Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterDESCRIPTION
Johns Hopkins' county-level COVID-19 case and death data, paired with population and rates per 100,000
SUMMARY Updates April 9, 2020 The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County. April 20, 2020 Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well. April 29, 2020 The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
Overview The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Queries Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
Interactive Embed Code
Caveats This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website. In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules. In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county" This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members. Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates. Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey. The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories --...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Geostatistics analyzes and predicts the values associated with spatial or spatial-temporal phenomena. It incorporates the spatial (and in some cases temporal) coordinates of the data within the analyses. It is a practical means of describing spatial patterns and interpolating values for locations where samples were not taken (and measures the uncertainty of those values, which is critical to informed decision making). This archive contains results of geostatistical analysis of COVID-19 case counts for all available US counties. Test results were obtained with ArcGIS Pro (ESRI). Sources are state health departments, which are scraped and aggregated by the Johns Hopkins Coronavirus Resource Center and then pre-processed by MappingSupport.com.
This update of the Zenodo dataset (version 6) consists of three compressed archives containing geostatistical analyses of SARS-CoV-2 testing data. This dataset utilizes many of the geostatistical techniques used in previous versions of this Zenodo archive, but has been significantly expanded to include analyses of up-to-date U.S. COVID-19 case data (from March 24th to September 8th, 2020):
Archive #1: “1.Geostat. Space-Time analysis of SARS-CoV-2 in the US (Mar24-Sept6).zip” – results of a geostatistical analysis of COVID-19 cases incorporating spatially-weighted hotspots that are conserved over one-week timespans. Results are reported starting from when U.S. COVID-19 case data first became available (March 24th, 2020) for 25 consecutive 1-week intervals (March 24th through to September 6th, 2020). Hotspots, where found, are reported in each individual state, rather than the entire continental United States.
Archive #2: "2.Geostat. Spatial analysis of SARS-CoV-2 in the US (Mar24-Sept8).zip" – the results from geostatistical spatial analyses only of corrected COVID-19 case data for the continental United States, spanning the period from March 24th through September 8th, 2020. The geostatistical techniques utilized in this archive includes ‘Hot Spot’ analysis and ‘Cluster and Outlier’ analysis.
Archive #3: "3.Kriging and Densification of SARS-CoV-2 in LA and MA.zip" – this dataset provides preliminary kriging and densification analysis of COVID-19 case data for certain dates within the U.S. states of Louisiana and Massachusetts.
These archives consist of map files (as both static images and as animations) and data files (including text files which contain the underlying data of said map files [where applicable]) which were generated when performing the following Geostatistical analyses: Hot Spot analysis (Getis-Ord Gi*) [‘Archive #1’: consecutive weeklong Space-Time Hot Spot analysis; ‘Archive #2’: daily Hot Spot Analysis], Cluster and Outlier analysis (Anselin Local Moran's I) [‘Archive #2’], Spatial Autocorrelation (Global Moran's I) [‘Archive #2’], and point-to-point comparisons with Kriging and Densification analysis [‘Archive #3’].
The Word document provided ("Description-of-Archive.Updated-Geostatistical-Analysis-of-SARS-CoV-2 (version 6).docx") details the contents of each file and folder within these three archives and gives general interpretations of these results.
Facebook
TwitterAs of March 10, 2023, the state with the highest number of COVID-19 cases was California. Almost 104 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time. When the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide has now reached over 669 million.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. People aged 85 years and older have accounted for around 27 percent of all COVID-19 deaths in the United States, although this age group makes up just two percent of the U.S. population
Facebook
TwitterAs of March 10, 2023, the state with the highest rate of COVID-19 cases was Rhode Island followed by Alaska. Around 103.9 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers of infections.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak as a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time; when the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide is roughly 683 million, and it has affected almost every country in the world.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. Those aged 85 years and older have accounted for around 27 percent of all COVID deaths in the United States, although this age group makes up just two percent of the total population
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
In summer 2020, SARS-CoV-2 was detected on mink farms in Utah. An interagency One Health response was initiated to assess the extent of the outbreak and included sampling animals from or near affected mink farms and testing them for SARS-CoV-2 and non-SARS coronaviruses. Among the 365 animals sampled, including domestic cats, mink, rodents, raccoons, and skunks, 261 (72%) of the animals harbored at least one coronavirus at the time. Among the samples which could be further characterized, 126 alphacoronaviruses and 88 betacoronaviruses (including 74 detections of SARS-CoV-2) were identified. Moreover, at least 10% (n=27) of the corona-virus-positive animals were found to be co-infected with more than one coronavirus. Our findings indicate an unexpectedly high prevalence of coronavirus among the domestic and wild animals tested on mink farms and raise the possibility that commercial animal husbandry operations could be potential hot spots for future trans-species viral spillover and ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attributes of prospective space-time clusters (hotspots) for COVID-19 from 1/23-3/31/2020 at the county level.
Facebook
TwitterBy Kristen Honey, Chief Data Scientist and COVID-19 Diagnostics Informatics Lead, COVID-19 Testing and Diagnostics Working Group (TDWG); Joshua Prasad, Director of Health Equity Innovation, Office of the Chief Data Officer (OCDO), Jack Bastian, Data Engineer, HHS Protect, Office of the Chief Data Officer (OCDO)
Facebook
TwitterBackgroundThe coronavirus disease 2019 (COVID-19) pandemic is disrupting routine medical care of cancer patients, including those who have cancer or are undergoing cancer screening. In this study, breast cancer management during the COVID-19 pandemic (BCMP) is reviewed, and the research trends of BCMP are evaluated by quantitative and qualitative evaluation.MethodsIn this study, published studies relating to BCMP from 1 January 2020 to 1 April 2022 were searched from the Web of Science database (WoS). Bibliometric indicators consisted of publications, research hotspots, keywords, authors, journals, institutions, nations, and h-index.ResultsA total of 182 articles investigating BCMP were searched. The United States of America and the University of Rome Tor Vergata were the nation and the institution with the most publications on BCMP. The first three periodicals with leading published BCMP studies were Breast Cancer Research and Treatment, Breast, and In Vivo. Buonomo OC was the most prolific author in this field, publishing nine articles (9/182, 4.94%). The co-keywords analysis of BCMP suggests that the top hotspots and trends in research are screening, surgery, rehabilitation, emotion, diagnosis, treatment, and vaccine management of breast cancer during the pandemic. The hotspot words were divided into six clusters, namely, screening for breast cancer patients in the pandemic, breast cancer surgery in the pandemic, recovery of breast cancer patients in the pandemic, motion effect of the outbreak on breast cancer patients, diagnosis and treatment of breast cancer patients in the pandemic, and vaccination management for breast cancer patients during a pandemic.ConclusionBCMP has received attention from scholars in many nations over the last 3 years. This study revealed significant contributions to BCMP research by nations, institutions, scholars, and journals. The stratified clustering study provided the current status and future trends of BCMP to help physicians with the diagnosis and treatment of breast cancer through the pandemic, and provide a reference for in-depth clinical studies on BCMP.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundCoronavirus disease 2019 (COVID-19) emerged in 2019 and has since caused a global pandemic. Since its emergence, COVID-19 has hugely impacted healthcare, including pediatrics. This study aimed to explore the current status and hotspots of pediatric COVID-19 research using bibliometric analysis.MethodsThe Institute for Scientific Information Web of Science core collection database was searched for articles on pediatric COVID-19 to identify original articles that met the criteria. The retrieval period ranged from the creation of the database to September 20, 2021. A total of 3,561 original articles written in English were selected to obtain data, such as author names, titles, source publications, number of citations, author affiliations, and countries where the studies were conducted. Microsoft Excel (Microsoft, Redmond, WA) was used to create charts related to countries, authors, and institutions. VOSviewer (Center for Science and Technology Studies, Leiden, The Netherlands) was used to create visual network diagrams of keyword, author, and country co-occurrence.ResultsWe screened 3,561 publications with a total citation frequency of 30,528. The United States had the most published articles (1188 articles) and contributed the most with author co-occurrences. The author with the most published articles was Villani from the University of Padua, Italy. He also contributed the most co-authored articles. The most productive institution was Huazhong University of Science and Technology in China. The institution with the most frequently cited published articles was Shanghai Jiao Tong University in China. The United States cooperated most with other countries. Research hotspots were divided into two clusters: social research and clinical research. Besides COVID-19 and children, the most frequent keywords were pandemic (251 times), mental health (187 times), health (172 times), impact (148 times), and multisystem inflammatory syndrome in children (MIS-C) (144 times).ConclusionPediatric COVID-19 has attracted considerable attention worldwide, leading to a considerable number of articles published over the past 2 years. The United States, China, and Italy have leading roles in pediatric COVID-19 research. The new research hotspot is gradually shifting from COVID-19 and its related clinical studies to studies of its psychological and social impacts on children.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Background: In early 2020, the Coronavirus Disease 2019 (COVID-19) rapidly spread across the United States (US), exhibiting significant geographic variability. While several studies have examined the predictive relationships of differing factors on COVID-19, few have looked at spatiotemporal variation of COVID-19 deaths at refined geographic scales. Methods: The objective of this analysis is to examine the spatiotemporal variation in COVID-19 deaths with respect to socioeconomic, health, demographic, and political factors. We use multivariate regression applied to Health and Human Services (HHS) regions as well as nationwide county-level geographically weighted random forest (GWRF) models. Analyses were performed on data from three separate time frames which correspond to the spread of distinct viral variants in the US: pandemic onset until May 2021, May 2021 through November 2021, and December 2021 until April 2022. Spatial autocorrelation was additionally examined using a local and global Moran’s I test statistic. Results: Multivariate regression results for all regions across three time windows suggest that existing measures of social vulnerability for disaster preparedness (SVI) are predictive of a higher degree of mortality from COVID-19. In comparison, GWRF models provide a more robust evaluation of feature importance and prediction, exposing the value of local features for prediction, such as obesity, which is obscured by coarse-grained analysis. Spatial autocorrelation indicates positive spatial clustering,with a progression from positively clustered low deaths for liberal counties (cold spots) to positively clustered high deaths for conservative counties (hot spots). Conclusion: GWRF results indicate that a more nuanced modeling strategy is useful for determining spatial variation versus regional modeling approaches which may not capture feature clustering along border areas. Spatially explicit modeling approaches, such as GWRF, provide a more robust feature importance assessment of sociodemographic risk factors in predicting COVID-19 mortality. Methods The attached zip file contains the full GitHub repository, which includes data, the supplemental code, and an output HTML. The GitHub repository can be additionally viewed at: http://github.com/erichseamon/COVIDriskpaper. A README is provided as part of the repository, which describes each dataset, including all variable names and their unit of measure. All data used to generate the supplemental materials is located in the /data folder.
Facebook
Twitterhttps://www.immport.org/agreementhttps://www.immport.org/agreement
Background: Households are hot spots for severe acute respiratory syndrome coronavirus 2 transmission. Methods: This prospective study enrolled 100 coronavirus disease 2019 (COVID-19) cases and 208 of their household members in North Carolina though October 2020, including 44% who identified as Hispanic or non-White. Households were enrolled a median of 6 days from symptom onset in the index case. Incident secondary cases within the household were detected using quantitative polymerase chain reaction of weekly nasal swabs (days 7, 14, 21) or by seroconversion at day 28. Results: Excluding 73 household contacts who were PCR-positive at baseline, the secondary attack rate (SAR) among household contacts was 32% (33 of 103; 95% confidence interval [CI], 22%-44%). The majority of cases occurred by day 7, with later cases confirmed as household-acquired by viral sequencing. Infected persons in the same household had similar nasopharyngeal viral loads (intraclass correlation coefficient = 0.45; 95% CI, .23-.62). Households with secondary transmission had index cases with a median viral load that was 1.4 log10 higher than those without transmission (P = .03), as well as higher living density (more than 3 persons occupying fewer than 6 rooms; odds ratio, 3.3; 95% CI, 1.02-10.9). Minority households were more likely to experience high living density and had a higher risk of incident infection than did White households (SAR, 51% vs 19%; P = .01). Conclusions: Household crowding in the context of high-inoculum infections may amplify the spread of COVID-19, potentially contributing to disproportionate impact on communities of color.
Facebook
TwitterAs of May 2, 2023, Brazil was the country with the highest number of confirmed cases of COVID-19 in Latin America and the fifth highest in the world, reaching over 37 million patients. By state, São Paulo ranked first, with more than 6.6 million confirmed cases of the disease as of September 21, 2023. Minas Gerais followed, with over 4.2 million confirmed cases of coronavirus. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study examines aggregate crime rates and the spatial distribution of violence against women (VAW) both before and after the COVID-19 pandemic. It also explores the influence of socioeconomic and situational factors on these trends. The analysis assesses potential variations across different pandemic phases by addressing the following research questions: (1) Did VAW incident rates change during the different pandemic phases? (2) Did the spatial distribution of VAW incidents per municipality in Colombia change before, during, and after the pandemic? and (3) What key determinants significantly impacted VAW rates during the study period? Given the documented global rise in domestic and intimate partner violence against women during the pandemic, we hypothesized an increase in VAW incidents in Colombia from 2020 to 2022. Furthermore, based on existing literature, we predicted that urban municipalities, poverty, lack of education, coca cultivation, and the presence of non-state armed actors would predict higher VAW at the municipality level. Finally, we expected statistically significant VAW hot spots to remain consistent at the municipality level throughout the pandemic stages, due to persistent underlying risk factors in these areas. The findings revealed a significant post-quarantine decrease in VAW incidents, followed by a significant increase after the economy's gradual reopening in September 2020. Notably, the geographical distribution of VAW remained consistent, with persistent 'hot spot' concentrations in the same areas across all study periods. Furthermore, urbanization and higher general violent crime rates consistently predicted higher VAW rates. Conversely, the presence of armed groups and coca production were significant negative predictors, while education's impact on VAW rates was mixed.
Facebook
TwitterAs coronavirus cases have exploded across the country, states have struggled to obtain sufficient personal protective equipment such as masks, face shields, gloves and ventilators to meet the needs of healthcare workers. FEMA began distributing PPE from the national stockpile as well as PPE obtained from private manufacturers to states in March.
Initially, FEMA distributed materials based primarily on population. By late March, Its methods changed to send more PPE to hotspot locations, and FEMA claimed these decisions were data-driven and need-based. By late spring, the agency was considering requests from states as well.
Although all U.S. states and territories have received some amount of PPE from FEMA, the amounts of PPE states have per capita and per positive COVID-19 case vary widely.
The AP used this data in a story that ran July 7.
These numbers include material distributed by FEMA and also those sold by private distributors under direction from FEMA. They include materials both delivered to and en route to states.
States have purchased PPE directly in addition to receiving PPE from FEMA or directed there by the agency, and this data only includes the latter categories.
FEMA also distributed and directed the distribution of gear to U.S. territories in addition to states, which are included in FEMA’s release linked below, but not are not included in this data.
FEMA has publicly distributed its breakdown of PPE delivery by state for May and June. FEMA did not provide comprehensive numbers for each state before May.
These numbers are cumulative, meaning that the numbers for May include items of PPE distributed prior to May 14, dating to when the agency began allocations on March 1. The June numbers include the May numbers and any new PPE distributions since then.
The population column, which was used to calculate the numbers of PPE items per state, came from data from the U.S Census Bureau. Since the Census releases annual population data, population data from 2019 was used for each state.
The numbers of coronavirus cases were pulled from the data released daily by Johns Hopkins University as of the dates that FEMA released its distribution numbers — May 14 and June 10.
The data includes amounts of gear that had been delivered to the states or were en route as of the reporting dates.
All PPE item numbers above 1 million were rounded to the nearest hundred thousand by FEMA, but numbers lower than that were not rounded.
In some cases, gear headed to a state was rerouted because it was needed more somewhere else or a state decided it did not need it. In some instances, that resulted in states having higher numbers for certain supplies in May than in June.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionAs the first bibliometric analysis of COVID-19 and immune responses, this study will provide a comprehensive overview of the latest research advances. We attempt to summarize the scientific productivity and cooperation across countries and institutions using the bibliometric methodology. Meanwhile, using clustering analysis of keywords, we revealed the evolution of research hotspots and predicted future research focuses, thereby providing valuable information for the follow-up studies.MethodsWe selected publications on COVID-19 and immune response using our pre-designed search strategy. Web of Science was applied to screen the eligible publications for subsequent bibliometric analyses. GraphPad Prism 8.0, VOSviewer, and CiteSpace were applied to analyze the research trends and compared the contributions of countries, authors, institutions, and journals to the global publications in this field.ResultsWe identified 2,200 publications on COVID-19 and immune response published between December 1, 2019, and April 25, 2022, with a total of 3,154 citations. The United States (611), China (353), and Germany (209) ranked the top three in terms of the number of publications, accounting for 53.3% of the total articles. Among the top 15 institutions publishing articles in this area, four were from France, four were from the United States, and three were from China. The journal Frontiers in Immunology published the most articles (178) related to COVID-19 and immune response. Alessandro Sette (31 publications) from the United States were the most productive and influential scholar in this field, whose publications with the most citation frequency (3,633). Furthermore, the development and evaluation of vaccines might become a hotspot in relevant scope.ConclusionsThe United States makes the most indispensable contribution in this field in terms of publication numbers, total citations, and H-index. Although publications from China also take the lead regarding quality and quantity, their international cooperation and preclinical research need to be further strengthened. Regarding the citation frequency and the total number of published articles, the latest research progress might be tracked in the top-ranking journals in this field. By analyzing the chronological order of the appearance of retrieved keywords, we speculated that vaccine-related research might be the novel focus in this field.
Facebook
TwitterAs of March 2020, Iran accounted for the largest number of coronavirus (COVID-19) cases in the Middle East and North Africa at 32,332 cases. The United Arab Emirates was the first country in the region to report a coronavirus-positive case following the outbreak in China.
Iran Iran’s first coronavirus case was discovered on February 19th and since then the increase in speed of transmission has been exponential. Whilst this first case occurred in the province of Qom, the main hotspot for infection in Iran is the densely populated greater Tehran region.
Global context
To date over 665.9 thousand people worldwide have been infected by the coronavirus (COVID-19). About 142.4 thousand people have since recovered. Over 30 thousand people have died. Though a majority of people infected with the coronavirus will only experience light cold or flu symptoms, it can also lead to pneumonia, multi organ failure and other life-threatening complications, particularly putting people with pre-existing conditions and the elderly at risk. Currently the United States are experiencing the highest number of reported coronavirus infections, followed by Italy and then China.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Last updated April 6rd, 2020
Guatemala is a small, beautiful country in Central America. Although far away from the hotspot in Wuhan, China, the first coronavirus patient was confirmed on March 13th, 2020. Government response was immediate and strong measures were taken from the beginning, but health infrastructure is not as developed as in Spain, France, Italy or US putting citizens at greater risk. Being aware of the havoc and struggle coronavirus has created around the world, we want to:
At the moment we have collected confirmed patient information including: age, sex, nationality, infection cause, infection date and others. Find an full english description of the data in the file README_en.md, and a spanish description in the file README_es.md (una descripción completa en español en el archivo README_es.md)
We hope to add more data as it becomes available from official sources.
We want to thank to all members and volunteers that are taking hours from their busy schedules to put this dataset together.
Banner photo is Semuc Champey, an astonishing natural spot in the northern region of Guatemala. Photo by Christopher Crouzet on Unsplash.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectivesInfluenza co-infection, characterized by concurrent or sequential infection with influenza and other pathogens, lacks comprehensive quantitative analysis. This study evaluates the status, key hotspots, and clinical advancements in influenza co-infection research from 2005 to 2025 to guide future investigations.MethodsWe analyzed articles from 2005 to 2025 sourced from the Web of Science database using R, VOSviewer, and CiteSpace. Concurrently, we extracted clinical trials from PubMed within the same timeframe to assess advancements in the field.ResultsThe study analyzed 3,058 articles, noting a consistent rise in publications on influenza co-infection from 2005 to 2025, with a significant spike between 2020 and 2021. The United States led in publication numbers, followed by China, Germany, the United Kingdom, and France. Among these, the United Kingdom exhibited the highest international collaboration. Key collaborative centers included the Centers for Disease Control and Prevention, Emory University, and St. Jude Children's Research Hospital. “PLOS ONE” and “BMC Infectious Diseases” published the most articles, while “Journal of Virology” and “Journal of Infectious Diseases” were the most cited. Keywords such as “infection”, “virus”, “COVID-19”, “children”, and “respiratory syncytial virus” highlighted research hotspots and emerging trends in influenza co-infection. The study of pathogenic mechanisms and immune interactions in influenza-bacterial co-infection remains crucial. The COVID-19 pandemic has intensified research on the epidemiological shifts and clinical impacts of co-infection. Emphasis has also been placed on the significance of pediatric populations in influenza and respiratory viral co-infections. Clinical trials have mainly targeted preventive strategies for high-risk groups and the effects of influenza vaccination on the respiratory microbiome.ConclusionThis study comprehensively analyzes the current research landscape and identifies key hotspots in influenza co-infection. The findings offer crucial guidance for future studies in this field.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The first case of the COVID-19 pandemic in Kerala (which was also the first in all of India) was confirmed in Thrissur on 30 January 2020.The number of active cases initially peaked at 266 on 6 April before declining. For the first time in over 45 days, there were no new cases on 1 May.However, following the return of Keralites from other countries and states, more cases were reported in mid-May, with the biggest single-day spike (195 cases) on 27 June. As of 30 June, there have been 4442 confirmed cases with 2304 (51.87%) recoveries and 24 deaths in the state.Kerala has one of the lowest mortality rate of 0.53% among all states in India.Kerala's success in containing COVID-19 has been widely praised both nationally and internationally.
Patients age details in AgeInterval.csv file District wise Patient details in DistictData.csv file. List of Active Hotspots across kerala Hotspots.csv. Detais of infection type in InfectionType.csv file. List of Peoples in Observations across Kerala Observations.csv. Complete patient details in PatientData.csv file. Increase in Day by day Sum_by_Day.csv. List of Peoples in Quarantine in quarrentine.csv
Thanks to covid19kerala.info for making the data available to general public.
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.