5 datasets found
  1. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  3. a

    NY COVID-19 Zones

    • nyc-open-data-statelocalps.hub.arcgis.com
    • nyccovid-19response-nycgov.hub.arcgis.com
    • +1more
    Updated Oct 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    pkunduNYC (2020). NY COVID-19 Zones [Dataset]. https://nyc-open-data-statelocalps.hub.arcgis.com/datasets/d569d1157f4c49e482cfcc5a00ff6dae
    Explore at:
    Dataset updated
    Oct 7, 2020
    Dataset authored and provided by
    pkunduNYC
    Area covered
    Description

    The following layer shows hotspot areas as delineated by NY State government. The layer shows red, orange, and yellow zones and provides activity guidance via attributes.

  4. DataSheet1_Revealing Critical Characteristics of Mobility Patterns in New...

    • frontiersin.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Akhil Anil Rajput; Qingchun Li; Xinyu Gao; Ali Mostafavi (2023). DataSheet1_Revealing Critical Characteristics of Mobility Patterns in New York City During the Onset of COVID-19 Pandemic.docx [Dataset]. http://doi.org/10.3389/fbuil.2021.654409.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Akhil Anil Rajput; Qingchun Li; Xinyu Gao; Ali Mostafavi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    New York has become one of the worst-affected COVID-19 hotspots and a pandemic epicenter due to the ongoing crisis. This paper identifies the impact of the pandemic and the effectiveness of government policies on human mobility by analyzing multiple datasets available at both macro and micro levels for New York City. Using data sources related to population density, aggregated population mobility, public rail transit use, vehicle use, hotspot and non-hotspot movement patterns, and human activity agglomeration, we analyzed the inter-borough and intra-borough movement for New York City by aggregating the data at the borough level. We also assessed the internodal population movement amongst hotspot and non-hotspot points of interest for the month of March and April 2020. Results indicate a drop of about 80% in people’s mobility in the city, beginning in mid-March. The movement to and from Manhattan showed the most disruption for both public transit and road traffic. The city saw its first case on March 1, 2020, but disruptions in mobility can be seen only after the second week of March when the shelter in place orders was put in effect. Owing to people working from home and adhering to stay-at-home orders, Manhattan saw the largest disruption to both inter- and intra-borough movement. But the risk of spread of infection in Manhattan turned out to be high because of higher hotspot-linked movements. The stay-at-home restrictions also led to an increased population density in Brooklyn and Queens as people were not commuting to Manhattan. Insights obtained from this study would help policymakers better understand human behavior and their response to the news and governmental policies.

  5. d

    FEMA Distribution of PPE to States

    • data.world
    csv, zip
    Updated Sep 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2024). FEMA Distribution of PPE to States [Dataset]. https://data.world/associatedpress/fema-distribution-of-ppe-to-states
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Sep 9, 2024
    Authors
    The Associated Press
    Description

    Overview

    As coronavirus cases have exploded across the country, states have struggled to obtain sufficient personal protective equipment such as masks, face shields, gloves and ventilators to meet the needs of healthcare workers. FEMA began distributing PPE from the national stockpile as well as PPE obtained from private manufacturers to states in March.

    Initially, FEMA distributed materials based primarily on population. By late March, Its methods changed to send more PPE to hotspot locations, and FEMA claimed these decisions were data-driven and need-based. By late spring, the agency was considering requests from states as well.

    Although all U.S. states and territories have received some amount of PPE from FEMA, the amounts of PPE states have per capita and per positive COVID-19 case vary widely.

    The AP used this data in a story that ran July 7.

    Findings

    • Overall, low population, rural states have the most PPE per positive case as of mid-June. This generally held true across types of equipment.
    • The states that had the highest number of total PPE items per coronavirus case as of mid-May were, in descending order: Alaska, Montana, Vermont, Hawaii, Wyoming, and North Dakota. The highest was Alaska with 1,579 PPE items per coronavirus case.
    • The states that had the highest number of total items per case as of mid-June were largely the same states — Montana, Alaska, Hawaii, Vermont, Wyoming, and West Virginia. The highest was Montana with 1,125 PPE items per coronavirus case.
    • Conversely, the states that had the lowest amounts of PPE per positive case in mid-May included hotspot states — Massachusetts, New York, Virginia, California, Nebraska, and Iowa. New Jersey was just a couple spots further down. The lowest was Massachusetts with 36 PPE items per coronavirus case.
    • The states that had the lowest amounts of PPE per case as of mid-June were largely the same as well — Massachusetts, New York, Iowa, California, and Nebraska. The lowest was Massachusetts with 32 PPE items per coronavirus case.
    • When evaluated on a per-capita basis rather than per positive coronavirus case, the picture is different. The District of Columbia received the most PPE per capita in both May and June, although the vast majority of the PPE it received was distributed as of mid-May. Vermont, Kansas, New Jersey, and North Dakota had the next highest numbers of PPE per capita as of both mid-May and mid-June.
    • There is no clear pattern of FEMA distribution by party control of states.

    About the data

    These numbers include material distributed by FEMA and also those sold by private distributors under direction from FEMA. They include materials both delivered to and en route to states.

    States have purchased PPE directly in addition to receiving PPE from FEMA or directed there by the agency, and this data only includes the latter categories.

    FEMA also distributed and directed the distribution of gear to U.S. territories in addition to states, which are included in FEMA’s release linked below, but not are not included in this data.

    FEMA has publicly distributed its breakdown of PPE delivery by state for May and June. FEMA did not provide comprehensive numbers for each state before May.

    These numbers are cumulative, meaning that the numbers for May include items of PPE distributed prior to May 14, dating to when the agency began allocations on March 1. The June numbers include the May numbers and any new PPE distributions since then.

    The population column, which was used to calculate the numbers of PPE items per state, came from data from the U.S Census Bureau. Since the Census releases annual population data, population data from 2019 was used for each state.

    The numbers of coronavirus cases were pulled from the data released daily by Johns Hopkins University as of the dates that FEMA released its distribution numbers — May 14 and June 10.

    Caveats

    The data includes amounts of gear that had been delivered to the states or were en route as of the reporting dates.

    All PPE item numbers above 1 million were rounded to the nearest hundred thousand by FEMA, but numbers lower than that were not rounded.

    In some cases, gear headed to a state was rerouted because it was needed more somewhere else or a state decided it did not need it. In some instances, that resulted in states having higher numbers for certain supplies in May than in June.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html

Coronavirus (Covid-19) Data in the United States

Explore at:
Dataset provided by
New York Times
Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu