10 datasets found
  1. COVID-19 Dashboard

    • data.ca.gov
    • healthdata.gov
    • +2more
    csv, zip
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Dashboard [Dataset]. https://data.ca.gov/dataset/covid-19-dashboard
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Nov 21, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dashboard is updated each Friday.

    Laboratory surveillance data: California laboratories report SARS-CoV-2 test results to CDPH through electronic laboratory reporting. Los Angeles County SARS-CoV-2 lab data has a 7-day reporting lag. Test positivity is calculated using SARS-CoV-2 lab tests that has a specimen collection date reported during a given week. Specimens for testing are collected from patients in healthcare settings and do not reflect all testing for COVID-19 in California. Test positivity for a given week is calculated by dividing the number of positive COVID-19 results by the total number of specimens tested for that virus. Weekly laboratory surveillance data are defined as Sunday through Saturday.

    Hospitalization data: Data on COVID-19 and influenza hospital admissions are from Centers for Disease Control and Prevention’s (CDC) National Healthcare Safety Network (NHSN) Hospitalization dataset. The requirement to report COVID-19-associated hospitalizations was effective November 1, 2024. CDPH pulls NHSN data from the CDC on the Wednesday prior to the publication of the report. Results may differ depending on which day data are pulled. Admission rates are calculated using population estimates from the P-3: Complete State and County Projections Dataset (https://dof.ca.gov/forecasting/demographics/projections/) provided by the State of California Department of Finance. Reported weekly admission rates for the entire season use the population estimates for the year the season started. For more information on NHSN data including the protocol and data collection information, see the CDC NHSN webpage (https://www.cdc.gov/nhsn/index.html). Weekly hospitalization data are defined as Sunday through Saturday.

    Death certificate data: CDPH receives weekly year-to-date dynamic data on deaths occurring in California from the CDPH Center for Health Statistics and Informatics. These data are limited to deaths occurring among California residents and are analyzed to identify COVID-19-coded deaths. These deaths are not necessarily laboratory-confirmed and are an underestimate of all COVID-19-associated deaths in California. Weekly death data are defined as Sunday through Saturday.

  2. Respiratory Virus Weekly Report

    • healthdata.gov
    • data.chhs.ca.gov
    • +2more
    csv, xlsx, xml
    Updated Apr 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    chhs.data.ca.gov (2025). Respiratory Virus Weekly Report [Dataset]. https://healthdata.gov/State/Respiratory-Virus-Weekly-Report/2rrj-tpy8
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    chhs.data.ca.gov
    Description

    Data is from the California Department of Public Health (CDPH) Respiratory Virus Weekly Report.

    The report is updated each Friday.

    Laboratory surveillance data: California laboratories report SARS-CoV-2 test results to CDPH through electronic laboratory reporting. Los Angeles County SARS-CoV-2 lab data has a 7-day reporting lag. Test positivity is calculated using SARS-CoV-2 lab tests that has a specimen collection date reported during a given week.

    Laboratory surveillance for influenza, respiratory syncytial virus (RSV), and other respiratory viruses (parainfluenza types 1-4, human metapneumovirus, non-SARS-CoV-2 coronaviruses, adenovirus, enterovirus/rhinovirus) involves the use of data from clinical sentinel laboratories (hospital, academic or private) located throughout California. Specimens for testing are collected from patients in healthcare settings and do not reflect all testing for influenza, respiratory syncytial virus, and other respiratory viruses in California. These laboratories report the number of laboratory-confirmed influenza, respiratory syncytial virus, and other respiratory virus detections and isolations, and the total number of specimens tested by virus type on a weekly basis.

    Test positivity for a given week is calculated by dividing the number of positive COVID-19, influenza, RSV, or other respiratory virus results by the total number of specimens tested for that virus. Weekly laboratory surveillance data are defined as Sunday through Saturday.

    Hospitalization data: Data on COVID-19 and influenza hospital admissions are from Centers for Disease Control and Prevention’s (CDC) National Healthcare Safety Network (NHSN) Hospitalization dataset. The requirement to report COVID-19 and influenza-associated hospitalizations was effective November 1, 2024. CDPH pulls NHSN data from the CDC on the Wednesday prior to the publication of the report. Results may differ depending on which day data are pulled. Admission rates are calculated using population estimates from the P-3: Complete State and County Projections Dataset provided by the State of California Department of Finance (https://dof.ca.gov/forecasting/demographics/projections/). Reported weekly admission rates for the entire season use the population estimates for the year the season started. For more information on NHSN data including the protocol and data collection information, see the CDC NHSN webpage (https://www.cdc.gov/nhsn/index.html).

    CDPH collaborates with Northern California Kaiser Permanente (NCKP) to monitor trends in RSV admissions. The percentage of RSV admissions is calculated by dividing the number of RSV-related admissions by the total number of admissions during the same period. Admissions for pregnancy, labor and delivery, birth, and outpatient procedures are not included in total number of admissions. These admissions serve as a proxy for RSV activity and do not necessarily represent laboratory confirmed hospitalizations for RSV infections; NCKP members are not representative of all Californians.

    Weekly hospitalization data are defined as Sunday through Saturday.

    Death certificate data: CDPH receives weekly year-to-date dynamic data on deaths occurring in California from the CDPH Center for Health Statistics and Informatics. These data are limited to deaths occurring among California residents and are analyzed to identify influenza, respiratory syncytial virus, and COVID-19-coded deaths. These deaths are not necessarily laboratory-confirmed and are an underestimate of all influenza, respiratory syncytial virus, and COVID-19-associated deaths in California. Weekly death data are defined as Sunday through Saturday.

    Wastewater data: This dataset represents statewide weekly SARS-CoV-2 wastewater summary values. SARS-CoV-2 wastewater concentrations from all sites in California are combined into a single, statewide, unit-less summary value for each week, using a method for data transformation and aggregation developed by the CDC National Wastewater Surveillance System (NWSS). Please see the CDC NWSS data methods page for a description of how these summary values are calculated. Weekly wastewater data are defined as Sunday through Saturday.

  3. a

    COVID-19 Vulnerability and Recovery Index

    • hub.arcgis.com
    • data.lacounty.gov
    • +2more
    Updated Aug 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2021). COVID-19 Vulnerability and Recovery Index [Dataset]. https://hub.arcgis.com/datasets/7ca7bb20987f425581c150513381d327
    Explore at:
    Dataset updated
    Aug 5, 2021
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    The COVID-19 Vulnerability and Recovery Index uses Tract and ZIP Code-level data* to identify California communities most in need of immediate and long-term pandemic and economic relief. Specifically, the Index is comprised of three components — Risk, Severity, and Recovery Need with the last scoring the ability to recover from the health, economic, and social costs of the pandemic. Communities with higher Index scores face a higher risk of COVID-19 infection and death and a longer uphill economic recovery. Conversely, those with lower scores are less vulnerable.

    The Index includes one overarching Index score as well as a score for each of the individual components. Each component includes a set of indicators we found to be associated with COVID-19 risk, severity, or recovery in our review of existing indices and independent analysis. The Risk component includes indicators related to the risk of COVID-19 infection. The Severity component includes indicators designed to measure the risk of severe illness or death from COVID-19. The Recovery Need component includes indicators that measure community needs related to economic and social recovery. The overarching Index score is designed to show level of need from Highest to Lowest with ZIP Codes in the Highest or High need categories, or top 20th or 40th percentiles of the Index, having the greatest need for support.

    The Index was originally developed as a statewide tool but has been adapted to LA County for the purposes of the Board motion. To distinguish between the LA County Index and the original Statewide Index, we refer to the revised Index for LA County as the LA County ARPA Index.

    *Zip Code data has been crosswalked to Census Tract using HUD methodology

    Indicators within each component of the LA County ARPA Index are:Risk: Individuals without U.S. citizenship; Population Below 200% of the Federal Poverty Level (FPL); Overcrowded Housing Units; Essential Workers Severity: Asthma Hospitalizations (per 10,000); Population Below 200% FPL; Seniors 75 and over in Poverty; Uninsured Population; Heart Disease Hospitalizations (per 10,000); Diabetes Hospitalizations (per 10,000)Recovery Need: Single-Parent Households; Gun Injuries (per 10,000); Population Below 200% FPL; Essential Workers; Unemployment; Uninsured PopulationData are sourced from US Census American Communities Survey (ACS) and the OSHPD Patient Discharge Database. For ACS indicators, the tables and variables used are as follows:

    Indicator

    ACS Table/Years

    Numerator

    Denominator

    Non-US Citizen

    B05001, 2019-2023

    b05001_006e

    b05001_001e

    Below 200% FPL

    S1701, 2019-2023

    s1701_c01_042e

    s1701_c01_001e

    Overcrowded Housing Units

    B25014, 2019-2023

    b25014_006e + b25014_007e + b25014_012e + b25014_013e

    b25014_001e

    Essential Workers

    S2401, 2019-2023

    s2401_c01_005e + s2401_c01_011e + s2401_c01_013e + s2401_c01_015e + s2401_c01_019e + s2401_c01_020e + s2401_c01_023e + s2401_c01_024e + s2401_c01_029e + s2401_c01_033e

    s2401_c01_001

    Seniors 75+ in Poverty

    B17020, 2019-2023

    b17020_008e + b17020_009e

    b17020_008e + b17020_009e + b17020_016e + b17020_017e

    Uninsured

    S2701, 2019-2023

    s2701_c05_001e

    NA, rate published in source table

    Single-Parent Households

    S1101, 2019-2023

    s1101_c03_005e + s1101_c04_005e

    s1101_c01_001e

    Unemployment

    S2301, 2019-2023

    s2301_c04_001e

    NA, rate published in source table

    The remaining indicators are based data requested and received by Advancement Project CA from the OSHPD Patient Discharge database. Data are based on records aggregated at the ZIP Code level:

    Indicator

    Years

    Definition

    Denominator

    Asthma Hospitalizations

    2017-2019

    All ICD 10 codes under J45 (under Principal Diagnosis)

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    Gun Injuries

    2017-2019

    Principal/Other External Cause Code "Gun Injury" with a Disposition not "Died/Expired". ICD 10 Code Y38.4 and all codes under X94, W32, W33, W34, X72, X73, X74, X93, X95, Y22, Y23, Y35 [All listed codes with 7th digit "A" for initial encounter]

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    Heart Disease Hospitalizations

    2017-2019

    ICD 10 Code I46.2 and all ICD 10 codes under I21, I22, I24, I25, I42, I50 (under Principal Diagnosis)

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    Diabetes (Type 2) Hospitalizations

    2017-2019

    All ICD 10 codes under E11 (under Principal Diagnosis)

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    For more information about this dataset, please contact egis@isd.lacounty.gov.

  4. Respiratory Virus Dashboard Metrics

    • data.chhs.ca.gov
    • healthdata.gov
    • +2more
    csv, xlsx, zip
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Respiratory Virus Dashboard Metrics [Dataset]. https://data.chhs.ca.gov/dataset/respiratory-virus-dashboard-metrics
    Explore at:
    csv(116045), zip, xlsx(9425), csv(64958), csv(53108), xlsx(9666), xlsx(9337)Available download formats
    Dataset updated
    Nov 21, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Note: On April 30, 2024, the Federal mandate for COVID-19 and influenza associated hospitalization data to be reported to CDC’s National Healthcare Safety Network (NHSN) expired. Hospitalization data beyond April 30, 2024, will not be updated on the Open Data Portal. Hospitalization and ICU admission data collected from summer 2020 to May 10, 2023, are sourced from the California Hospital Association (CHA) Survey. Data collected on or after May 11, 2023, are sourced from CDC's National Healthcare Safety Network (NHSN).

    Data is from the California Department of Public Health (CDPH) Respiratory Virus State Dashboard at https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/Respiratory-Viruses/RespiratoryDashboard.aspx.

    Data are updated each Friday around 2 pm.

    For COVID-19 death data: As of January 1, 2023, data was sourced from the California Department of Public Health, California Comprehensive Death File (Dynamic), 2023–Present. Prior to January 1, 2023, death data was sourced from the COVID-19 case registry. The change in data source occurred in July 2023 and was applied retroactively to all 2023 data to provide a consistent source of death data for the year of 2023. Influenza death data was sourced from the California Department of Public Health, California Comprehensive Death File (Dynamic), 2020–Present.

    COVID-19 testing data represent data received by CDPH through electronic laboratory reporting of test results for COVID-19 among residents of California. Testing date is the date the test was administered, and tests have a 1-day lag (except for the Los Angeles County, which has an additional 7-day lag). Influenza testing data represent data received by CDPH from clinical sentinel laboratories in California. These laboratories report the aggregate number of laboratory-confirmed influenza virus detections and total tests performed on a weekly basis. These data do not represent all influenza testing occurring in California and are available only at the state level.

  5. M

    COVID-19: Keeping Los Angeles Safe

    • catalog.midasnetwork.us
    Updated Apr 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Los Angeles, Mayor Garcetti’s Innovation Team (2022). COVID-19: Keeping Los Angeles Safe [Dataset]. https://catalog.midasnetwork.us/collection/81
    Explore at:
    Dataset updated
    Apr 5, 2022
    Dataset provided by
    MIDAS COORDINATION CENTER
    Authors
    City of Los Angeles, Mayor Garcetti’s Innovation Team
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    Los Angeles, County, State, City
    Variables measured
    mpox, Viruses, disease, COVID-19, pathogen, vaccination, Homo sapiens, host organism, age-stratified, mortality data, and 15 more
    Dataset funded by
    National Institute of General Medical Sciences
    Description

    The dataset compiles COVID-19 cases, deaths, hospitalizations, tests and vaccination data for Los Angeles county and city from multiple sources in a frequently updated pdf format. It also contains Monkeypox case and vaccination data since August 2022.

  6. f

    Data from: COVID-19 Treatment Agents: Do They Pose an Environmental Risk?

    • acs.figshare.com
    • datasetcatalog.nlm.nih.gov
    xlsx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Violaine Desgens-Martin; Arturo A. Keller (2023). COVID-19 Treatment Agents: Do They Pose an Environmental Risk? [Dataset]. http://doi.org/10.1021/acsestwater.1c00059.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    ACS Publications
    Authors
    Violaine Desgens-Martin; Arturo A. Keller
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The end of 2019 was marked by reports of a previously unknown virus causing coronavirus disease 19 (COVID-19). With over 800 new daily hospitalizations at the peak in Los Angeles (LA) County, the potential for high use of COVID-19 treatment agents, remdesivir and dexamethasone, warranted a screening assessment of their fate and toxicity risk for aquatic organisms. We predicted environmental concentrations (PECs) using the ChemFate model and hospitalizations data and compared them to predicted ecotoxicity concentrations generated using Ecological Structure Activity Relationships (ECOSAR) to assess risk to potentially exposed organisms. The lowest predicted toxicity thresholds were between 2 and 11 orders of magnitude greater than the highest PECs for freshwater and saltwater. We conclude that had all eligible patients in LA County been given the recommended treatment regimen, exposure of aquatic organisms in regional water bodies to remdesivir, dexamethasone, and their evaluated metabolites would not be likely to be affected based on ECOSAR predictions. Conservative, protective assumptions were used for this screening analysis, considering limited toxicity information. Modeling tools thus serve to predict environmental concentrations and estimate ecotoxicity risks of novel treatment agents and can provide useful preliminary data to assess and manage ecological health risks.

  7. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  8. Comparative Effectiveness of Single-Site and Scattered-Site Permanent...

    • icpsr.umich.edu
    Updated Aug 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Henwood, Benjamin; Gelberg, Lillian (2025). Comparative Effectiveness of Single-Site and Scattered-Site Permanent Supportive Housing on Patient-Centered and COVID-19-Related Outcomes for People Experiencing Homelessness, California, 2021-2023 [Dataset]. http://doi.org/10.3886/ICPSR39155.v1
    Explore at:
    Dataset updated
    Aug 28, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Henwood, Benjamin; Gelberg, Lillian
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/39155/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/39155/terms

    Time period covered
    2021 - 2023
    Area covered
    California, United States, Los Angeles
    Description

    People experiencing homelessness (PEH) were among the most likely to contract the novel coronavirus disease 2019 (COVID-19). Many PEH utilized high-density public places to satisfy their basic needs (e.g., soup kitchens for sustenance, public libraries for restrooms). This made it difficult for them to limit close contact with others and put them at increased risk of contracting and transmitting COVID-19. Furthermore, it was difficult to follow recommended protective measures--such as handwashing and social distancing--when living in shelters or on the streets. PEH were at higher risk of COVID-19 related hospitalization and death than the rest of the population. The poor living conditions of PEH accelerated aging, leading them to experience geriatric conditions and medical complications more typical of individuals 10-20 years older. They were also at increased risk of cardiovascular and respiratory disease, HIV/AIDS, and diabetes, all conditions that increase vulnerability to serious COVID-19-related complications and death. These risks were compounded by the fact that PEH also faced significant barriers to accessing quality health care. In the absence of protective action, it was estimated that more than 21,000 PEH would require hospitalization due to COVID-19, more than 7,000 would require critical care, and nearly 3,500 would die. Consequently, the COVID-19 pandemic made housing and health care for PEH one of the top priorities for the U.S. health care and public health systems. State and local governments across the country used federal relief funds to allocate private hotel rooms as protective shelter for vulnerable PEH. In Los Angeles County (LAC), which contains the largest unsheltered homeless population in the nation, 2,400 PEH were placed in hotels. COVID-19 response plans included accommodating up to 15,000 PEH in hotels who would then be moved to permanent housing in 90 days. This rapid push into housing amid a pandemic necessitated a delicate balance between social distancing and maintaining patients' basic needs, continuity of existing care, and personal and social well-being. Permanent supportive housing (PSH)--programs that provide immediate access to independent living situations coupled with support services--is the most effective approach for serving PEH. Numerous studies have demonstrated PSH's effectiveness in improving housing retention, quality of life, and HIV outcomes. Though evidence concerning its impact on other health outcomes, health behaviors, and health care utilization is limited, the National Academies of Sciences, Engineering, and Medicine has nonetheless recognized PSH as extremely beneficial for PEH's health. COVID-19 was what this organization termed a "housing-sensitive condition"--one whose transmissibility, course, and medical management are particularly influenced by homelessness. Consequently, the National Alliance to End Homelessness recommended the use of PSH as part of its framework to address COVID-19 and homelessness. However, significant questions remain about what types of PSH programs can best address COVID-19-related risk and promote patient-centered outcomes at a time of social and community disruption. There are two distinct approaches to implementing PSH: place-based (PB) PSH, or single-site housing placement in a congregate residence with on-site services, and scattered-site (SS) PSH, which uses apartments rented from a private landlord to house clients while providing mobile case management services. The strengths and weaknesses of these two approaches remain largely unknown but may have direct implications for adherence to COVID-19 prevention protocols and other health-related outcomes.

  9. The marginal relative risk of each stage of disease collected from published...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abigail L. Horn; Lai Jiang; Faith Washburn; Emil Hvitfeldt; Kayla de la Haye; William Nicholas; Paul Simon; Maryann Pentz; Wendy Cozen; Neeraj Sood; David V. Conti (2023). The marginal relative risk of each stage of disease collected from published studies on COVID-19 and conditional relative risk estimated by the risk model for each risk factor on rates of hospitalization given infection, (H|I); ICU admission given hospitalization, (Q|H); and death given ICU admission, (D|Q) (95% credible interval). [Dataset]. http://doi.org/10.1371/journal.pone.0253549.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Abigail L. Horn; Lai Jiang; Faith Washburn; Emil Hvitfeldt; Kayla de la Haye; William Nicholas; Paul Simon; Maryann Pentz; Wendy Cozen; Neeraj Sood; David V. Conti
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The reference group is individuals with no comorbidity, , and non-smoking.

  10. Data_Sheet_1_Development and Validation of a Two-Step Predictive Risk...

    • frontiersin.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yang Li; Yanlei Kong; Mark H. Ebell; Leonardo Martinez; Xinyan Cai; Robert P. Lennon; Derjung M. Tarn; Arch G. Mainous; Aleksandra E. Zgierska; Bruce Barrett; Wen-Jan Tuan; Kevin Maloy; Munish Goyal; Alex H. Krist; Tamas S. Gal; Meng-Hsuan Sung; Changwei Li; Yier Jin; Ye Shen (2023). Data_Sheet_1_Development and Validation of a Two-Step Predictive Risk Stratification Model for Coronavirus Disease 2019 In-hospital Mortality: A Multicenter Retrospective Cohort Study.docx [Dataset]. http://doi.org/10.3389/fmed.2022.827261.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Yang Li; Yanlei Kong; Mark H. Ebell; Leonardo Martinez; Xinyan Cai; Robert P. Lennon; Derjung M. Tarn; Arch G. Mainous; Aleksandra E. Zgierska; Bruce Barrett; Wen-Jan Tuan; Kevin Maloy; Munish Goyal; Alex H. Krist; Tamas S. Gal; Meng-Hsuan Sung; Changwei Li; Yier Jin; Ye Shen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ObjectivesAn accurate prognostic score to predict mortality for adults with COVID-19 infection is needed to understand who would benefit most from hospitalizations and more intensive support and care. We aimed to develop and validate a two-step score system for patient triage, and to identify patients at a relatively low level of mortality risk using easy-to-collect individual information.DesignMulticenter retrospective observational cohort study.SettingFour health centers from Virginia Commonwealth University, Georgetown University, the University of Florida, and the University of California, Los Angeles.PatientsCoronavirus Disease 2019-confirmed and hospitalized adult patients.Measurements and Main ResultsWe included 1,673 participants from Virginia Commonwealth University (VCU) as the derivation cohort. Risk factors for in-hospital death were identified using a multivariable logistic model with variable selection procedures after repeated missing data imputation. A two-step risk score was developed to identify patients at lower, moderate, and higher mortality risk. The first step selected increasing age, more than one pre-existing comorbidities, heart rate >100 beats/min, respiratory rate ≥30 breaths/min, and SpO2

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
California Department of Public Health (2025). COVID-19 Dashboard [Dataset]. https://data.ca.gov/dataset/covid-19-dashboard
Organization logo

COVID-19 Dashboard

Explore at:
csv, zipAvailable download formats
Dataset updated
Nov 21, 2025
Dataset authored and provided by
California Department of Public Healthhttps://www.cdph.ca.gov/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The dashboard is updated each Friday.

Laboratory surveillance data: California laboratories report SARS-CoV-2 test results to CDPH through electronic laboratory reporting. Los Angeles County SARS-CoV-2 lab data has a 7-day reporting lag. Test positivity is calculated using SARS-CoV-2 lab tests that has a specimen collection date reported during a given week. Specimens for testing are collected from patients in healthcare settings and do not reflect all testing for COVID-19 in California. Test positivity for a given week is calculated by dividing the number of positive COVID-19 results by the total number of specimens tested for that virus. Weekly laboratory surveillance data are defined as Sunday through Saturday.

Hospitalization data: Data on COVID-19 and influenza hospital admissions are from Centers for Disease Control and Prevention’s (CDC) National Healthcare Safety Network (NHSN) Hospitalization dataset. The requirement to report COVID-19-associated hospitalizations was effective November 1, 2024. CDPH pulls NHSN data from the CDC on the Wednesday prior to the publication of the report. Results may differ depending on which day data are pulled. Admission rates are calculated using population estimates from the P-3: Complete State and County Projections Dataset (https://dof.ca.gov/forecasting/demographics/projections/) provided by the State of California Department of Finance. Reported weekly admission rates for the entire season use the population estimates for the year the season started. For more information on NHSN data including the protocol and data collection information, see the CDC NHSN webpage (https://www.cdc.gov/nhsn/index.html). Weekly hospitalization data are defined as Sunday through Saturday.

Death certificate data: CDPH receives weekly year-to-date dynamic data on deaths occurring in California from the CDPH Center for Health Statistics and Informatics. These data are limited to deaths occurring among California residents and are analyzed to identify COVID-19-coded deaths. These deaths are not necessarily laboratory-confirmed and are an underestimate of all COVID-19-associated deaths in California. Weekly death data are defined as Sunday through Saturday.

Search
Clear search
Close search
Google apps
Main menu