulative deaths within 28 days of a positive test - "new deaths_60days": new deaths within 60 days of a positive test - "cum deaths 60days": cumulative deaths within 60 days of a positive test - "new_first_episode": new first episodes by date - "cum_first_episode": cumulative first episodes by date - "new_reinfections": new reinfections by specimen data - "cum_reinfections": cumualtive reinfections by specimen data - "new_virus_test": new virus tests by date - "cum_virus_test": cumulative virus tests by date - "new_pcr_test": new PCR tests by date - "cum_pcr_test": cumulative PCR tests by date - "new_lfd_test": new LFD tests by date - "cum_lfd_test": cumulative LFD tests by date - "test_roll_pos_pct": percentage of unique case positivity by date rolling sum - "test_roll_people": unique people tested by date rolling sum - "new first dose": new people vaccinated with a first dose - "cum first dose": cumulative people vaccinated with a first dose - "new second dose": new people vaccinated with a first dose - "cum second dose": cumulative people vaccinated with a first dose - "new third dose": new people vaccinated with a booster or third dose - "cum third dose": cumulative people vaccinated with a booster or third dose
Files related to countries (England, Northern Ireland, Scotland and Wales) have the above columns and also: - "new admissions": new admissions, - "cum admissions": cumulative admissions, - "hospital cases": patients in hospitals, - "ventilator beds": COVID occupied mechanical ventilator beds - "trans_rate_min": minimum transmission rate (R) - "trans_rate_max": maximum transmission rate (R) - "trans_growth_min": transmission rate growth min - "trans_growth_max": transmission rate growth max
Files related to nhsregion (word 'nhsregion' included in the file name) have the following columns: - "new admissions": new admissions, - "cum admissions": cumulative admissions, - "hospital cases": patients in hospitals, - "ventilator beds": COVID occupied mechanical ventilator beds - "trans_rate_min": minimum transmission rate (R) - "trans_rate_max": maximum transmission rate (R) - "trans_growth_min": transmission rate growth min - "trans_growth_max": transmission rate growth max
It's worth noting that the dataset hasn't been cleaned and it needs cleaning. Also, different files have different null columns. This isn't an error in the dataset but the way different countries and regions report the data.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
All data relating to “Coronavirus (COVID-19) hospital admissions by vaccination and pregnancy status, England”.
Facebook
TwitterCovid 19 related hospital admissions to University Hospitals Leicester (UHL) for Leicester residents. Age band rates per 100,000 population are based on ONS 2019 population estimates.Data is updated weekly.Note: This dataset will soon be archived and not subject to updates. A replacement dataset is currently under development.
Facebook
TwitterThe data includes:
These reports summarise epidemiological data at lower-tier local authority (LTLA) level for England as at 10 December 2020 at 10am.
More detailed epidemiological charts and graphs are presented for areas in very high and high local COVID alert level areas.
These reports were used to give MPs an update on the status of COVID within their region for population case rate, hospital admissions and bed status, and COVID-related mortality.
See the detailed data on the https://coronavirus.data.gov.uk/">progress of the coronavirus pandemic.
Facebook
TwitterNumber of weekly Covid-19 related hospital admissions to University Hospitals Leicester (UHL) for Leicester residents. Data where the count is less than 3 admissions have been suppressed to "..". Data is updated weekly and previous week data is subject to change when data is refreshed.Note: This dataset will soon be archived and not subject to updates. A replacement dataset is currently under development.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundMandatory COVID-19 certification, showing proof of vaccination, negative test, or recent infection to access to public venues, was introduced at different times in the four countries of the UK. We aim to study its effects on the incidence of cases and hospital admissions.MethodsWe performed Negative binomial segmented regression and ARIMA analyses for four countries (England, Northern Ireland, Scotland and Wales), and fitted Difference-in-Differences models to compare the latter three to England, as a negative control group, since it was the last country where COVID-19 certification was introduced. The main outcome was the weekly averaged incidence of COVID-19 cases and hospital admissions.ResultsCOVID-19 certification led to a decrease in the incidence of cases and hospital admissions in Northern Ireland, as well as in Wales during the second half of November. The same was seen for hospital admissions in Wales and Scotland during October. In Wales the incidence rate of cases in October already had a decreasing tendency, as well as in England, hence a particular impact of COVID-19 certification was less obvious. Method assumptions for the Difference-in-Differences analysis did not hold for Scotland. Additional NBSR and ARIMA models suggest similar results, while also accounting for correlation in the latter. The assessment of the effect in England itself leads one to believe that this intervention might not be strong enough for the Omicron variant, which was prevalent at the time of introduction of COVID-19 certification in the country.ConclusionsMandatory COVID-19 certification reduced COVID-19 transmission and hospitalizations when Delta predominated in the UK, but lost efficacy when Omicron became the most common variant.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Identifying changes in the reproduction number, rate of spread, and doubling time during the course of the COVID-19 outbreak whilst accounting for potential biases due to delays in case reporting both nationally and subnationally in the United Kingdom.
Facebook
TwitterThe COVID-19 Hospitalisations dashboard, currently updated every Friday at 2pm, compares hospitalisation figures throughout the COVID-19 pandemic. This includes figures on hospital admissions, inpatients and discharges.
Following the profoundly sad announcement of the death of Her Majesty Queen Elizabeth II, all DoH statistical publications scheduled for Friday 09 September 2022 were postponed until Monday 12 September 2022.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Legacy unique identifier: P01844
Facebook
TwitterThe number of admissions to NHS hospitals in England, both elective and emergency, increased year-on-year from 2014 to 2020. Due to the COVID-19 pandemic, hospital admissions dropped in 2020/21, especially elective admissions. By 2024/25 there were nearly ** million elective admissions and *** million emergency admissions. Numbers have therefore returned to and exceeded pre-pandemic amounts. A total of **** million admissions were recorded in 2024/25, including other methods of admission.
Facebook
Twitterhttps://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/
OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 2.0
Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases & more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS) & death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID OMOP dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.
PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.
EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date. This is a subset of data in OMOP format.
Scope: All COVID swab confirmed hospitalised patients to UHB from January – August 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes.
Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data. Further OMOP data available as an additional service.
Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundPredicting the future UK COVID-19 epidemic provides a baseline of a vaccine-only mitigation policy from which to judge the effects of additional public health interventions. A previous 12-month prediction of the size of the epidemic to October 2022 underestimated its sequelae by a fifth. This analysis seeks to explain the reasons for the underestimation before offering new long-term predictions.MethodsA Dynamic Causal Model was used to identify changes in COVID-19 transmissibility and the public's behavioral response in the 12-months to October 2022. The model was then used to predict the future trends in infections, long-COVID, hospital admissions and deaths over 12-months to October 2023.FindingsThe model estimated that the secondary attack rate increased from 0.4 to 0.5, the latent period shortened from 2.7 to 2.6 and the incubation period shortened from 2.0 to 1.95 days between October 2021 and October 2022. During this time the model also estimated that antibody immunity waned from 177 to 160 days and T-cell immunity from 205 to 180 days. This increase in transmissibility was associated with a reduction in pathogenicity with the proportion of infections developing acute respiratory distress syndrome falling for 6–2% in the same twelve-month period. Despite the wave of infections, the public response was to increase the tendency to expose themselves to a high-risk environment (e.g., leaving home) each day from 33–58% in the same period.The predictions for October 2023 indicate a wave of infections three times larger this coming year than last year with significant health and economic consequences such as 120,000 additional COVID-19 related deaths, 800,000 additional hospital admissions and 3.5 million people suffering acute-post-COVID-19 syndrome lasting more than 12 weeks.InterpretationThe increase in transmissibility together with the public's response provide plausible explanations for why the model underestimated the 12-month predictions to October 2022. The 2023 projection could well-underestimate the predicted substantial next wave of COVID-19 infection. Vaccination alone will not control the epidemic. The UK COVID-19 epidemic is not over. The results call for investment in precautionary public health interventions.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Estimates of the risk of hospital admission for coronavirus (COVID-19) and death involving COVID-19 by vaccination status, overall and by age group, using anonymised linked data from Census 2021. Experimental Statistics.
Outcome definitions
For this analysis, we define a death as involving COVID-19 if either of the ICD-10 codes U07.1 (COVID-19, virus identified) or U07.2 (COVID-19, virus not identified) is mentioned on the death certificate. Information on cause of death coding is available in the User Guide to Mortality Statistics. We use date of occurrance rather than date of registration to give the date of the death.
We define COVID-109 hospitalisation as an inpatient episode in Hospital Episode Statistics where the primary diagnosis was COVID-19, identified by the ICD-19 codes (COVID-19, virus identified) or U07.2 (COVID-19, virus not identified). Where an individual had experienced more than one COVID-19 hospitalisation, the earliest that occurred within the study period was used. We define the date of COVID-19 hospitalisation as the start of the hospital episode.
ICD-10 code
U07.1 :
COVID-19, virus identified
U07.2:
COVID-19, virus not identified
Vaccination status is defined by the dose and the time since the last dose received
Unvaccinated:
no vaccination to less than 21 days post first dose
First dose 21 days to 3 months:
more than or equal to 21 days post second dose to earliest of less than 91 days post first dose or less than 21 days post second dose
First dose 3+ months:
more than or equal to 91 days post first dose to less than 21 days post second dose
Second dose 21 days to 3 months:
more than or equal to 21 days post second dose to earliest of less than 91 days post second dose or less than 21 days post third dose
Second dose 3-6 months:
more than or equal to 91 days post second dose to earliest of less than 182 days post second dose or less than 21 days post third dose
Second dose 6+ months:
more than or equal to 182 days post second dose to less than 21 days post third dose
Third dose 21 days to 3 months:
more than or equal to 21 days post third dose to less than 91 days post third dose
Third dose 3+ months:
more than or equal to 91 days post third dose
Model adjustments
Three sets of model adjustments were used
Age adjusted:
age (as a natural spline)
Age, socio-demographics adjusted:
age (as a natural spline), plus socio-demographic characteristics (sex, region, ethnicity, religion, IMD decile, NSSEC category, highest qualification, English language proficiency, key worker status)
Fully adjusted:
age (as a natural spline), plus socio-demographic characteristics (sex, region, ethnicity, religion, IMD decile, NSSEC category, highest qualification, English language proficiency, key worker status), plus health-related characteristics (disability, self-reported health, care home residency, number of QCovid comorbidities (grouped), BMI category, frailty flag and hospitalisation within the last 21 days.
Age
Age in years is defined on the Census day 2021 (21 March 2021). Age is included in the model as a natural spline with boundary knots at the 10th and 90th centiles and internal knots at the 25th, 50th and 75th centiles. The positions of the knots are calculated separately for the overall model and for each age group for the stratified model.
Facebook
TwitterThe COVID-19 Health Inequalities Monitoring in England (CHIME) tool brings together data relating to the direct impacts of coronavirus (COVID-19) on factors such as mortality rates, hospital admissions, confirmed cases and vaccinations.
By presenting inequality breakdowns - including by age, sex, ethnic group, level of deprivation and region - the tool provides a single point of access to:
In the March 2023 update, data has been updated for deaths, hospital admissions and vaccinations. Data on inequalities in vaccination uptake within upper tier local authorities has been added to the tool for the first time. This replaces data for lower tier local authorities, published in December 2022, allowing the reporting of a wider range of inequality breakdowns within these areas.
Updates to the CHIME tool are paused pending the results of a review of the content and presentation of data within the tool. The tool has not been updated since the 16 March 2023.
Please send any questions or comments to PHA-OHID@dhsc.gov.uk
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThis paper asks whether Dynamic Causal modelling (DCM) can predict the long-term clinical impact of the COVID-19 epidemic. DCMs are designed to continually assimilate data and modify model parameters, such as transmissibility of the virus, changes in social distancing and vaccine coverage—to accommodate changes in population dynamics and virus behavior. But as a novel way to model epidemics do they produce valid predictions? We presented DCM predictions 12 months ago, which suggested an increase in viral transmission was accompanied by a reduction in pathogenicity. These changes provided plausible reasons why the model underestimated deaths, hospital admissions and acute-post COVID-19 syndrome by 20%. A further 12-month validation exercise could help to assess how useful such predictions are.Methodswe compared DCM predictions—made in October 2022—with actual outcomes over the 12-months to October 2023. The model was then used to identify changes in COVID-19 transmissibility and the sociobehavioral responses that may explain discrepancies between predictions and outcomes over this period. The model was then used to predict future trends in infections, long-COVID, hospital admissions and deaths over 12-months to October 2024, as a prelude to future tests of predictive validity.FindingsUnlike the previous predictions—which were an underestimate—the predictions made in October 2022 overestimated incidence, death and admission rates. This overestimation appears to have been caused by reduced infectivity of new variants, less movement of people and a higher persistence of immunity following natural infection and vaccination.Interpretationdespite an expressive (generative) model, with time-dependent epidemiological and sociobehavioral parameters, the model overestimated morbidity and mortality. Effectively, the model failed to accommodate the “law of declining virulence” over a timescale of years. This speaks to a fundamental issue in long-term forecasting: how to model decreases in virulence over a timescale of years? A potential answer may be available in a year when the predictions for 2024—under a model with slowly accumulating T-cell like immunity—can be assessed against actual outcomes.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This publication was archived on 12 October 2023. Please see the Viral Respiratory Diseases (Including Influenza and COVID-19) in Scotland publication for the latest data. This dataset provides information on number of new daily confirmed cases, negative cases, deaths, testing by NHS Labs (Pillar 1) and UK Government (Pillar 2), new hospital admissions, new ICU admissions, hospital and ICU bed occupancy from novel coronavirus (COVID-19) in Scotland, including cumulative totals and population rates at Scotland, NHS Board and Council Area levels (where possible). Seven day positive cases and population rates are also presented by Neighbourhood Area (Intermediate Zone 2011). Information on how PHS publish small are COVID figures is available on the PHS website. Information on demographic characteristics (age, sex, deprivation) of confirmed novel coronavirus (COVID-19) cases, as well as trend data regarding the wider impact of the virus on the healthcare system is provided in this publication. Data includes information on primary care out of hours consultations, respiratory calls made to NHS24, contact with COVID-19 Hubs and Assessment Centres, incidents received by Scottish Ambulance Services (SAS), as well as COVID-19 related hospital admissions and admissions to ICU (Intensive Care Unit). Further data on the wider impact of the COVID-19 response, focusing on hospital admissions, unscheduled care and volume of calls to NHS24, is available on the COVID-19 Wider Impact Dashboard. Novel coronavirus (COVID-19) is a new strain of coronavirus first identified in Wuhan, China. Clinical presentation may range from mild-to-moderate illness to pneumonia or severe acute respiratory infection. COVID-19 was declared a pandemic by the World Health Organisation on 12 March 2020. We now have spread of COVID-19 within communities in the UK. Public Health Scotland no longer reports the number of COVID-19 deaths within 28 days of a first positive test from 2nd June 2022. Please refer to NRS death certificate data as the single source for COVID-19 deaths data in Scotland. In the process of updating the hospital admissions reporting to include reinfections, we have had to review existing methodology. In order to provide the best possible linkage of COVID-19 cases to hospital admissions, each admission record is required to have a discharge date, to allow us to better match the most appropriate COVID positive episode details to an admission. This means that in cases where the discharge date is missing (either due to the patient still being treated, delays in discharge information being submitted or data quality issues), it has to be estimated. Estimating a discharge date for historic records means that the average stay for those with missing dates is reduced, and fewer stays overlap with records of positive tests. The result of these changes has meant that approximately 1,200 historic COVID admissions have been removed due to improvements in methodology to handle missing discharge dates, while approximately 820 have been added to the cumulative total with the inclusion of reinfections. COVID-19 hospital admissions are now identified as the following: A patient's first positive PCR or LFD test of the episode of infection (including reinfections at 90 days or more) for COVID-19 up to 14 days prior to admission to hospital, on the day of their admission or during their stay in hospital. If a patient's first positive PCR or LFD test of the episode of infection is after their date of discharge from hospital, they are not included in the analysis. Information on COVID-19, including stay at home advice for people who are self-isolating and their households, can be found on NHS Inform. Data visualisation of Scottish COVID-19 cases is available on the Public Health Scotland - Covid 19 Scotland dashboard. Further information on coronavirus in Scotland is available on the Scottish Government - Coronavirus in Scotland page, where further breakdown of past coronavirus data has also been published.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
To record the information required to evaluate the potential risk of Covid-19 infection, as part of professional screening or self-assessment.
This is based on - The current NHS-111 UK self-assessment app at https://111.nhs.uk/covid-19 - A similar risk assessment app developed for pre-hospital admission by DIPS.no - Public Health England COVID-19: investigation and initial clinical management of possible cases https://www.gov.uk/government/publications/wuhan-novel-coronavirus-initial-investigation-of-possible-cases
The exact risk factors are subject to continual update as the disease progresses.
Note that a critical part of the information, exposure locations, has been left open, so as to allow the list to be updated very regularly and in alignment with local or national policy.
We have decided to leave in 'older' questions such as 'Exposure to birds in China' until such time that we get clear professional guidance that these are no longer necessary or useful.
Facebook
TwitterAs of October 6, 2022, 11,641 confirmed COVID-19 patients were in hospital in the United Kingdom. The number of COVID patients in hospitals first peaked at over 21.6 thousand on April 12, 2020 and dropped as low as 772 on September 11, 2020. However, the number of patients reached a new peak in the winter of 2020/21 with over 39.2 thousand patients in hospital on January 18, 2021.
The total number of cases in the UK can be found here. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.