100+ datasets found
  1. COVID-19 Daily Rolling Average Case, Death, and Hospitalization Rates -...

    • healthdata.gov
    • data.cityofchicago.org
    • +1more
    csv, xlsx, xml
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). COVID-19 Daily Rolling Average Case, Death, and Hospitalization Rates - Historical [Dataset]. https://healthdata.gov/dataset/COVID-19-Daily-Rolling-Average-Case-Death-and-Hosp/sd6k-dtx6
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    data.cityofchicago.org
    Description

    NOTE: This dataset has been retired and marked as historical-only.

    This dataset is a companion to the COVID-19 Daily Cases and Deaths dataset (https://data.cityofchicago.org/d/naz8-j4nc). The major difference in this dataset is that the case, death, and hospitalization corresponding rates per 100,000 population are not those for the single date indicated. They are rolling averages for the seven-day period ending on that date. This rolling average is used to account for fluctuations that may occur in the data, such as fewer cases being reported on weekends, and small numbers. The intent is to give a more representative view of the ongoing COVID-19 experience, less affected by what is essentially noise in the data.

    All rates are per 100,000 population in the indicated group, or Chicago, as a whole, for “Total” columns.

    Only Chicago residents are included based on the home address as provided by the medical provider.

    Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the date the test specimen was collected. Deaths among cases are aggregated by day of death. Hospitalizations are reported by date of first hospital admission. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation.

    Denominators are from the U.S. Census Bureau American Community Survey 1-year estimate for 2018 and can be seen in the Citywide, 2018 row of the Chicago Population Counts dataset (https://data.cityofchicago.org/d/85cm-7uqa).

    All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects cases and deaths currently known to CDPH.

    Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases and deaths, sources used, how cases and deaths are associated to a specific date, and similar factors.

    Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, U.S. Census Bureau American Community Survey

  2. d

    COVID-19 Cases, Hospitalizations, and Deaths (By County) - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases, Hospitalizations, and Deaths (By County) - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-hospitalizations-and-deaths-by-county
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases, hospitalizations, and associated deaths that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Hospitalization data were collected by the Connecticut Hospital Association and reflect the number of patients currently hospitalized with laboratory-confirmed COVID-19. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics Data are reported d

  3. Preliminary 2024-2025 U.S. COVID-19 Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD). (2025). Preliminary 2024-2025 U.S. COVID-19 Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-COVID-19-Burden-Estimate/ahrf-yqdt
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  4. Coronavirus hospitalization rate in the Netherlands as of September 2020, by...

    • statista.com
    Updated Jul 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Coronavirus hospitalization rate in the Netherlands as of September 2020, by age [Dataset]. https://www.statista.com/statistics/1129037/coronavirus-hospitalization-by-age-in-netherlands/
    Explore at:
    Dataset updated
    Jul 1, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 27, 2020 - Sep 29, 2020
    Area covered
    Netherlands
    Description

    As of September 29, 2020, the coronavirus (COVID-19) pandemic in the Netherlands resulted in over 12.7 thousand hospitalizations. However, the distribution of hospital admissions differed greatly by age. To this day, most hospitalizations occurred with older patients. In the Netherlands, roughly 70 percent of hospitalized patients were notably aged 60 years old and over. Children have also been admitted to Dutch hospitals due to the coronavirus, although to a much lesser extent.

  5. f

    Hospitalization and death rates.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Aug 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rossi, Paolo Giorgi; Venturelli, Francesco; Formisano, Debora; Grilli, Roberto; Marino, Massimiliano; Vicentini, Massimo (2020). Hospitalization and death rates. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000484686
    Explore at:
    Dataset updated
    Aug 27, 2020
    Authors
    Rossi, Paolo Giorgi; Venturelli, Francesco; Formisano, Debora; Grilli, Roberto; Marino, Massimiliano; Vicentini, Massimo
    Description

    Characteristics of COVID-19 cases, hospitalizations, and deaths for each included putative prognostic factor.

  6. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  7. Share of U.S. COVID-19 cases resulting in hospitalization from...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Share of U.S. COVID-19 cases resulting in hospitalization from Feb.12-Mar.16, by age [Dataset]. https://www.statista.com/statistics/1105402/covid-hospitalization-rates-us-by-age-group/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 12, 2020 - Mar 16, 2020
    Area covered
    United States
    Description

    In the United States between February 12 and March 16, 2020, the percentage of COVID-19 patients hospitalized with the disease increased with age. Findings estimated that up to 70 percent of adults aged 85 years and older were hospitalized.

    Who is at higher risk from COVID-19? The same study also found that coronavirus patients aged 85 and older were at the highest risk of death. There are other risk factors besides age that can lead to serious illness. People with pre-existing medical conditions, such as diabetes, heart disease, and lung disease, can develop more severe symptoms. In the U.S. between January and May 2020, case fatality rates among confirmed COVID-19 patients were higher for those with underlying health conditions.

    How long should you self-isolate? As of August 24, 2020, more than 16 million people worldwide had recovered from COVID-19 disease, which includes patients in health care settings and those isolating at home. The criteria for discharging patients from isolation varies by country, but asymptomatic carriers of the virus can generally be released ten days after their positive case was confirmed. For patients showing signs of the illness, they must isolate for at least ten days after symptom onset and also remain in isolation for a short period after the symptoms have disappeared.

  8. COVID-19 Outcomes by Vaccination Status

    • kaggle.com
    zip
    Updated Jul 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaushik D (2024). COVID-19 Outcomes by Vaccination Status [Dataset]. https://www.kaggle.com/datasets/kirbysasuke/covid-19
    Explore at:
    zip(90174 bytes)Available download formats
    Dataset updated
    Jul 2, 2024
    Authors
    Kaushik D
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    NOTE: This dataset has been retired and marked as historical-only.

    Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age.

    Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine.

    Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS).

    Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death.

    Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test.

    CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset.

    Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000.

    Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people.

    Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population.

    Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019.

    All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week.

    Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.

    For all datasets related to COVID-19, see https://data.cityofchic

  9. Comparison of per capita rates for COVID-19 infection, hospitalization and...

    • plos.figshare.com
    xls
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian E. Dixon; Shaun J. Grannis; Lauren R. Lembcke; Nimish Valvi; Anna R. Roberts; Peter J. Embi (2023). Comparison of per capita rates for COVID-19 infection, hospitalization and death for residents across three phases of the epidemic; State of Indiana. [Dataset]. http://doi.org/10.1371/journal.pone.0255063.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Brian E. Dixon; Shaun J. Grannis; Lauren R. Lembcke; Nimish Valvi; Anna R. Roberts; Peter J. Embi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparison of per capita rates for COVID-19 infection, hospitalization and death for residents across three phases of the epidemic; State of Indiana.

  10. COVID-19 Dashboard

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    csv, zip
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Dashboard [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-dashboard
    Explore at:
    zip, csv(349074)Available download formats
    Dataset updated
    Nov 14, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    The dashboard is updated each Friday.

    Laboratory surveillance data: California laboratories report SARS-CoV-2 test results to CDPH through electronic laboratory reporting. Los Angeles County SARS-CoV-2 lab data has a 7-day reporting lag. Test positivity is calculated using SARS-CoV-2 lab tests that has a specimen collection date reported during a given week. Specimens for testing are collected from patients in healthcare settings and do not reflect all testing for COVID-19 in California. Test positivity for a given week is calculated by dividing the number of positive COVID-19 results by the total number of specimens tested for that virus. Weekly laboratory surveillance data are defined as Sunday through Saturday.

    Hospitalization data: Data on COVID-19 and influenza hospital admissions are from Centers for Disease Control and Prevention’s (CDC) National Healthcare Safety Network (NHSN) Hospitalization dataset. The requirement to report COVID-19-associated hospitalizations was effective November 1, 2024. CDPH pulls NHSN data from the CDC on the Wednesday prior to the publication of the report. Results may differ depending on which day data are pulled. Admission rates are calculated using population estimates from the P-3: Complete State and County Projections Dataset (https://dof.ca.gov/forecasting/demographics/projections/) provided by the State of California Department of Finance. Reported weekly admission rates for the entire season use the population estimates for the year the season started. For more information on NHSN data including the protocol and data collection information, see the CDC NHSN webpage (https://www.cdc.gov/nhsn/index.html). Weekly hospitalization data are defined as Sunday through Saturday.

    Death certificate data: CDPH receives weekly year-to-date dynamic data on deaths occurring in California from the CDPH Center for Health Statistics and Informatics. These data are limited to deaths occurring among California residents and are analyzed to identify COVID-19-coded deaths. These deaths are not necessarily laboratory-confirmed and are an underestimate of all COVID-19-associated deaths in California. Weekly death data are defined as Sunday through Saturday.

  11. d

    COVID-19 Daily Counts of Cases, Hospitalizations, and Deaths

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Nov 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2025). COVID-19 Daily Counts of Cases, Hospitalizations, and Deaths [Dataset]. https://catalog.data.gov/dataset/covid-19-daily-counts-of-cases-hospitalizations-and-deaths
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset provided by
    data.cityofnewyork.us
    Description

    Daily count of NYC residents who tested positive for SARS-CoV-2, who were hospitalized with COVID-19, and deaths among COVID-19 patients. Note that this dataset currently pulls from https://raw.githubusercontent.com/nychealth/coronavirus-data/master/trends/data-by-day.csv on a daily basis.

  12. f

    Data from: IMPACT OF COVID-19 ON MORTALITY AND HOSPITALIZATION IN OLDER...

    • datasetcatalog.nlm.nih.gov
    • scielo.figshare.com
    Updated Nov 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FALÓTICO, GUILHERME GUADAGNINI; TAKATA, EDMILSON TAKEHIRO; SCATIGNA, BRUNO FRANCESCO; BARROS, EDIVANDO MOURA; DA SILVA SANTOS, DIEGO; HOSNI, NICOLE DITTRICH (2022). IMPACT OF COVID-19 ON MORTALITY AND HOSPITALIZATION IN OLDER ADULTS WITH HIP FRACTURE [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000422508
    Explore at:
    Dataset updated
    Nov 12, 2022
    Authors
    FALÓTICO, GUILHERME GUADAGNINI; TAKATA, EDMILSON TAKEHIRO; SCATIGNA, BRUNO FRANCESCO; BARROS, EDIVANDO MOURA; DA SILVA SANTOS, DIEGO; HOSNI, NICOLE DITTRICH
    Description

    ABSTRACT Objective: To evaluate the impact of the COVID-19 pandemic on hospital admission and mortality indicators in older adults with fractures of the proximal femur. Methods: Observational and retrospective study that took place from June 2016 to 2020. Patients of both genders who underwent surgical treatment for fractures of the proximal end of the femur, aged over 60 years, were included. Results: The population consisted of 379 patients, treated before (group 1; N = 278; 73.35%) and during the pandemic (group 2; N = 101; 26.65%). Higher mortality was observed in group 2 (N = 24; 23.8%) versus group 1 (N = 10; 3.6%), p < 0.001. The highest proportion of deaths in group 2 was maintained in patients aged 70-79 years (p = 0.011), 80-89 years (p ≤ 0.001) and > 90 years (p ≤ 0.001). In addition, the preoperative time and hospital stay were longer in group 2 compared to group 1 (p ≤ 0.001). Conclusion: The present study demonstrated that the pandemic period increased the mortality rate and the preoperative and hospitalization time in older patients with femur fractures. Thus, the pandemic has affected the care of fractures of the proximal femur in older adults, which reinforces the need to adopt measures to reduce complications and mortality. Level of Evidence II, Retrospective Study.

  13. C

    COVID-19 Daily Cases, Deaths, and Hospitalizations - Historical

    • data.cityofchicago.org
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated May 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2024). COVID-19 Daily Cases, Deaths, and Hospitalizations - Historical [Dataset]. https://data.cityofchicago.org/Health-Human-Services/COVID-19-Daily-Cases-Deaths-and-Hospitalizations-H/naz8-j4nc
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    City of Chicago
    Description

    NOTE: This dataset has been retired and marked as historical-only.

    Only Chicago residents are included based on the home ZIP Code, as provided by the medical provider, or the address, as provided by the Cook County Medical Examiner.

    Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted on the date the test specimen was collected. Deaths are those occurring among cases based on the day of death. Hospitalizations are based on the date of first hospitalization. Only one hospitalization is counted for each case. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation.

    Because of the nature of data reporting to CDPH, hospitalizations will be blank for recent dates They will fill in on later updates when the data are received, although, as for cases and deaths, may continue to be updated as further data are received.

    All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH.

    Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases, deaths, and hospitalizations, sources used, how cases, deaths and hospitalizations are associated to a specific date, and similar factors.

    Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office

  14. COVID-19 Daily Rolling Average Case, Death, and Hospitalization Rates -...

    • healthdata.gov
    csv, xlsx, xml
    Updated Apr 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). COVID-19 Daily Rolling Average Case, Death, and Hospitalization Rates - Historical - sd6k-dtx6 - Archive Repository [Dataset]. https://healthdata.gov/dataset/COVID-19-Daily-Rolling-Average-Case-Death-and-Hosp/tdzn-ghra
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Apr 8, 2025
    Description

    This dataset tracks the updates made on the dataset "COVID-19 Daily Rolling Average Case, Death, and Hospitalization Rates - Historical" as a repository for previous versions of the data and metadata.

  15. f

    Data from: Mortality predictors in a cohort of patients with COVID-19...

    • scielo.figshare.com
    jpeg
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Regina Maria Alexandre Fernandes de Oliveira; Milton Luiz Gorzoni; Ronaldo Fernandes Rosa (2023). Mortality predictors in a cohort of patients with COVID-19 admitted to a large tertiary hospital in the city of São Paulo, Brazil: a retrospective study [Dataset]. http://doi.org/10.6084/m9.figshare.21087515.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    SciELO journals
    Authors
    Regina Maria Alexandre Fernandes de Oliveira; Milton Luiz Gorzoni; Ronaldo Fernandes Rosa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    São Paulo, Brazil
    Description

    Abstract BACKGROUND: There is discrepant information across countries regarding the natural history of patients admitted to hospitals with coronavirus disease (COVID-19), in addition to a lack of data on the scenario in Brazil. OBJECTIVE: To determine the mortality predictors in COVID-19 patients admitted to a tertiary hospital in São Paulo, Brazil. DESIGN AND SETTING: A retrospective analysis of medical records of COVID-19 patients admitted to the Hospital Central da Irmandade da Santa Casa de Misericórdia of São Paulo. METHODS: Overall, 316 patients with laboratory-confirmed COVID-19 between March 1, 2020, and July 31, 2020, were included. The analysis included the baseline characteristics, clinical progression, and outcomes. RESULTS: The mortality rate of the sample was 51.27%. Age ≥ 60 years was determined as a risk factor after multivariate logistic regression analysis. Patients with an oxygen (O2) saturation ≤ 94% upon admission accounted for 87% of the deaths (P < 0.001). Vasoactive drugs were used in 92% (P < 0.001) of patients who progressed to death, and mechanical ventilation was employed in 88% (P < 0.001) of such patients. However, patients who received corticosteroids concomitantly with mechanical ventilation had a better prognosis than those who did not. The progressive degree of pulmonary involvement observed on chest computed tomography was correlated with a worse prognosis. The presence of thrombocytopenia has been considered as a risk factor for mortality. CONCLUSION: The main predictors of in-hospital mortality after logistic regression analysis were age, O2 saturation ≤ 94% upon admission, use of vasoactive drugs, and presence of thrombocytopenia.

  16. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and...

    • data.cdc.gov
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Second Booster Dose [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/ukww-au2k
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138

  17. Data from: Estimated Deaths, Intensive Care Admissions and Hospitalizations...

    • figshare.com
    xlsx
    Updated Feb 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Fisman (2023). Estimated Deaths, Intensive Care Admissions and Hospitalizations Averted in Canada during the COVID-19 Pandemic [Dataset]. http://doi.org/10.6084/m9.figshare.14036549.v3
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 28, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    David Fisman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Canada
    Description

    These datasets explore disparities in COVID-19 mortality observed in the US and Canada between January 2020 and early March 2021. Table 1 provides counts of deaths, hospitalizations, ICU admissions, and cases, by age, for Ontario, Canada (Canada's most populous province).

    Table 2 estimates deaths averted by Canada's response to the COVID-19 pandemic, relative to that in the United States, by "Canada-standardizing" the US epidemic (i.e., by applying US age-specific mortality to Canadian populations, in order to estimate the deaths that would have occurred in a Canadian pandemic with the same rates of death as have been observed in the US). Observed Canadian deaths are compared to "expected" deaths with a US-like response in order to estimate both deaths averted and SMR (Table 2).

    As Canadian age groups for purposes of death reporting are slightly different from those used in the US (e.g., 0-17 in the US vs. 0-19 in Canada), we reallocate Canadian deaths based on proportions of deaths occurring in 2-year age categories in Ontario (Table 1).

    Ontario age-specific case-fatality is used to inflate the deaths averted, in order to estimate cases averted. Ontario age-specific hospitalization and ICU risk (again derived from Table 1) are used to estimate hospitalizations and ICU admissions averted (Table 2).

    As of August 9, 2022, a new dataset has been added which applies the methodology described above to compare deaths in Canada to those in the United Kingdom, France, and Australia. Estimates of QALY loss, and healthcare costs averted, have also been added. Uncertainty bounds are estimated either as parametric confidence intervals, or as upper and lower bound 95% credible intervals through simulation (implemented using the random draw funding in Microsoft Excel).

    Errors in confidence intervals for QALY losses in France and Australia corrected February 28, 2023.

  18. d

    Percentage of provider spells with COVID-19 coding

    • digital.nhs.uk
    csv, pdf, xls, xlsx
    Updated May 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Percentage of provider spells with COVID-19 coding [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/shmi/2021-05
    Explore at:
    csv(9.7 kB), xlsx(31.8 kB), xls(76.8 kB), pdf(205.0 kB)Available download formats
    Dataset updated
    May 13, 2021
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jan 1, 2020 - Dec 31, 2020
    Area covered
    England
    Description

    This is an indicator designed to accompany the Summary Hospital-level Mortality Indicator (SHMI). As of the July 2020 publication, COVID-19 activity has been excluded from the SHMI. The SHMI is not designed for this type of pandemic activity and the statistical modelling used to calculate the SHMI may not be as robust if such activity were included. This indicator shows the number of provider spells which are coded as COVID-19, and therefore excluded from the SHMI, as a percentage of all provider spells in the SHMI (prior to the exclusion). This indicator is being published as an experimental statistic. Experimental statistics are official statistics which are published in order to involve users and stakeholders in their development and as a means to build in quality at an early stage. Notes: 1. Please note that there has been a fall in the number of spells for most trusts between this publication and the previous SHMI publication, ranging from 0 per cent to 5 per cent. This is due to COVID-19 impacting on activity from March 2020 onwards and appears to be an accurate reflection of hospital activity rather than a case of missing data. 2. The data for St Helens and Knowsley Teaching Hospitals NHS Trust (trust code RBN) has incomplete information on secondary conditions that the patients suffers from, and this will have affected the calculation of this indicator. Values for this trust should therefore be interpreted with caution. Please note, this issue was not identified until after this publication was initially released on 13th May 2021. Data quality notices were later added to this publication in July 2021. 3. Day cases and regular day attenders are excluded from the SHMI. However, some day cases for University College London Hospitals NHS Foundation Trust (trust code RRV) have been incorrectly classified as ordinary admissions meaning that they have been included in the SHMI. Maidstone and Tunbridge Wells NHS Trust (trust code RWF) has submitted a number of records with a patient classification of ‘day case’ or ‘regular day attender’ and an intended management value of ‘patient to stay in hospital for at least one night’. This mismatch has resulted in the patient classification being updated to ‘ordinary admission’ by the HES data cleaning rules. This may have resulted in the number of ordinary admissions being overstated. The trust has been contacted to clarify what the correct patient classification is for these records. Values for these trusts should therefore be interpreted with caution. 4. There is a shortfall in the number of records for Mid Cheshire Hospitals NHS Foundation Trust (trust code RBT), meaning that values for this trust are based on incomplete data and should therefore be interpreted with caution. 5. We recommend that values for Guy’s and St Thomas’ NHS Foundation Trust (trust code RJ1) are interpreted with caution as there is a possible shortfall in the number of records which is currently under investigation. 6. On 1 April 2021 Western Sussex Hospitals NHS Foundation Trust (trust code RYR) merged with Brighton and Sussex University Hospitals NHS Trust (trust code RXH). The new trust is called University Hospitals Sussex NHS Foundation Trust (trust code RYR). However, as we received notification of this change after data processing for this publication began, separate indicator values have been produced for this publication. The next publication in this series will reflect the updated organisation structure. 7. Further information on data quality can be found in the SHMI background quality report, which can be downloaded from the 'Resources' section of the publication page.

  19. Global Covid-19 Data

    • kaggle.com
    zip
    Updated Dec 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Global Covid-19 Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/global-covid-19-data
    Explore at:
    zip(15394324 bytes)Available download formats
    Dataset updated
    Dec 3, 2023
    Authors
    The Devastator
    Description

    Global Covid-19 Data

    Global Covid-19 data on cases, deaths, vaccinations, and more

    By Valtteri Kurkela [source]

    About this dataset

    The dataset is constantly updated and synced hourly to ensure up-to-date information. With over several columns available for analysis and exploration purposes, users can extract valuable insights from this extensive dataset.

    Some of the key metrics covered in the dataset include:

    1. Vaccinations: The dataset covers total vaccinations administered worldwide as well as breakdowns of people vaccinated per hundred people and fully vaccinated individuals per hundred people.

    2. Testing & Positivity: Information on total tests conducted along with new tests conducted per thousand people is provided. Additionally, details on positive rate (percentage of positive Covid-19 tests out of all conducted) are included.

    3. Hospital & ICU: Data on ICU patients and hospital patients are available along with corresponding figures normalized per million people. Weekly admissions to intensive care units and hospitals are also provided.

    4. Confirmed Cases: The number of confirmed Covid-19 cases globally is captured in both absolute numbers as well as normalized values representing cases per million people.

    5.Confirmed Deaths: Total confirmed deaths due to Covid-19 worldwide are provided with figures adjusted for population size (total deaths per million).

    6.Reproduction Rate: The estimated reproduction rate (R) indicates the contagiousness of the virus within a particular country or region.

    7.Policy Responses: Besides healthcare-related metrics, this comprehensive dataset includes policy responses implemented by countries or regions such as lockdown measures or travel restrictions.

    8.Other Variables of InterestThe data encompasses various socioeconomic factors that may influence Covid-19 outcomes including population density,membership in a continent,gross domestic product(GDP)per capita;

    For demographic factors: -Age Structure : percentage populations aged 65 and older,aged (70)older,median age -Gender-specific factors: Percentage of female smokers -Lifestyle-related factors: Diabetes prevalence rate and extreme poverty rate

    1. Excess Mortality: The dataset further provides insights into excess mortality rates, indicating the percentage increase in deaths above the expected number based on historical data.

    The dataset consists of numerous columns providing specific information for analysis, such as ISO code for countries/regions, location names,and units of measurement for different parameters.

    Overall,this dataset serves as a valuable resource for researchers, analysts, and policymakers seeking to explore various aspects related to Covid-19

    How to use the dataset

    Introduction:

    • Understanding the Basic Structure:

      • The dataset consists of various columns containing different data related to vaccinations, testing, hospitalization, cases, deaths, policy responses, and other key variables.
      • Each row represents data for a specific country or region at a certain point in time.
    • Selecting Desired Columns:

      • Identify the specific columns that are relevant to your analysis or research needs.
      • Some important columns include population, total cases, total deaths, new cases per million people, and vaccination-related metrics.
    • Filtering Data:

      • Use filters based on specific conditions such as date ranges or continents to focus on relevant subsets of data.
      • This can help you analyze trends over time or compare data between different regions.
    • Analyzing Vaccination Metrics:

      • Explore variables like total_vaccinations, people_vaccinated, and people_fully_vaccinated to assess vaccination coverage in different countries.
      • Calculate metrics such as people_vaccinated_per_hundred or total_boosters_per_hundred for standardized comparisons across populations.
    • Investigating Testing Information:

      • Examine columns such as total_tests, new_tests, and tests_per_case to understand testing efforts in various countries.
      • Calculate rates like tests_per_case to assess testing efficiency or identify changes in testing strategies over time.
    • Exploring Hospitalization and ICU Data:

      • Analyze variables like hosp_patients, icu_patients, and hospital_beds_per_thousand to understand healthcare systems' strain.
      • Calculate rates like icu_patients_per_million or hosp_patients_per_million for cross-country comparisons.
    • Assessing Covid-19 Cases and Deaths:

      • Analyze variables like total_cases, new_ca...
  20. d

    SHMI COVID-19 activity contextual indicators

    • digital.nhs.uk
    Updated Jun 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). SHMI COVID-19 activity contextual indicators [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/shmi/2023-06
    Explore at:
    Dataset updated
    Jun 15, 2023
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Description

    Notes:

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.cityofchicago.org (2025). COVID-19 Daily Rolling Average Case, Death, and Hospitalization Rates - Historical [Dataset]. https://healthdata.gov/dataset/COVID-19-Daily-Rolling-Average-Case-Death-and-Hosp/sd6k-dtx6
Organization logo

COVID-19 Daily Rolling Average Case, Death, and Hospitalization Rates - Historical

Explore at:
xlsx, xml, csvAvailable download formats
Dataset updated
Apr 8, 2025
Dataset provided by
data.cityofchicago.org
Description

NOTE: This dataset has been retired and marked as historical-only.

This dataset is a companion to the COVID-19 Daily Cases and Deaths dataset (https://data.cityofchicago.org/d/naz8-j4nc). The major difference in this dataset is that the case, death, and hospitalization corresponding rates per 100,000 population are not those for the single date indicated. They are rolling averages for the seven-day period ending on that date. This rolling average is used to account for fluctuations that may occur in the data, such as fewer cases being reported on weekends, and small numbers. The intent is to give a more representative view of the ongoing COVID-19 experience, less affected by what is essentially noise in the data.

All rates are per 100,000 population in the indicated group, or Chicago, as a whole, for “Total” columns.

Only Chicago residents are included based on the home address as provided by the medical provider.

Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the date the test specimen was collected. Deaths among cases are aggregated by day of death. Hospitalizations are reported by date of first hospital admission. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation.

Denominators are from the U.S. Census Bureau American Community Survey 1-year estimate for 2018 and can be seen in the Citywide, 2018 row of the Chicago Population Counts dataset (https://data.cityofchicago.org/d/85cm-7uqa).

All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects cases and deaths currently known to CDPH.

Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases and deaths, sources used, how cases and deaths are associated to a specific date, and similar factors.

Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, U.S. Census Bureau American Community Survey

Search
Clear search
Close search
Google apps
Main menu