Facebook
Twitterhttps://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
This dataset compiles daily snapshots of publicly reported data on 2019 Novel Coronavirus (COVID-19) testing in Ontario.
Data includes:
**Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool **
Data for the period of October 24, 2023 to March 24, 2024 excludes hospitals in the West region who were experiencing data availability issues.
Daily adult, pediatric, and neonatal patient ICU census data were impacted by technical issues between September 9 and October 20, 2023. As a result, when public reporting resumes on November 16, 2023, historical ICU data for this time period will be excluded.
As of August 3, 2023, the data in this file has been updated to reflect that there are now six Ontario Health (OH) regions.
This dataset is subject to change. Please review the daily epidemiologic summaries for information on variables, methodology, and technical considerations.
Facebook
TwitterNotice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Facebook
TwitterNote: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases, hospitalizations, and associated deaths that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Hospitalization data were collected by the Connecticut Hospital Association and reflect the number of patients currently hospitalized with laboratory-confirmed COVID-19. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics Data are reported d
Facebook
TwitterAs of September 26, the hospitalization rate in the United States due to COVID-19 was highest for those aged 85 years and older. This statistic shows the cumulative rate of laboratory-confirmed COVID-19-associated hospitalizations in the U.S. as of September 26, 2020, by age group.
Facebook
TwitterThis data was collected and created for a project in a data science course I took in college in the Spring of 2020. I have updated the data to include more dates into the summer and decided to share it and the code so others can explore it.
Available here: https://hifld-geoplatform.opendata.arcgis.com/datasets/hospitals
Information on hospitals in the United States.
Available here: https://github.com/nytimes/covid-19-data
Daily covid cases and death data for us counties.
Available here: https://www2.census.gov/programs-surveys/popest/datasets/2010-2019/counties/totals/
Data sheet available here: https://www2.census.gov/programs-surveys/popest/technical-documentation/file-layouts/2010-2019/co-est2019-alldata.pdf
2019 county level census estimates.
Available here: https://covidtracking.com/api/v1/states/daily.csv
Daily state level covid testing data.
Uploaded with Git LFS
Intereim data views created by me to hold cleaned data and used to create the final datset.
Final combined dataset, a days X 3142(num of us counties+dc) long time series with variables stored as a proportion of population.
Uploaded with Git LFS
The python scripts have comments to explain which datasets they're responsible for generating.
Feel free to use and edit them to tailor the datasets generated to your liking.
There is also a helper function library in the main directory.
Scripts can be ran by calling >python
Facebook
TwitterIn the United States between February 12 and March 16, 2020, the percentage of COVID-19 patients hospitalized with the disease increased with age. Findings estimated that up to 70 percent of adults aged 85 years and older were hospitalized.
Who is at higher risk from COVID-19? The same study also found that coronavirus patients aged 85 and older were at the highest risk of death. There are other risk factors besides age that can lead to serious illness. People with pre-existing medical conditions, such as diabetes, heart disease, and lung disease, can develop more severe symptoms. In the U.S. between January and May 2020, case fatality rates among confirmed COVID-19 patients were higher for those with underlying health conditions.
How long should you self-isolate? As of August 24, 2020, more than 16 million people worldwide had recovered from COVID-19 disease, which includes patients in health care settings and those isolating at home. The criteria for discharging patients from isolation varies by country, but asymptomatic carriers of the virus can generally be released ten days after their positive case was confirmed. For patients showing signs of the illness, they must isolate for at least ten days after symptom onset and also remain in isolation for a short period after the symptoms have disappeared.
Facebook
TwitterBy Valtteri Kurkela [source]
The dataset is constantly updated and synced hourly to ensure up-to-date information. With over several columns available for analysis and exploration purposes, users can extract valuable insights from this extensive dataset.
Some of the key metrics covered in the dataset include:
Vaccinations: The dataset covers total vaccinations administered worldwide as well as breakdowns of people vaccinated per hundred people and fully vaccinated individuals per hundred people.
Testing & Positivity: Information on total tests conducted along with new tests conducted per thousand people is provided. Additionally, details on positive rate (percentage of positive Covid-19 tests out of all conducted) are included.
Hospital & ICU: Data on ICU patients and hospital patients are available along with corresponding figures normalized per million people. Weekly admissions to intensive care units and hospitals are also provided.
Confirmed Cases: The number of confirmed Covid-19 cases globally is captured in both absolute numbers as well as normalized values representing cases per million people.
5.Confirmed Deaths: Total confirmed deaths due to Covid-19 worldwide are provided with figures adjusted for population size (total deaths per million).
6.Reproduction Rate: The estimated reproduction rate (R) indicates the contagiousness of the virus within a particular country or region.
7.Policy Responses: Besides healthcare-related metrics, this comprehensive dataset includes policy responses implemented by countries or regions such as lockdown measures or travel restrictions.
8.Other Variables of InterestThe data encompasses various socioeconomic factors that may influence Covid-19 outcomes including population density,membership in a continent,gross domestic product(GDP)per capita;
For demographic factors: -Age Structure : percentage populations aged 65 and older,aged (70)older,median age -Gender-specific factors: Percentage of female smokers -Lifestyle-related factors: Diabetes prevalence rate and extreme poverty rate
- Excess Mortality: The dataset further provides insights into excess mortality rates, indicating the percentage increase in deaths above the expected number based on historical data.
The dataset consists of numerous columns providing specific information for analysis, such as ISO code for countries/regions, location names,and units of measurement for different parameters.
Overall,this dataset serves as a valuable resource for researchers, analysts, and policymakers seeking to explore various aspects related to Covid-19
Introduction:
Understanding the Basic Structure:
- The dataset consists of various columns containing different data related to vaccinations, testing, hospitalization, cases, deaths, policy responses, and other key variables.
- Each row represents data for a specific country or region at a certain point in time.
Selecting Desired Columns:
- Identify the specific columns that are relevant to your analysis or research needs.
- Some important columns include population, total cases, total deaths, new cases per million people, and vaccination-related metrics.
Filtering Data:
- Use filters based on specific conditions such as date ranges or continents to focus on relevant subsets of data.
- This can help you analyze trends over time or compare data between different regions.
Analyzing Vaccination Metrics:
- Explore variables like total_vaccinations, people_vaccinated, and people_fully_vaccinated to assess vaccination coverage in different countries.
- Calculate metrics such as people_vaccinated_per_hundred or total_boosters_per_hundred for standardized comparisons across populations.
Investigating Testing Information:
- Examine columns such as total_tests, new_tests, and tests_per_case to understand testing efforts in various countries.
- Calculate rates like tests_per_case to assess testing efficiency or identify changes in testing strategies over time.
Exploring Hospitalization and ICU Data:
- Analyze variables like hosp_patients, icu_patients, and hospital_beds_per_thousand to understand healthcare systems' strain.
- Calculate rates like icu_patients_per_million or hosp_patients_per_million for cross-country comparisons.
Assessing Covid-19 Cases and Deaths:
- Analyze variables like total_cases, new_ca...
Facebook
TwitterOn January 12, 2021, over 4.5 thousand individuals in the UK were admitted to hospital with coronavirus (COVID-19), the highest single amount since the start of the pandemic. The daily hospital cases started to rise significantly at the end of 2020 and into January 2021, however since then the number of hospitalizations fell dramatically as the UK managed to vaccinate millions against COVID-19. Overall, since the pandemic started around 994 thousand people in the UK have been hospitalized with the virus.
The total number of cases in the UK can be found here. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterNOTE: This dataset has been retired and marked as historical-only.
Only Chicago residents are included based on the home ZIP Code, as provided by the medical provider, or the address, as provided by the Cook County Medical Examiner.
Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted on the date the test specimen was collected. Deaths are those occurring among cases based on the day of death. Hospitalizations are based on the date of first hospitalization. Only one hospitalization is counted for each case. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation.
Because of the nature of data reporting to CDPH, hospitalizations will be blank for recent dates They will fill in on later updates when the data are received, although, as for cases and deaths, may continue to be updated as further data are received.
All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH.
Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases, deaths, and hospitalizations, sources used, how cases, deaths and hospitalizations are associated to a specific date, and similar factors.
Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.Using these data, the COVID-19 community level was classified as low, medium, or high.COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.Archived Data Notes:This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflect
Facebook
TwitterAs of October 6, 2022, 11,641 confirmed COVID-19 patients were in hospital in the United Kingdom. The number of COVID patients in hospitals first peaked at over 21.6 thousand on April 12, 2020 and dropped as low as 772 on September 11, 2020. However, the number of patients reached a new peak in the winter of 2020/21 with over 39.2 thousand patients in hospital on January 18, 2021.
The total number of cases in the UK can be found here. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterNOTE: This dataset is historical-only as of 5/10/2023. All data currently in the dataset will remain, but new data will not be added. The recommended alternative dataset for similar data beyond that date is https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u. (This is not a City of Chicago site. Please direct any questions or comments through the contact information on the site.)
During the COVID-19 pandemic, the Chicago Department of Public Health (CDPH) required EMS Region XI (Chicago area) hospitals to report hospital capacity and patient impact metrics related to COVID-19 to CDPH through the statewide EMResource system. This requirement has been lifted as of May 9, 2023, in alignment with the expiration of the national and statewide COVID-19 public health emergency declarations on May 11, 2023. However, all hospitals will still be required by the U.S. Department of Health and Human Services (HHS) to report COVID-19 hospital capacity and utilization metrics into the HHS Protect system through the CDC’s National Healthcare Safety Network until April 30, 2024. Facility-level data from the HHS Protect system can be found at healthdata.gov.
Until May 9, 2023, all Chicago (EMS Region XI) hospitals (n=28) were required to report bed and ventilator capacity, availability, and occupancy to the Chicago Department of Public Health (CDPH) daily. A list of reporting hospitals is included below. All data represent hospital status as of 11:59 pm for that calendar day. Counts include Chicago residents and non-residents.
ICU bed counts include both adult and pediatric ICU beds. Neonatal ICU beds are not included. Capacity refers to all staffed adult and pediatric ICU beds. Availability refers to all available/vacant adult and pediatric ICU beds. Hospitals began reporting COVID-19 confirmed and suspected (PUI) cases in ICU on 03/19/2020. Hospitals began reporting ICU surge capacity as part of total capacity on 5/18/2020.
Acute non-ICU bed counts include burn unit, emergency department, medical/surgery (ward), other, pediatrics (pediatric ward) and psychiatry beds. Burn beds include those approved by the American Burn Association or self-designated. Capacity refers to all staffed acute non-ICU beds. An additional 500 acute/non-ICU beds were added at the McCormick Place Treatment Facility on 4/15/2020. These beds are not included in the total capacity count. The McCormick Place Treatment Facility closed on 05/08/2020. Availability refers to all available/vacant acute non-ICU beds. Hospitals began reporting COVID-19 confirmed and suspected (PUI) cases in acute non-ICU beds on 04/03/2020.
Ventilator counts prior to 04/24/2020 include all full-functioning mechanical ventilators, with ventilators with bilevel positive airway pressure (BiPAP), anesthesia machines, and portable/transport ventilators counted as surge. Beginning 04/24/2020, ventilator counts include all full-functioning mechanical ventilators, BiPAP, anesthesia machines and portable/transport ventilators. Ventilators are counted regardless of ability to staff. Hospitals began reporting COVID-19 confirmed and suspected (PUI) cases on ventilators on 03/19/2020. CDPH has access to additional ventilators from the EAMC (Emergency Asset Management Center) cache. These ventilators are included in the total capacity count.
Chicago (EMS Region 11) hospitals: Advocate Illinois Masonic Medical Center, Advocate Trinity Hospital, AMITA Resurrection Medical Center Chicago, AMITA Saint Joseph Hospital Chicago, AMITA Saints Mary & Elizabeth Medical Center, Ann & Robert H Lurie Children's Hospital, Comer Children's Hospital, Community First Medical Center, Holy Cross Hospital, Jackson Park Hospital & Medical Center, John H. Stroger Jr. Hospital of Cook County, Loretto Hospital, Mercy Hospital and Medical Center, , Mount Sinai Hospital, Northwestern Memorial Hospital, Norwegian American Hospital, Roseland Community Hospital, Rush University M
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by Jaswanth Badvelu
Released under CC0: Public Domain
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected with COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people, and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness. During the entire course of the pandemic, one of the main problems that healthcare providers have faced is the shortage of medical resources and a proper plan to efficiently distribute them. In these tough times, being able to predict what kind of resource an individual might require at the time of being tested positive or even before that will be of immense help to the authorities as they would be able to procure and arrange for the resources necessary to save the life of that patient.
The main goal of this project is to build a machine learning model that, given a Covid-19 patient's current symptom, status, and medical history, will predict whether the patient is in high risk or not.
The dataset was provided by the Mexican government (link). This dataset contains an enormous number of anonymized patient-related information including pre-conditions. The raw dataset consists of 21 unique features and 1,048,576 unique patients. In the Boolean features, 1 means "yes" and 2 means "no". values as 97 and 99 are missing data.
Facebook
TwitterNOTE: This dataset has been retired and marked as historical-only.
This dataset is a companion to the COVID-19 Daily Cases and Deaths dataset (https://data.cityofchicago.org/d/naz8-j4nc). The major difference in this dataset is that the case, death, and hospitalization corresponding rates per 100,000 population are not those for the single date indicated. They are rolling averages for the seven-day period ending on that date. This rolling average is used to account for fluctuations that may occur in the data, such as fewer cases being reported on weekends, and small numbers. The intent is to give a more representative view of the ongoing COVID-19 experience, less affected by what is essentially noise in the data.
All rates are per 100,000 population in the indicated group, or Chicago, as a whole, for “Total” columns.
Only Chicago residents are included based on the home address as provided by the medical provider.
Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the date the test specimen was collected. Deaths among cases are aggregated by day of death. Hospitalizations are reported by date of first hospital admission. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation.
Denominators are from the U.S. Census Bureau American Community Survey 1-year estimate for 2018 and can be seen in the Citywide, 2018 row of the Chicago Population Counts dataset (https://data.cityofchicago.org/d/85cm-7uqa).
All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects cases and deaths currently known to CDPH.
Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases and deaths, sources used, how cases and deaths are associated to a specific date, and similar factors.
Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, U.S. Census Bureau American Community Survey
Facebook
TwitterAs of March 10, 2023, the state with the highest number of COVID-19 cases was California. Almost 104 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time. When the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide has now reached over 669 million.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. People aged 85 years and older have accounted for around 27 percent of all COVID-19 deaths in the United States, although this age group makes up just two percent of the U.S. population
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.
Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
References
Facebook
TwitterPlease see FAQ for latest information on COVID-19 Data Hub Data Flows: https://covid-19.geohive.ie/pages/helpfaqs. Notice: Please note that data for the 30th of May 2023 is missing from this dataset.If you are downloading this data set as a CSV please follow these steps to sort the dataset by date.1. Click the 'Download' button.2. In the download pane that opens on the left, click the 'Download' button under CSV. This should be the first option.3. Open the file.4. Highlight column D by click 'D'.5. In the ribbon, in the Editing group click 'Sort & Filter'.6. From the drop down menu that appears select the first option to sort from oldest to newest.7. In the pop-up window that appears make sure that 'Expand the selection' is selected.8. Click 'Sort', the dataset will now be sorted by date. See the section What impact has the cyber-attack of May 2021 on the HSE IT systems had on reporting of COVID-19 data on the Data Hub? in the FAQ for information about issues in data from May 2021. Between 14th May 2021 and 29th July 2021 only the fields 'Number of confirmed COVID-19 cases Admitted on site' (SUM_number_of_confirmed_covid_19_ca) and 'Number of new COVID-19 cases confirmed in the past 24 hrs' (SUM_number_of_new_covid_19_cases_co) in this service were updated.The fields 'Number of New Admissions COVID-19 Positive previous 24hrs' (SUM_no_new_admissions_covid19_p) and 'Number of Discharges COVID-19 Positive previous 24hrs' (SUM_no_discharges_covid19_posit) have no data during this period of time. Detailed dataset containing a range of COVID-19 related indicators for Acute Hospitals in Ireland. Data is provided for Confirmed COVID-19 cases and the number of new admissions and discharges. Data is based on an aggregate of 29 Acute Hospitals. Data has been provided by the HSE Performance Management Improvement Unit (PMIU).This service is used in Ireland's COVID-19 Data Hub, produced as a collaboration between Tailte Éireann, the Central Statistics Office (CSO), the Department of Housing, Planning and Local Government, the Department of Health, the Health Protection Surveillance Centre (HPSC), and the All-Island Research Observatory (AIRO). This service and Ireland's COVID-19 Data Hub are built using the GeoHive platform, Ireland's Geospatial Data Hub. .hidden { display: none }
Facebook
Twitterhttps://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
This dataset compiles daily snapshots of publicly reported data on 2019 Novel Coronavirus (COVID-19) testing in Ontario.
Effective April 13, 2023, this dataset will be discontinued. The public can continue to access the data within this dataset in the following locations updated weekly on the Ontario Data Catalogue:
For information on Long-Term Care Home COVID-19 Data, please visit: Long-Term Care Home COVID-19 Data.
Data includes:
This dataset is subject to change. Please review the daily epidemiologic summaries for information on variables, methodology, and technical considerations.
**Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool **
The methodology used to count COVID-19 deaths has changed to exclude deaths not caused by COVID. This impacts data captured in the columns “Deaths”, “Deaths_Data_Cleaning” and “newly_reported_deaths” starting with data for March 11, 2022. A new column has been added to the file “Deaths_New_Methodology” which represents the methodological change.
The method used to count COVID-19 deaths has changed, effective December 1, 2022. Prior to December 1, 2022, deaths were counted based on the date the death was updated in the public health unit’s system. Going forward, deaths are counted on the date they occurred.
On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. A small number of COVID deaths (less than 20) do not have recorded death date and will be excluded from this file.
CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags.
Facebook
TwitterThe COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.
Facebook
Twitterhttps://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
This dataset compiles daily snapshots of publicly reported data on 2019 Novel Coronavirus (COVID-19) testing in Ontario.
Data includes:
**Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool **
Data for the period of October 24, 2023 to March 24, 2024 excludes hospitals in the West region who were experiencing data availability issues.
Daily adult, pediatric, and neonatal patient ICU census data were impacted by technical issues between September 9 and October 20, 2023. As a result, when public reporting resumes on November 16, 2023, historical ICU data for this time period will be excluded.
As of August 3, 2023, the data in this file has been updated to reflect that there are now six Ontario Health (OH) regions.
This dataset is subject to change. Please review the daily epidemiologic summaries for information on variables, methodology, and technical considerations.