As of September 26, the hospitalization rate in the United States due to COVID-19 was highest for those aged 85 years and older. This statistic shows the cumulative rate of laboratory-confirmed COVID-19-associated hospitalizations in the U.S. as of September 26, 2020, by age group.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Notes: June 1, 2023: Due to incomplete or missing hospital data received for the May 21, 2023, through May 27, 2023, reporting period, the COVID-19 Hospital Admissions Level could not be calculated for the Commonwealth of the Northern Mariana Islands (CNMI) and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on June 1, 2023.
June 8, 2023: Due to incomplete or missing hospital data received for the May 28, 2023, through June 3, 2023, reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and American Samoa (AS) and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on June 8, 2023.
June 15, 2023: Due to incomplete or missing hospital data received for the June 4, 2023, through June 10, 2023, reporting period,
This dataset is not being updated as hospitals are no longer mandated to report COVID Hospitalizations to CDPH.
Data is from the California COVID-19 State Dashboard at https://covid19.ca.gov/state-dashboard/
Note: Hospitalization counts include all patients diagnosed with COVID-19 during their stay. This does not necessarily mean they were hospitalized because of COVID-19 complications or that they experienced COVID-19 symptoms.
Note: Cumulative totals are not available due to the fact that hospitals report the total number of patients each day (as opposed to new patients).
As of June 10, 2023, the cumulative hospitalization rate in the United States due to COVID-19 was lowest for Non-Hispanic Asian or Pacific Islanders and highest among Non-Hispanic American Indian or Alaska Natives. This statistic shows the cumulative rate of laboratory-confirmed COVID-19-associated hospitalizations in the U.S. as of June 10, 2023, by race and ethnicity.
After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations. The following dataset provides state-aggregated data for hospital utilization in a timeseries format dating back to January 1, 2020. These are derived from reports with facility-level granularity across three main sources: (1) HHS TeleTracking, (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities and (3) National Healthcare Safety Network (before July 15). The file will be updated regularly and provides the latest values reported by each facility within the last four days for all time. This allows for a more comprehensive picture of the hospital utilization within a state by ensuring a hospital is represented, even if they miss a single day of reporting. No statistical analysis is applied to account for non-response and/or to account for missing data. The below table displays one value for each field (i.e., column). Sometimes, reports for a given facility will be provided to more than one reporting source: HHS TeleTracking, NHSN, and HHS Protect. When this occurs, to ensure that there are not duplicate reports, prioritization is applied to the numbers for each facility. On April 27, 2022 the following pediatric fields were added: all_pediatric_inpatient_bed_occupied all_pediatric_inpatient_bed_occupied_coverage all_pediatric_inpatient_beds all_pediatric_inpatient_beds_coverage previous_day_admission_pediatric_covid_confirmed_0_4 previous_day_admission_pediatric_covid_confirmed_0_4_coverage previous_day_admission_pediatric_covid_confirmed_12_17 previous_day_admission_pediatric_covid_confirmed_12_17_coverage previous_day_admission_pediatric_covid_confirmed_5_11 previous_day_admission_pediatric_covid_confirmed_5_11_coverage previous_day_admission_pediatric_covid_confirmed_unknown previous_day_admission_pediatric_covid_confirmed_unknown_coverage staffed_icu_pediatric_patients_confirmed_covid staffed_icu_pediatric_patients_confirmed_covid_coverage staffed_pediatric_icu_bed_occupancy staffed_pediatric_icu_bed_occupancy_coverage total_staffed_pediatric_icu_beds total_staffed_pediatric_icu_beds_coverage On January 19, 2022, the following fields have been added to this dataset: inpatient_beds_used_covid inpatient_beds_used_covid_coverage On September 17, 2021, this data set has had the following fields added: icu_patients_confirmed_influenza, icu_patients_confirmed_influenza_coverage, previous_day_admission_influenza_confirmed, previous_day_admission_influenza_confirmed_coverage, previous_day_deaths_covid_and_influenza, previous_day_deaths_covid_and_influenza_coverage, previous_day_deaths_influenza, previous_day_deaths_influenza_coverage, total_patients_hospitalized_confirmed_influenza, total_patients_hospitalized_confirmed_influenza_and_covid, total_patients_hospitalized_confirmed_influenza_and_covid_coverage, total_patients_hospitalized_confirmed_influenza_coverage On September 13, 2021, this data set has had the following fields added: on_hand_supply_therapeutic_a_casirivimab_imdevimab_courses, on_hand_supply_therapeutic_b_bamlanivimab_courses, on_hand_supply_therapeutic_c_bamlanivimab_etesevimab_courses, previous_week_therapeutic_a_casirivimab_imdevimab_courses_used, previous_week_therapeutic_b_bamlanivimab_courses_used, previous_week_therapeutic_c_bamlanivima
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases, hospitalizations, and associated deaths that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Hospitalization data were collected by the Connecticut Hospital Association and reflect the number of patients currently hospitalized with laboratory-confirmed COVID-19. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics Data are reported d
As of 9/12/2024, we have resumed reporting on COVID-19 hospitalization data using a San Francisco specific dataset. These new data differ slightly from previous hospitalization data sources but the overall patterns and trends in hospitalizations remain consistent. You can access the previous data here.
A. SUMMARY This dataset includes information on COVID+ hospital admissions for San Francisco residents into San Francisco hospitals. Specifically, the dataset includes the count and rate of COVID+ hospital admissions per 100,000. The data are reported by week.
B. HOW THE DATASET IS CREATED Hospital admission data is reported to the San Francisco Department of Public Health (SFDPH) via the COVID Hospital Data Repository (CHDR), a system created via health officer order C19-16. The data includes all San Francisco hospitals except for the San Francisco VA Medical Center.
San Francisco population estimates are pulled from a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2018-2022 5-year American Community Survey (ACS).
C. UPDATE PROCESS Data updates weekly on Wednesday with data for the past Wednesday-Tuesday (one week lag). Data may change as more current information becomes available.
D. HOW TO USE THIS DATASET New admissions are the count of COVID+ hospital admissions among San Francisco residents to San Francisco hospitals by week.
The admission rate per 100,000 is calculated by multiplying the count of admissions each week by 100,000 and dividing by the population estimate.
E. CHANGE LOG
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
These data files contain information about hospitalisation and Intensive Care Unit (ICU) admission rates and current occupancy for COVID-19 by date and country. The data are updated weekly.
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States as of the initial date of reporting for each weekly metric. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Notes: June 15, 2023: Due to incomplete or missing hospital data received for the June 4, 2023, through June 10, 2023, reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and AS and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on June 15, 2023.
July 10, 2023: Due to incomplete or missing hospital data received for the June 25, 2023, through July 1, 2023, reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and AS and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on July 10, 2023.
July 17, 2023: Due to incomplete or missing hospital data received for the July 2, 2023, through July 8, 2023, reporting
In the United States between February 12 and March 16, 2020, the percentage of COVID-19 patients hospitalized with the disease increased with age. Findings estimated that up to 70 percent of adults aged 85 years and older were hospitalized.
Who is at higher risk from COVID-19? The same study also found that coronavirus patients aged 85 and older were at the highest risk of death. There are other risk factors besides age that can lead to serious illness. People with pre-existing medical conditions, such as diabetes, heart disease, and lung disease, can develop more severe symptoms. In the U.S. between January and May 2020, case fatality rates among confirmed COVID-19 patients were higher for those with underlying health conditions.
How long should you self-isolate? As of August 24, 2020, more than 16 million people worldwide had recovered from COVID-19 disease, which includes patients in health care settings and those isolating at home. The criteria for discharging patients from isolation varies by country, but asymptomatic carriers of the virus can generally be released ten days after their positive case was confirmed. For patients showing signs of the illness, they must isolate for at least ten days after symptom onset and also remain in isolation for a short period after the symptoms have disappeared.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: This dataset has been limited to show metrics for Ramsey County, Minnesota.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information: As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS). While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks. Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations. Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files. Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf
Calculation of county-level hospital metrics: County-level hospital data are derived using calculations performed at the Health Service Area (HSA) level. An HSA is defined by CDC’s National Center for Health Statistics as a geographic area containing at least one county which is self-contained with respect to the population’s provision of routine hospital care. Every county in the United States is assigned to an HSA, and each HSA must contain at least one hospital. Therefore, use of HSAs in the calculation of local hospital metrics allows for more accurate characterization of the relationship between health care utilization and health status at the local level. Data presented at the county-level represent admissions, hospital inpatient and ICU bed capacity and occupancy among hospitals within the selected HSA. Therefore, admissions, capacity, and occupancy are not limited to residents of the selected HSA. For all county-level hospital metrics listed below the values are calculated first for the entire HSA, and then the HSA-level value is then applied to each county within the HSA. For all county-level hospital metrics listed below the values are calculated first for the entire HSA, and then the HSA-level value is then applied to each county within the HSA.
Metric details: Time period: data for the previous MMWR week (Sunday-Saturday) will update weekly on Thursdays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections. New hospital admissions (count): Total number of admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction New Hospital Admissions Rate Value (Admissions per 100k): Total number of new admissions of patients with laboratory-confirmed COVID-19 in the past week (including both adult and pediatric admissions) for the entire jurisdiction divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000. (Note: This metric is used to determine each county’s COVID-19 Hospital Admissions Level for a given week). New COVID-19 Hospital Admissions Rate Level: qualitative value of new COVID-19 hospital admissions rate level [Low, Medium, High, Insufficient Data] New hospital admissions percent change from prior week: Percent change in the current weekly total new admissions of patients with laboratory-confirmed COVID-19 per 100,000 population compared with the prior week. New hospital admissions percent change from prior week level: Qualitative value of percent change in hospital admissions rate from prior week [Substantial decrease, Moderate decrease, Stable, Moderate increase, Substantial increase, Insufficient data] COVID-19 Inpatient Bed Occupancy Value: Percentage of all staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 (including both adult and pediatric patients) within the in the entire jurisdiction is calculated as an average of valid daily values within the past week (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (patients hospitalized with confirmed COVID-19) and denominators (staffed inpatient beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction. COVID-19 Inpatient Bed Occupancy Level: Qualitative value of inpatient beds occupied by COVID-19 patients level [Minimal, Low, Moderate, Substantial, High, Insufficient data] COVID-19 Inpatient Bed Occupancy percent change from prior week: The absolute change in the percent of staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed inpatient beds in the past week, compared with the prior week, in the entire jurisdiction. COVID-19 ICU Bed Occupancy Value: Percentage of all staffed inpatient beds occupied by adult patients with confirmed COVID-19 within the entire jurisdiction is calculated as an average of valid daily values within the past week (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (adult patients hospitalized with confirmed COVID-19) and denominators (staffed adult ICU beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction. COVID-19 ICU Bed Occupancy Level: Qualitative value of ICU beds occupied by COVID-19 patients level [Minimal, Low, Moderate, Substantial, High, Insufficient data] COVID-19 ICU Bed Occupancy percent change from prior week: The absolute change in the percent of staffed ICU beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed adult ICU beds for the past week, compared with the prior week, in the in the entire jurisdiction. For all metrics, if there are no data in the specified locality for a given week, the metric value is displayed as “insufficient data”.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Case-fatality rates and characteristics of countrywide population vulnerability to COVID-19.
NOTE: This dataset has been retired and marked as historical-only. This dataset is a companion to the COVID-19 Daily Cases and Deaths dataset (https://data.cityofchicago.org/d/naz8-j4nc). The major difference in this dataset is that the case, death, and hospitalization corresponding rates per 100,000 population are not those for the single date indicated. They are rolling averages for the seven-day period ending on that date. This rolling average is used to account for fluctuations that may occur in the data, such as fewer cases being reported on weekends, and small numbers. The intent is to give a more representative view of the ongoing COVID-19 experience, less affected by what is essentially noise in the data. All rates are per 100,000 population in the indicated group, or Chicago, as a whole, for “Total” columns. Only Chicago residents are included based on the home address as provided by the medical provider. Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the date the test specimen was collected. Deaths among cases are aggregated by day of death. Hospitalizations are reported by date of first hospital admission. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation. Denominators are from the U.S. Census Bureau American Community Survey 1-year estimate for 2018 and can be seen in the Citywide, 2018 row of the Chicago Population Counts dataset (https://data.cityofchicago.org/d/85cm-7uqa). All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects cases and deaths currently known to CDPH. Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases and deaths, sources used, how cases and deaths are associated to a specific date, and similar factors. Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, U.S. Census Bureau American Community Survey
https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/
OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 2.0
Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases & more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS) & death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID OMOP dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.
PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.
EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date. This is a subset of data in OMOP format.
Scope: All COVID swab confirmed hospitalised patients to UHB from January – August 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes.
Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data. Further OMOP data available as an additional service.
Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.
Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
References
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Mari Kanerva
Released under Apache 2.0
On January 12, 2021, over 4.5 thousand individuals in the UK were admitted to hospital with coronavirus (COVID-19), the highest single amount since the start of the pandemic. The daily hospital cases started to rise significantly at the end of 2020 and into January 2021, however since then the number of hospitalizations fell dramatically as the UK managed to vaccinate millions against COVID-19. Overall, since the pandemic started around 994 thousand people in the UK have been hospitalized with the virus.
The total number of cases in the UK can be found here. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To describe the demographic/clinical characteristics, treatment patterns, and mortality among patients hospitalized with COVID-19 during Omicron predominance by immunocompromised and high-risk status. Retrospective observational study of patients hospitalized with COVID-19 between January 1, 2022 and November 30, 2022, using data from the Optum de-identified Clinformatics Data Mart Database. Patient demographic/clinical characteristics, treatments, mortality and costs, were assessed, during the emergence of BA.1 BA.4, BA.5, BA.2.12.1, BA.2.75, BQ.1, XBB Omicron viral subvariants. Overall, 43,123 patients were included, with a mean (standard deviation [SD]) age of 75.5 (12.4) years, 51.8% were female. Immunocompromised patients accounted for 36% of hospitalized patients while only 5.8% received any outpatient COVID-19 treatment within 30 days of hospital admission. The mean (SD) hospital length of stay was 7.9 (7.5) days with 15.5% mortality within 30 days of admission. Mean (SD) hospital costs were $33,975 ($26,392), and 30-day all-cause readmission was 15.1%. Patients with immunocompromised status and those with a higher number of high-risk conditions proceeded to have an elevated proportion of hospital readmissions and mortality within 30 days. Moreover, a higher proportion of mortality was observed during the BA.1 period (20.1%) relative to other variant periods (11.0%). COVID-19 imposed a large healthcare burden, particularly among immunocompromised patients and those with underlying high-risk conditions during Omicron period. Low utilization of outpatient COVID-19 treatments was observed in these high-risk populations eligible for treatment. Continued surveillance and research regarding COVID-19 variants and the impact of outpatient treatment options on high-risk patients is crucial to inform and guide public health action.
The COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.
As of September 26, the hospitalization rate in the United States due to COVID-19 was highest for those aged 85 years and older. This statistic shows the cumulative rate of laboratory-confirmed COVID-19-associated hospitalizations in the U.S. as of September 26, 2020, by age group.