The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
As of March 10, 2023, the state with the highest number of COVID-19 cases was California. Almost 104 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time. When the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide has now reached over 669 million.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. People aged 85 years and older have accounted for around 27 percent of all COVID-19 deaths in the United States, although this age group makes up just two percent of the U.S. population
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
As of March 10, 2023, the state with the highest rate of COVID-19 cases was Rhode Island followed by Alaska. Around 103.9 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers of infections.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak as a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time; when the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide is roughly 683 million, and it has affected almost every country in the world.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. Those aged 85 years and older have accounted for around 27 percent of all COVID deaths in the United States, although this age group makes up just two percent of the total population
Daily count of NYC residents who tested positive for SARS-CoV-2, who were hospitalized with COVID-19, and deaths among COVID-19 patients.
Note that this dataset currently pulls from https://raw.githubusercontent.com/nychealth/coronavirus-data/master/trends/data-by-day.csv on a daily basis.
As a result of 2020's coronavirus (COVID-19) crisis, many consumers in the United States cut back on less essential expenses, such as dining out, travelling, as well as health and beauty spending. That year, an estimated ** percent of the country's millennials have reduced the amount of money they usually spend on restaurants.
https://www.icpsr.umich.edu/web/ICPSR/studies/38737/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38737/terms
In the context of COVID-19, RAND and the Robert Wood Johnson Foundation partnered again to build from the National Survey of Health Attitudes to implement a longitudinal survey to understand how these health views and values have been affected by the experience of the pandemic, with particular focus on populations deemed vulnerable or underserved, including people of color and those from low- to moderate-income backgrounds. The questions in this COVID-19 survey focused specifically on experiences related to the pandemic (e.g., financial, physical, emotional), how respondents viewed the disproportionate impacts of the pandemic, whether and how respondents' views and priorities regarding health actions and investments are changing (including the roles of government and the private sector), and how general values about such issues as freedom and racism may be related to pandemic views and response expectations. This study includes the results for Wave 4 for the general population. Demographic information includes sex, marital status, household size, race and ethnicity, family income, employment status, age, and census region.
https://www.usa.gov/government-works/https://www.usa.gov/government-works/
This dataset provides State-by-state data on United States COVID-19 vaccinations between 20 December of 2020 and 12 January of 2022. Data is taken daily by the United States Centers for Disease Control and Prevention
- location: State name.
- date: date of the case.
- total_vaccinations: total number of doses administered. This is counted as a single dose, and may not equal the total number of people vaccinated, depending on the specific dose regime (e.g. people receive multiple doses). If a person receives one dose of the vaccine, this metric goes up by 1. If they receive a second dose, it goes up by 1 again.
- total_vaccinations_per_hundred: total_vaccinations per 100 people in the total population of the state.
- daily_vaccinations_raw: daily change in the total number of doses administered. It is only calculated for consecutive days. This is a raw measure provided for data checks and transparency, but we strongly recommend that any analysis on daily vaccination rates be conducted using daily_vaccinations instead.
- daily_vaccinations: new doses administered per day (7-day smoothed). For countries that don't report data on a daily basis, we assume that doses changed equally on a daily basis over any periods in which no data was reported. This produces a complete series of daily figures, which is then averaged over a rolling 7-day window. An example of how we perform this calculation can be found here.
- daily_vaccinations_per_million: daily_vaccinations per 1,000,000 people in the total population of the state.
- people_vaccinated: total number of people who received at least one vaccine dose. If a person receives the first dose of a 2-dose vaccine, this metric goes up by 1. If they receive the second dose, the metric stays the same.
- people_vaccinated_per_hundred: people_vaccinated per 100 people in the total population of the state.
- people_fully_vaccinated: total number of people who received all doses prescribed by the vaccination protocol. If a person receives the first dose of a 2-dose vaccine, this metric stays the same. If they receive the second dose, the metric goes up by 1.
- people_fully_vaccinated_per_hundred: people_fully_vaccinated per 100 people in the total population of the state.
- total_distributed: cumulative counts of COVID-19 vaccine doses recorded as shipped in CDC's Vaccine Tracking System.
- total_distributed_per_hundred: cumulative counts of COVID-19 vaccine doses recorded as shipped in CDC's Vaccine Tracking System per 100 people in the total population of the state.
- share_doses_used: share of vaccination doses administered among those recorded as shipped in CDC's Vaccine Tracking System.
Data as of: May 18, 2021
The COVID Tracking Project was a volunteer organization launched from The Atlantic and dedicated to collecting and publishing the data required to understand the COVID-19 outbreak in the United States. Our dataset was in use by national and local news organizations across the United States and by research projects and agencies worldwide. On August 12, 2020, we launched the Long-Term-Care COVID Tracker with weekly data back to May 28, 2020, but the work of compiling the dataset began much earlier. In mid-April 2020, a team within The COVID Tracking Project started collecting long-term care data from every state that reported it. The aim of our work on long-term-care (LTC) data was to ensure that the pandemic’s impact on residents and workers in a broad range of LTC facilities was entered into the historical record. Every Thursday evening until March 4, 2021, this dedicated team of volunteers gathered COVID-19 case and death data of long-term-care facility residents and staff from state a...
The AP has requested a timeseries dataset reporting daily counts for distributed and administered vaccines in the U.S. from the CDC. In the absence of that dataset, we are storing daily snapshots of the cumulative counts provided by the CDC COVID Data Tracker and compiling a timeseries dataset here. This process has captured cumulative counts going back to January 4th and daily counts of new doses administered and distributed going back to January 5th. The timeseries dataset also includes seven-day rolling average calculations for the daily metrics.
We have identified a few instances of decreasing cumulative counts in this timeseries, which result in single-day negative counts. We are treating these instances as corrections, and include the negative counts in the rolling averages.
We are investigating the cumulative count decreases and will update the timeseries dataset if necessary with additional information from the CDC. When the CDC provides its own timeseries dataset we will make that available here.
The AP is using data provided by the Centers for Disease Control and Prevention to report vaccine doses distributed and administered in the United States.
This data is from the CDC's COVID Data Tracker, which is updated daily. However, keep in mind that healthcare providers can report doses to federal, state, territorial, and local agencies up to 72 hours after doses are administered.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
The AP has designed an interactive map to track COVID-19 vaccine counts reported by The CDC. @(https://interactives.ap.org/embeds/TUVpf/14/)
<iframe title="Tracking US COVID vaccinations" aria-label="Map" id="datawrapper-chart-TUVpf" src="https://interactives.ap.org/embeds/TUVpf/14/" scrolling="no" width="100%" style="border:none" height="548"></iframe><script type="text/javascript">!function(){"use strict";window.addEventListener("message",(function(a){if(void 0!==a.data["datawrapper-height"])for(var e in a.data["datawrapper-height"]){var t=document.getElementById("datawrapper-chart-"+e)||document.querySelector("iframe[src*='"+e+"']");t&&(t.style.height=a.data["datawrapper-height"][e]+"px")}}))}();</script>
From The CDC: - Numbers reported on CDC’s website are validated through a submission process with each jurisdiction and may differ from numbers posted on other websites. - Differences between reporting jurisdictions and CDC’s website may occur due to the timing of reporting and website updates. - The process used for reporting doses distributed or people vaccinated displayed by other websites may differ.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
**Description **
COVID-19 is something we all are aware of by now, it has affected almost each and everything humans have had connection with . With the rise in COVID cases worldwide in early 2020, a lot of movement was seen throughout the world, people were sent back to their native countries or places , as a result places such as AIrports, Ports, Stations became highly populated during that period . As a result , the density of traffic in such places (Airports etc.) increased a lot , this dataset gives us the density of traffic in four international airports during the march-2020 period .
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties. This dataset contains the same values used to display information available on the COVID Data Tracker at: https://covid.cdc.gov/covid-data-tracker/#county-view?list_select_state=all_states&list_select_county=all_counties&data-type=CommunityLevels The data are updated weekly.
CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge. Using these data, the COVID-19 community level is classified as low, medium, or high. COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
For more details on the Minnesota Department of Health COVID-19 thresholds, see COVID-19 Public Health Risk Measures: Data Notes (Updated 4/13/22). https://mn.gov/covid19/assets/phri_tcm1148-434773.pdf
Note: This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022. March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released. March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate. March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset. March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases. March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average). March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior. April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
How long should we self-isolate at home to reduce the chances of a second wave of COVID-19? This is a question that billions of people are wondering early 2020 due to the outbreak of the novel coronavirus SARS-CoV-2. This virus can produce a severe pneumonia that has killed over 230,000 people so far, was detected for the first time late 2019 in Wuhan (China), and has spread all over the world due, in part, to the difficulty of detecting and isolating asymptomatic or mild-symptomatic cases. In this paper, we explore how long suppression strategies (i.e., home confinement and social distancing) must be put into practice in highly populated cities to reduce the chances that a quick rebound of COVID-19 infections occur again over the next months. This is explored, using New York City (USA), San Francisco (USA), and Madrid (Spain) as case studies, through a simple but realistic Monte Carlo stochastic model that takes into account that part of the undetected infected individuals remain in circulation propagating the virus. Our simulations reflect that, if suppression strategies are not properly applied, they can be counterproductive because there are high chances that the confinement time has to be lengthened without reducing the total number of infections. We also estimate that, in the most conservative scenario and under the model assumptions, home confinement is effective if applied at least ~110 days in New York City, ~80 days in San Francisco, and ~70 days in Madrid, i.e., until mid-July 2020, early June 2020, and late May 2020, respectively.
In the United States, about a third of surveyed parents of K-12 students stated that the coronavirus (COVID-19) padnemic would have more of an impact on their back-to-school shopping in 2021, when compared to 2020. In contrast, nearly ** percent of parents felt that COVID-19 would have less of an impact on their shopping this year. Overall, feelings on the matter were fairly mixed.
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
https://www.icpsr.umich.edu/web/ICPSR/studies/38578/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38578/terms
In 2019, the National Survey of Early Care and Education (NSECE) team conducted a set of four integrated surveys of 1) households with children under age 13, 2) home-based providers, 3) center-based providers, and 4) the center-based workforce as a cross-sectional follow-up to the original 2012 NSECE. Together they characterize the supply of and demand for early care and education (ECE) in the U.S. and permit better understanding of how well families' needs and preferences mirror providers' offerings and constraints. The NSECE surveys make particular effort to measure the experiences of low-income families, as these families are the focus of a significant component of ECE and school-age public policy. In light of the onset of the COVID-19 pandemic in Spring 2020, the Office of Planning, Research, and Evaluation (OPRE) funded a new data collection effort beginning in 2020 to learn how the pandemic was affecting ECE providers and the individuals who work directly with children in ECE settings. The NSECE project team sought to re-interview center-based providers, center-based workforce members, listed home-based providers, and unlisted and paid home-based providers, who completed surveys in the 2019 NSECE. Households participating in the 2019 NSECE were not included in the NSECE COVID-19 Longitudinal Follow-up. Data collection for the NSECE COVID-19 Longitudinal Follow-up took place across two waves between late 2020 and early 2022. The NSECE was first conducted in 2012. Before that effort, there had been a 20-year long absence of nationally representative data on the use and availability of ECE. The NSECE was conducted again in 2019 to update the information from 2012 and shed light on how the ECE and school-age care landscape changed from 2012 to 2019. The 2019 NSECE followed a similar design as the 2012 survey, including surveying households with children under age 13, home-based providers, center-based providers, and staff working in center-based classrooms. The 2019 NSECE is funded by the Office of Planning, Research, and Evaluation (OPRE) in the Administration for Children and Families (ACF), U.S. Department of Health and Human Services (HHS). The project team is led by NORC at the University of Chicago, with partners Chapin Hall at the University of Chicago and Child Trends, as well as other collaborating individuals and organizations. For additional information about this study, please see: NSECE project page on the OPRE website NSECE study page on NORC's website NSECE Data Users Page For more information, tutorials, and reports related to the NSECE, please visit the Child and Family Data Archive's Data Training Resources from the NSECE page.
The previous highest peak in the reported time interval of COVID-19 hospitalizations was the week ending January 9, 2021. A year later in the week ending January 8, 2022, a new peak was recorded. However, this time hospitalizations were more spread out in the age groups, with those under 65 years making up roughly 60 percent of total hospitalizations, compared to 50 percent back in January 2021. This statistic illustrates the weekly number of COVID-19 associated hospitalizations in the United States from the week ending March 7, 2020 to February 5, 2022, by age group.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States SBP: AK: Back to Usual Operations: 1 Mos or Less data was reported at 11.700 % in 20 Sep 2020. This records a decrease from the previous number of 16.300 % for 06 Sep 2020. United States SBP: AK: Back to Usual Operations: 1 Mos or Less data is updated weekly, averaging 12.200 % from Aug 2020 (Median) to 20 Sep 2020, with 3 observations. The data reached an all-time high of 16.300 % in 06 Sep 2020 and a record low of 11.700 % in 20 Sep 2020. United States SBP: AK: Back to Usual Operations: 1 Mos or Less data remains active status in CEIC and is reported by US Census Bureau. The data is categorized under Global Database’s United States – Table US.S025: Small Business Pulse Survey: by State: West Region. [COVID-19-IMPACT]
As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had spread to almost every country in the world, and more than 6.86 million people had died after contracting the respiratory virus. Over 1.16 million of these deaths occurred in the United States.
Waves of infections Almost every country and territory worldwide have been affected by the COVID-19 disease. At the end of 2021 the virus was once again circulating at very high rates, even in countries with relatively high vaccination rates such as the United States and Germany. As rates of new infections increased, some countries in Europe, like Germany and Austria, tightened restrictions once again, specifically targeting those who were not yet vaccinated. However, by spring 2022, rates of new infections had decreased in many countries and restrictions were once again lifted.
What are the symptoms of the virus? It can take up to 14 days for symptoms of the illness to start being noticed. The most commonly reported symptoms are a fever and a dry cough, leading to shortness of breath. The early symptoms are similar to other common viruses such as the common cold and flu. These illnesses spread more during cold months, but there is no conclusive evidence to suggest that temperature impacts the spread of the SARS-CoV-2 virus. Medical advice should be sought if you are experiencing any of these symptoms.
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.