6 datasets found
  1. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. Johns Hopkins COVID-19 Case Tracker

    • kaggle.com
    • data.world
    Updated Aug 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cansin Wayne (2020). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://www.kaggle.com/datasets/thecansin/johns-hopkins-covid19-case-tracker
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 16, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Cansin Wayne
    Description

    DESCRIPTION

    Johns Hopkins' county-level COVID-19 case and death data, paired with population and rates per 100,000

    SUMMARY Updates April 9, 2020 The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County. April 20, 2020 Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well. April 29, 2020 The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.

    Overview The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Filter cases by state here

    Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac

    Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true

    Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.

    Pull the 100 counties with the highest per-capita confirmed cases here

    Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.

    Interactive Embed Code

    Caveats This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website. In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules. In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county" This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members. Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates. Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey. The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories --...

  3. a

    NY COVID-19 Zones

    • nyc-open-data-statelocalps.hub.arcgis.com
    • nyccovid-19response-nycgov.hub.arcgis.com
    • +1more
    Updated Oct 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    pkunduNYC (2020). NY COVID-19 Zones [Dataset]. https://nyc-open-data-statelocalps.hub.arcgis.com/datasets/d569d1157f4c49e482cfcc5a00ff6dae
    Explore at:
    Dataset updated
    Oct 7, 2020
    Dataset authored and provided by
    pkunduNYC
    Area covered
    Description

    The following layer shows hotspot areas as delineated by NY State government. The layer shows red, orange, and yellow zones and provides activity guidance via attributes.

  4. DataSheet1_Revealing Critical Characteristics of Mobility Patterns in New...

    • frontiersin.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Akhil Anil Rajput; Qingchun Li; Xinyu Gao; Ali Mostafavi (2023). DataSheet1_Revealing Critical Characteristics of Mobility Patterns in New York City During the Onset of COVID-19 Pandemic.docx [Dataset]. http://doi.org/10.3389/fbuil.2021.654409.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Akhil Anil Rajput; Qingchun Li; Xinyu Gao; Ali Mostafavi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    New York has become one of the worst-affected COVID-19 hotspots and a pandemic epicenter due to the ongoing crisis. This paper identifies the impact of the pandemic and the effectiveness of government policies on human mobility by analyzing multiple datasets available at both macro and micro levels for New York City. Using data sources related to population density, aggregated population mobility, public rail transit use, vehicle use, hotspot and non-hotspot movement patterns, and human activity agglomeration, we analyzed the inter-borough and intra-borough movement for New York City by aggregating the data at the borough level. We also assessed the internodal population movement amongst hotspot and non-hotspot points of interest for the month of March and April 2020. Results indicate a drop of about 80% in people’s mobility in the city, beginning in mid-March. The movement to and from Manhattan showed the most disruption for both public transit and road traffic. The city saw its first case on March 1, 2020, but disruptions in mobility can be seen only after the second week of March when the shelter in place orders was put in effect. Owing to people working from home and adhering to stay-at-home orders, Manhattan saw the largest disruption to both inter- and intra-borough movement. But the risk of spread of infection in Manhattan turned out to be high because of higher hotspot-linked movements. The stay-at-home restrictions also led to an increased population density in Brooklyn and Queens as people were not commuting to Manhattan. Insights obtained from this study would help policymakers better understand human behavior and their response to the news and governmental policies.

  5. d

    FEMA Distribution of PPE to States

    • data.world
    csv, zip
    Updated Sep 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2024). FEMA Distribution of PPE to States [Dataset]. https://data.world/associatedpress/fema-distribution-of-ppe-to-states
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Sep 9, 2024
    Authors
    The Associated Press
    Description

    Overview

    As coronavirus cases have exploded across the country, states have struggled to obtain sufficient personal protective equipment such as masks, face shields, gloves and ventilators to meet the needs of healthcare workers. FEMA began distributing PPE from the national stockpile as well as PPE obtained from private manufacturers to states in March.

    Initially, FEMA distributed materials based primarily on population. By late March, Its methods changed to send more PPE to hotspot locations, and FEMA claimed these decisions were data-driven and need-based. By late spring, the agency was considering requests from states as well.

    Although all U.S. states and territories have received some amount of PPE from FEMA, the amounts of PPE states have per capita and per positive COVID-19 case vary widely.

    The AP used this data in a story that ran July 7.

    Findings

    • Overall, low population, rural states have the most PPE per positive case as of mid-June. This generally held true across types of equipment.
    • The states that had the highest number of total PPE items per coronavirus case as of mid-May were, in descending order: Alaska, Montana, Vermont, Hawaii, Wyoming, and North Dakota. The highest was Alaska with 1,579 PPE items per coronavirus case.
    • The states that had the highest number of total items per case as of mid-June were largely the same states — Montana, Alaska, Hawaii, Vermont, Wyoming, and West Virginia. The highest was Montana with 1,125 PPE items per coronavirus case.
    • Conversely, the states that had the lowest amounts of PPE per positive case in mid-May included hotspot states — Massachusetts, New York, Virginia, California, Nebraska, and Iowa. New Jersey was just a couple spots further down. The lowest was Massachusetts with 36 PPE items per coronavirus case.
    • The states that had the lowest amounts of PPE per case as of mid-June were largely the same as well — Massachusetts, New York, Iowa, California, and Nebraska. The lowest was Massachusetts with 32 PPE items per coronavirus case.
    • When evaluated on a per-capita basis rather than per positive coronavirus case, the picture is different. The District of Columbia received the most PPE per capita in both May and June, although the vast majority of the PPE it received was distributed as of mid-May. Vermont, Kansas, New Jersey, and North Dakota had the next highest numbers of PPE per capita as of both mid-May and mid-June.
    • There is no clear pattern of FEMA distribution by party control of states.

    About the data

    These numbers include material distributed by FEMA and also those sold by private distributors under direction from FEMA. They include materials both delivered to and en route to states.

    States have purchased PPE directly in addition to receiving PPE from FEMA or directed there by the agency, and this data only includes the latter categories.

    FEMA also distributed and directed the distribution of gear to U.S. territories in addition to states, which are included in FEMA’s release linked below, but not are not included in this data.

    FEMA has publicly distributed its breakdown of PPE delivery by state for May and June. FEMA did not provide comprehensive numbers for each state before May.

    These numbers are cumulative, meaning that the numbers for May include items of PPE distributed prior to May 14, dating to when the agency began allocations on March 1. The June numbers include the May numbers and any new PPE distributions since then.

    The population column, which was used to calculate the numbers of PPE items per state, came from data from the U.S Census Bureau. Since the Census releases annual population data, population data from 2019 was used for each state.

    The numbers of coronavirus cases were pulled from the data released daily by Johns Hopkins University as of the dates that FEMA released its distribution numbers — May 14 and June 10.

    Caveats

    The data includes amounts of gear that had been delivered to the states or were en route as of the reporting dates.

    All PPE item numbers above 1 million were rounded to the nearest hundred thousand by FEMA, but numbers lower than that were not rounded.

    In some cases, gear headed to a state was rerouted because it was needed more somewhere else or a state decided it did not need it. In some instances, that resulted in states having higher numbers for certain supplies in May than in June.

  6. Table_1_COVID-19 Infection Among Healthcare Workers: Serological Findings...

    • frontiersin.figshare.com
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ariel D. Stock; Edward R. Bader; Phillip Cezayirli; Julio Inocencio; Samantha A. Chalmers; Reza Yassari; Vijay Yanamadala; Emad Eskandar (2023). Table_1_COVID-19 Infection Among Healthcare Workers: Serological Findings Supporting Routine Testing.docx [Dataset]. http://doi.org/10.3389/fmed.2020.00471.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Ariel D. Stock; Edward R. Bader; Phillip Cezayirli; Julio Inocencio; Samantha A. Chalmers; Reza Yassari; Vijay Yanamadala; Emad Eskandar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A growing body of evidence demonstrates that asymptomatic and pre-symptomatic transmission of SARS-CoV-2 is a major contributor to the COVID-19 pandemic. Frontline healthcare workers in COVID-19 hotspots have faced numerous challenges, including shortages of personal protective equipment (PPE) and difficulties acquiring clinical testing. The magnitude of the exposure of healthcare workers and the potential for asymptomatic transmission makes it critical to understand the incidence of infection in this population. To determine the prevalence of asymptomatic SARS-CoV-2 infection amongst healthcare workers, we studied frontline staff working in the Montefiore Health System in New York City. All participants were asymptomatic at the time of testing and were tested by RT-qPCR and for anti-SARS-CoV-2 antibodies. The medical, occupational, and COVID-19 exposure histories of participants were recorded via questionnaires. Of the 98 asymptomatic healthcare workers tested, 19 (19.4%) tested positive by RT-qPCR and/or ELISA. Within this group, four (4.1%) were RT-qPCR positive, and four (4.1%) were PCR and IgG positive. Notably, an additional 11 (11.2%) individuals were IgG positive without a positive PCR. Two PCR positive individuals subsequently developed COVID-19 symptoms, while all others remained asymptomatic at 2-week follow-up. These results indicate that there is considerable asymptomatic infection with SARS-CoV-2 within the healthcare workforce, despite current mitigation policies. Furthermore, presuming that asymptomatic staff are not carrying SARS-CoV-2 is inconsistent with our results, and this could result in amplified transmission within healthcare settings. Consequently, aggressive testing regiments, such as testing frontline healthcare workers on a regular, multi-modal basis, may be required to prevent further spread within the workforce and to patients.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html

Coronavirus (Covid-19) Data in the United States

Explore at:
Dataset provided by
New York Times
Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu