100+ datasets found
  1. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.cdc.gov
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/w/3rge-nu2a/tdwk-ruhb?cur=9Dqe1nvydOt
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

  2. COVID-19 Post-Vaccination Infection Data (ARCHIVED)

    • data.chhs.ca.gov
    • data.ca.gov
    • +4more
    csv, xlsx, zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Post-Vaccination Infection Data (ARCHIVED) [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-post-vaccination-infection-data
    Explore at:
    csv(38212), zip, csv(90508), csv(78921), xlsx(11056)Available download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Note: This dataset is no longer being updated due to the end of the COVID-19 Public Health Emergency.

    The California Department of Public Health (CDPH) is identifying vaccination status of COVID-19 cases, hospitalizations, and deaths by analyzing the state immunization registry and registry of confirmed COVID-19 cases. Post-vaccination cases are individuals who have a positive SARS-Cov-2 molecular test (e.g. PCR) at least 14 days after they have completed their primary vaccination series.

    Tracking cases of COVID-19 that occur after vaccination is important for monitoring the impact of immunization campaigns. While COVID-19 vaccines are safe and effective, some cases are still expected in persons who have been vaccinated, as no vaccine is 100% effective. For more information, please see https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/Post-Vaccine-COVID19-Cases.aspx

    Post-vaccination infection data is updated monthly and includes data on cases, hospitalizations, and deaths among the unvaccinated and the vaccinated. Partially vaccinated individuals are excluded. To account for reporting and processing delays, there is at least a one-month lag in provided data (for example data published on 9/9/22 will include data through 7/31/22).

    Notes:

    • On September 9, 2022, the post-vaccination data has been changed to compare unvaccinated with those with at least a primary series completed for persons age 5+. These data will be updated monthly (first Thursday of the month) and include at least a one month lag.

    • On February 2, 2022, the post-vaccination data has been changed to distinguish between vaccination with a primary series only versus vaccinated and boosted. The previous dataset has been uploaded as an archived table. Additionally, the lag on this data has been extended to 14 days.

    • On November 29, 2021, the denominator for calculating vaccine coverage has been changed from age 16+ to age 12+ to reflect new vaccine eligibility criteria. The previous dataset based on age 16+ denominators has been uploaded as an archived table.

  3. COVID-19 Outcomes by Vaccination Status

    • kaggle.com
    zip
    Updated Jul 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaushik D (2024). COVID-19 Outcomes by Vaccination Status [Dataset]. https://www.kaggle.com/datasets/kirbysasuke/covid-19
    Explore at:
    zip(90174 bytes)Available download formats
    Dataset updated
    Jul 2, 2024
    Authors
    Kaushik D
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    NOTE: This dataset has been retired and marked as historical-only.

    Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age.

    Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine.

    Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS).

    Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death.

    Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test.

    CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset.

    Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000.

    Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people.

    Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population.

    Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019.

    All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week.

    Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.

    For all datasets related to COVID-19, see https://data.cityofchic

  4. Deaths Involving COVID-19 by Vaccination Status

    • open.canada.ca
    • gimi9.com
    • +1more
    csv, docx, html, xlsx
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://open.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    docx, csv, html, xlsxAvailable download formats
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  5. o

    COVID-19 Vaccine Data in Ontario

    • data.ontario.ca
    • datasets.ai
    • +1more
    csv, txt, xlsx
    Updated Dec 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Health (2024). COVID-19 Vaccine Data in Ontario [Dataset]. https://data.ontario.ca/dataset/covid-19-vaccine-data-in-ontario
    Explore at:
    csv(40072), xlsx(20450), csv(1303887), csv(18214), csv(49841043), csv(101259), txt(8365), xlsx(21260), csv(7350)Available download formats
    Dataset updated
    Dec 13, 2024
    Dataset authored and provided by
    Health
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Nov 14, 2024
    Area covered
    Ontario
    Description

    **Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool **

    As of January 26, 2023, the population counts are based on Statistics Canada’s 2021 estimates. The coverage methodology has been revised to calculate age based on the current date and deceased individuals are no longer included. The method used to count daily dose administrations has changed is now based on the date delivered versus the day entered into the data system. Historical data has been updated.

    Please note that Cases by Vaccination Status data will no longer be published as of June 30, 2022.

    Please note that case rates by vaccination status and age group data will no longer be published as of July 13, 2022.

    Please note that Hospitalization by Vaccination Status data will no longer be published as of June 30, 2022.

    Learn more about COVID-19 vaccines.

    Data includes:

    • daily and total doses administered
    • individuals with at least one dose
    • individuals fully vaccinated
    • total doses given to fully vaccinated individuals
    • vaccinations by age
    • percentage of age group
    • individuals with at least one dose, by PHU, by age group
    • individuals fully vaccinated, by PHU, by age group
    • COVID-19 cases by status: not fully vaccinated, fully vaccinated, vaccinated with booster
    • individuals in hospital due to COVID-19 (excluding ICU) by status: unvaccinated, partially vaccinated, fully vaccinated
    • individuals in ICU due to COVID-19 by status: unvaccinated, partially vaccinated, fully vaccinated, unknown
    • rate of COVID-19 cases per 100,000 by status and age group
    • rate per 100,000 (7-day average) by status and age group

    All data reflects totals from 8 p.m. the previous day.

    This dataset is subject to change.

    Additional notes

    • Data entry of vaccination records is still in progress, therefore the dosage data may not be a full representation of all vaccination doses administered in Ontario.
    • The data does not include dosage data where consent was not provided for vaccination records to be entered into the provincial CoVax system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information into CoVax.

    Hospitalizations and cases by vaccination status

    Hospitalizations

    • This is a new data collection and the data quality will continue to improve as hospitals continue to submit data.
    • In order to understand the vaccination status of patients currently hospitalized, a new data collection process was developed and this may cause discrepancies between other hospitalization numbers being collected using a different data collection process.
    • Data on patients in ICU are being collected from two different data sources with different extraction times and public reporting cycles. The existing data source (Critical Care Information System, CCIS) does not have vaccination status.
    • Historical data for hospitalizations by region may change over time as hospitals update previously entered data.
    • Due to incomplete weekend and holiday reporting, vaccination status data for hospital and ICU admissions is not updated on Sundays, Mondays and the day after holidays
    • Unvaccinated is defined as not having any dose, or between 0-13 days after administration of the first dose of a COVID-19 vaccine.
    • Partially vaccinated is defined as 14 days or more after the first dose of a 2-dose series COVID-19 vaccine, or between 0-13 days after administration of the second dose
    • Fully vaccinated is defined as 14 days or more after receipt of the second dose of a 2-dose series COVID-19 vaccine

    Cases

    • The cases by vaccination status may not match the daily COVID-19 case count because records with a missing or invalid health card number cannot be linked.
  6. Data from: Modeling outbreaks of COVID-19 in China: The impact of...

    • tandf.figshare.com
    tiff
    Updated May 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wenting Zha; Han Ni; Yuxi He; Wentao Kuang; Jin Zhao; Liuyi Fu; Haoyun Dai; Yuan Lv; Nan Zhou; Xuewen Yang (2025). Modeling outbreaks of COVID-19 in China: The impact of vaccination and other control measures on curbing the epidemic [Dataset]. http://doi.org/10.6084/m9.figshare.25687165.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 14, 2025
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Wenting Zha; Han Ni; Yuxi He; Wentao Kuang; Jin Zhao; Liuyi Fu; Haoyun Dai; Yuan Lv; Nan Zhou; Xuewen Yang
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Area covered
    China
    Description

    This study aims to examine the development trend of COVID-19 in China and propose a model to assess the impacts of various prevention and control measures in combating the COVID-19 pandemic. Using COVID-19 cases reported by the National Health Commission of China from January 2, 2020, to January 2, 2022, we established a Susceptible-Exposed-Infected-Asymptomatic-Quarantined-Vaccinated-Hospitalized-Removed (SEIAQVHR) model to calculate the COVID-19 transmission rate and Rt effective reproduction number, and assess prevention and control measures. Additionally, we built a stochastic model to explore the development of the COVID-19 epidemic. We modeled the incidence trends in five outbreaks between 2020 and 2022. Some important features of the COVID-19 epidemic are mirrored in the estimates based on our SEIAQVHR model. Our model indicates that an infected index case entering the community has a 50%–60% chance to cause a COVID-19 outbreak. Wearing masks and getting vaccinated were the most effective measures among all the prevention and control measures. Specifically targeting asymptomatic individuals had no significant impact on the spread of COVID-19. By adjusting prevention and control parameters, we suggest that increasing the rates of effective vaccination and mask-wearing can significantly reduce COVID-19 cases in China. Our stochastic model analysis provides a useful tool for understanding the COVID-19 epidemic in China.

  7. D

    ARCHIVED: COVID-19 Cases by Vaccination Status Over Time

    • data.sfgov.org
    • healthdata.gov
    csv, xlsx, xml
    Updated Jun 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ARCHIVED: COVID-19 Cases by Vaccination Status Over Time [Dataset]. https://data.sfgov.org/w/gqw3-444p/ikek-yizv?cur=UGbqTnrqBq5&from=1I49gBKMrdz
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 28, 2023
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    On 6/28/2023, data on cases by vaccination status will be archived and will no longer update.

    A. SUMMARY This dataset represents San Francisco COVID-19 positive confirmed cases by vaccination status over time, starting January 1, 2021. Cases are included on the date the positive test was collected (the specimen collection date). Cases are counted in three categories: (1) all cases; (2) unvaccinated cases; and (3) completed primary series cases.

    1. All cases: Includes cases among all San Francisco residents regardless of vaccination status.

    2. Unvaccinated cases: Cases are considered unvaccinated if their positive COVID-19 test was before receiving any vaccine. Cases that are not matched to a COVID-19 vaccination record are considered unvaccinated.

    3. Completed primary series cases: Cases are considered completed primary series if their positive COVID-19 test was 14 days or more after they received their 2nd dose in a 2-dose COVID-19 series or the single dose of a 1-dose vaccine. These are also called “breakthrough cases.”

    On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021.

    Data is lagged by eight days, meaning the most recent specimen collection date included is eight days prior to today. All data updates daily as more information becomes available.

    B. HOW THE DATASET IS CREATED Case information is based on confirmed positive laboratory tests reported to the City. The City then completes quality assurance and other data verification processes. Vaccination data comes from the California Immunization Registry (CAIR2). The California Department of Public Health runs CAIR2. Individual-level case and vaccination data are matched to identify cases by vaccination status in this dataset. Case records are matched to vaccine records using first name, last name, date of birth, phone number, and email address.

    We include vaccination records from all nine Bay Area counties in order to improve matching rates. This allows us to identify breakthrough cases among people who moved to the City from other Bay Area counties after completing their vaccine series. Only cases among San Francisco residents are included.

    C. UPDATE PROCESS Updates automatically at 08:00 AM Pacific Time each day.

    D. HOW TO USE THIS DATASET Total San Francisco population estimates can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). To identify total San Francisco population estimates, filter the view on “demographic_category_label” = “all ages”.

    Population estimates by vaccination status are derived from our publicly reported vaccination counts, which can be found at COVID-19 Vaccinations Given to SF Residents Over Time.

    The dataset includes new cases, 7-day average new cases, new case rates, 7-day average new case rates, percent of total cases, and 7-day average percent of total cases for each vaccination category.

    New cases are the count of cases where the positive tests were collected on that specific specimen collection date. The 7-day rolling average shows the trend in new cases. The rolling average is calculated by averaging the new cases for a particular day with the prior 6 days.

    New case rates are the count of new cases per 100,000 residents in each vaccination status group. The 7-day rolling average shows the trend in case rates. The rolling average is calculated by averaging the case rate for a particular day with the prior six days. Percent of total new cases shows the percent of all cases on each day that were among a particular vaccination status.

    Here is more information on how each case rate is calculated:

    1. The case rate for all cases is equal to the number of new cases among all residents divided by the estimated total resident population.

    2. Unvaccinated case rates are equal to the number of new cases among unvaccinated residents divided by the estimated number of unvaccinated residents. The estimated number of unvaccinated residents is calculated by subtracting the number of residents that have received at least one dose of a vaccine from the total estimated resident population.

    3. Completed primary series case rates are equal to the number of new cases among completed primary series residents divided by the estimated number of completed primary series residents. The estimated number of completed primary series residents is calculated by taking the number of residents who have completed their primary series over time and adding a 14-day delay to the “date_administered” column, to align with the definition of “Completed primary series cases” above.

    E. CHANGE LOG

    • 6/28/2023 - data on cases by vaccination status are no longer being updated. This data is currently through 6/20/2023 (as of 6/28/2023) and will not include any new data after this date.
    • 4/6/2023 - the State implemented system updates to improve the integrity of historical data.
    • 2/21/2023 - system updates to improve reliability and accuracy of cases data were implemented.
    • 1/31/2023 - updated “sf_population” column to reflect the 2020 Census Bureau American Community Survey (ACS) San Francisco Population estimates.
    • 1/31/2023 - renamed column “last_updated_at” to “data_as_of”.
    • 1/22/2022 - system updates to improve timeliness and accuracy of cases and deaths data were implemented.
    • 7/15/2022 - reinfections added to cases dataset. See section SUMMARY for more information on how reinfections are identified.
    • 7/15/2022 - references to “fully vaccinated” replaced with “completed primary series” in column “vaccination_status".
    • 7/15/2022 - rows with “partially vaccinated” in column “vaccination_status” removed from dataset.

  8. Coronavirus (COVID-19) antibody and vaccination data for the UK

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Mar 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Coronavirus (COVID-19) antibody and vaccination data for the UK [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/datasets/coronaviruscovid19antibodydatafortheuk
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 29, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    Antibody data, by UK country and age, from the Coronavirus (COVID-19) Infection Survey.

  9. f

    COVID-19 infection rate and vaccine status for VCH HCWs by occupation by May...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Jul 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yassi, Annalee; Grant, Jennifer M.; Lockhart, Karen; Wong, Titus; Daly, Patricia; Lubin, Stan; Henderson, William; Sing, Chad Kim; Sprague, Stacy; Okpani, Arnold I.; Barker, Stephen (2021). COVID-19 infection rate and vaccine status for VCH HCWs by occupation by May 13, 2021. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000850117
    Explore at:
    Dataset updated
    Jul 16, 2021
    Authors
    Yassi, Annalee; Grant, Jennifer M.; Lockhart, Karen; Wong, Titus; Daly, Patricia; Lubin, Stan; Henderson, William; Sing, Chad Kim; Sprague, Stacy; Okpani, Arnold I.; Barker, Stephen
    Description

    COVID-19 infection rate and vaccine status for VCH HCWs by occupation by May 13, 2021.

  10. Preliminary 2024-2025 U.S. COVID-19 Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD). (2025). Preliminary 2024-2025 U.S. COVID-19 Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-COVID-19-Burden-Estimate/ahrf-yqdt
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  11. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  12. Rt of COVID-19 in the U.S. as of January 23, 2021, by state

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Rt of COVID-19 in the U.S. as of January 23, 2021, by state [Dataset]. https://www.statista.com/statistics/1119412/covid-19-transmission-rate-us-by-state/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of January 23, 2021, Vermont had the highest Rt value of any U.S. state. The Rt value indicates the average number of people that one person with COVID-19 is expected to infect. A number higher than one means each infected person is passing the virus to more than one other person.

    Which are the hardest-hit states? The U.S. reported its first confirmed coronavirus case toward the end of January 2020. More than 28 million positive cases have since been recorded as of February 24, 2021 – California and Texas are the states with the highest number of coronavirus cases in the United States. When figures are adjusted to reflect each state’s population, North Dakota has the highest rate of coronavirus cases. The vaccine rollout has provided Americans with a significant morale boost, and California is the state with the highest number of COVID-19 vaccine doses administered.

    How have other nations responded? Countries around the world have responded to the pandemic in varied ways. The United Kingdom has approved three vaccines for emergency use and ranks among the countries with the highest number of COVID-19 vaccine doses administered worldwide. In the Asia-Pacific region, the outbreak has been brought under control in New Zealand, and the country’s response to the pandemic has been widely praised.

  13. COVID-19 cases, recoveries, deaths in most impacted countries as of May 2,...

    • statista.com
    Updated Jun 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). COVID-19 cases, recoveries, deaths in most impacted countries as of May 2, 2023 [Dataset]. https://www.statista.com/statistics/1105235/coronavirus-2019ncov-cases-recoveries-deaths-most-affected-countries-worldwide/
    Explore at:
    Dataset updated
    Jun 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    As of May 2, 2023, the coronavirus disease (COVID-19) had been confirmed in almost every country and territory around the world. There had been roughly 687 million cases and 6.86 million deaths.

    Vaccine approval in the United States The United States has recorded more coronavirus infections and deaths than any other country in the world. The regulatory agency in the country authorized three COVID-19 vaccines for emergency use. Both the Pfizer-BioNTech and Moderna vaccines were approved in December 2020, while the Johnson & Johnson vaccine was approved in February 2021. As of April 26, 2023, the number of COVID-19 vaccine doses administered in the U.S. had reached 675 million.

    The difference between vaccines and antivirals Medications can help with the symptoms of viruses, but it is the role of the immune system to take care of them over time. However, the use of vaccines and antivirals can help the immune system in doing its job. The most tried and tested vaccine method is to inject an inactive or weakened form of a virus, encouraging the immune system to produce protective antibodies. The immune system keeps the virus in its memory, and if the real one appears, the body will recognize it and attack it more efficiently. Antivirals are designed to help target viruses, limiting their ability to reproduce and spread to other cells. They are used by patients who are already infected by a virus and can make the infection less severe.

  14. d

    ARCHIVED: COVID-19 Cases by Vaccination Status Over Time

    • catalog.data.gov
    Updated Mar 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). ARCHIVED: COVID-19 Cases by Vaccination Status Over Time [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-by-vaccination-status-over-time
    Explore at:
    Dataset updated
    Mar 29, 2025
    Dataset provided by
    data.sfgov.org
    Description

    On 6/28/2023, data on cases by vaccination status will be archived and will no longer update. A. SUMMARY This dataset represents San Francisco COVID-19 positive confirmed cases by vaccination status over time, starting January 1, 2021. Cases are included on the date the positive test was collected (the specimen collection date). Cases are counted in three categories: (1) all cases; (2) unvaccinated cases; and (3) completed primary series cases. All cases: Includes cases among all San Francisco residents regardless of vaccination status. Unvaccinated cases: Cases are considered unvaccinated if their positive COVID-19 test was before receiving any vaccine. Cases that are not matched to a COVID-19 vaccination record are considered unvaccinated. Completed primary series cases: Cases are considered completed primary series if their positive COVID-19 test was 14 days or more after they received their 2nd dose in a 2-dose COVID-19 series or the single dose of a 1-dose vaccine. These are also called “breakthrough cases.” On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021. Data is lagged by eight days, meaning the most recent specimen collection date included is eight days prior to today. All data updates daily as more information becomes available. B. HOW THE DATASET IS CREATED Case information is based on confirmed positive laboratory tests reported to the City. The City then completes quality assurance and other data verification processes. Vaccination data comes from the California Immunization Registry (CAIR2). The California Department of Public Health runs CAIR2. Individual-level case and vaccination data are matched to identify cases by vaccination status in this dataset. Case records are matched to vaccine records using first name, last name, date of birth, phone number, and email address. We include vaccination records from all nine Bay Area counties in order to improve matching rates. This allows us to identify breakthrough cases among people who moved to the City from other Bay Area counties after completing their vaccine series. Only cases among San Francisco residents are included. C. UPDATE PROCESS Updates automatically at 08:00 AM Pacific Time each day. D. HOW TO USE THIS DATASET Total San Francisco population estimates can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). To identify total San Francisco population estimates, filter the view on “demographic_category_label” = “all ages”. Population estimates by vaccination status are derived from our publicly reported vaccination counts, which can be found at COVID-19 Vaccinations Given to SF Residents Over Time. The dataset includes new cases, 7-day average new cases, new case rates, 7-day average new case rates, percent of total cases, and 7-day average percent of total cases for each vaccination category. New cases are the count of cases where the positive tests were collected on that specific specimen collection date. The 7-day rolling average shows the trend in new cases. The rolling average is calculated by averaging the new cases for a particular day with the prior 6 days. New case rates are the count of new cases per 100,000 residents in each vaccination status group. The 7-day rolling average shows the trend in case rates. The rolling average is calculated by averaging the case rate for a part

  15. Number of coronavirus infections, deaths and vaccinations in France 2024

    • statista.com
    Updated Mar 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Number of coronavirus infections, deaths and vaccinations in France 2024 [Dataset]. https://www.statista.com/statistics/1101715/contaminations-heal-dead-coronavirus-france/
    Explore at:
    Dataset updated
    Mar 24, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 24, 2024
    Area covered
    France
    Description

    As of November 24, 2024, France has reported over 39 million coronavirus cases and roughly 168,100 deaths. Like many countries in the world, France has been strongly impacted by the COVID-19 virus.For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  16. Total confirmed cases of COVID-19 Japan 2022

    • statista.com
    Updated Mar 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Total confirmed cases of COVID-19 Japan 2022 [Dataset]. https://www.statista.com/statistics/1096478/japan-confirmed-cases-of-coronavirus-by-state-of-health/
    Explore at:
    Dataset updated
    Mar 15, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 16, 2022
    Area covered
    Japan
    Description

    As of March 16, 2022, there was a total of approximately 5.9 million confirmed cases of coronavirus disease (COVID-19) in Japan, with around 529 thousand people needing inpatient treatment.

    Development of cases in Japan Generally, the increase of new COVID-19 cases recorded from January to March 2020 in Japan followed a slower trajectory as compared to, for example, China, Europe, or the United States of America. The first reported case of COVID-19 in Japan was confirmed on January 16, 2020, when a man that had returned from Wuhan city, China, was tested positive. The first transmission within Japan was recorded on January 28. The number of new cases then increased tenfold in February. April saw a further acceleration of the infection rate. Consequently, the Japanese government declared a nationwide state of emergency that month. The government announced a state of emergency for the second time in January 2021, the third time in April 2021, and the forth time in the July 2021.

    Vaccine rollout The Japanese government started the distribution of COVID-19 vaccination in February 2021, mainly for medical professionals. The administration of vaccination for general citizens commenced in April for senior citizens. The vaccine rate of the population was just over 74.7 percent for second doses as of March 2022.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated facts and figure page. 

  17. COVID-19 cases and deaths in Brazil 2020-2025

    • statista.com
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). COVID-19 cases and deaths in Brazil 2020-2025 [Dataset]. https://www.statista.com/statistics/1107028/brazil-covid-19-cases-deaths/
    Explore at:
    Dataset updated
    Jun 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 1, 2020 - May 11, 2025
    Area covered
    Brazil
    Description

    COVID-19 was first detected in Brazil on March 1, 2020, making it the first Latin American country to report a case of the novel coronavirus. Since then, the number of infections has risen drastically, reaching approximately 38 million cases by May 11, 2025. Meanwhile, the first local death due to the disease was reported in March 19, 2020. Four years later, the number of fatal cases had surpassed 700,000. The highest COVID-19 death toll in Latin America With a population of more than 211 million inhabitants as of 2023, Brazil is the most populated country in Latin America. This nation is also among the most affected by COVID-19 in number of deaths, not only within the Latin American region, but also worldwide, just behind the United States. These figures have raised a debate on how the Brazilian government has dealt with the pandemic. In fact, according to a study carried out in May 2021, more than half of Brazilians surveyed disapproved of the way in which former president Jair Bolsonaro had been dealing with the health crisis. In comparison, a third of respondents had a similar opinion about the Ministry of Health. Brazil’s COVID-19 vaccination campaign rollout Brazil’s vaccination campaign started at the beginning of 2021, when a nurse from São Paulo became the first person in the country to get vaccinated against the disease. A few years later, roughly 88 percent of the Brazilian population had received at least one vaccine dose, while around 81 percent had already completed the basic immunization scheme. With more than 485.2 million vaccines administered as of March 2023, Brazil was the fourth country with the most administered doses of the COVID-19 vaccine globally, after China, India, and the United States.Find the most up-to-date information about the coronavirus pandemic in the world under Statista’s COVID-19 facts and figures site.

  18. f

    DataSheet_1_Brief research report: impact of vaccination on antibody...

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    • +1more
    Updated Feb 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rubinstein, Mark P.; Vlasova, Anastasia N.; Bednash, Joseph S.; Adhikari, Bindu; Horowitz, Jeffrey C. (2024). DataSheet_1_Brief research report: impact of vaccination on antibody responses and mortality from severe COVID-19.pdf [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001408547
    Explore at:
    Dataset updated
    Feb 7, 2024
    Authors
    Rubinstein, Mark P.; Vlasova, Anastasia N.; Bednash, Joseph S.; Adhikari, Bindu; Horowitz, Jeffrey C.
    Description

    IntroductionWhile it is established that vaccination reduces risk of hospitalization, there is conflicting data on whether it improves outcome among hospitalized COVID-19 patients. This study evaluated clinical outcomes and antibody (Ab) responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection/vaccines in patients with acute respiratory failure (ARF) and various comorbidities.MethodsIn this single-center study, 152 adult patients were admitted to Ohio State University hospital with ARF (05/2020 – 11/2022) including 112 COVID-19-positive and 40 COVID-19-negative patients. Of the COVID-19 positive patients, 23 were vaccinated for SARS-CoV-2 (Vax), and 89 were not (NVax). Of the NVax COVID-19 patients, 46 were admitted before and 43 after SARS-CoV-2 vaccines were approved. SARS-CoV-2 Ab levels were measured/analyzed based on various demographic and clinical parameters of COVID-19 patients. Additionally, total IgG4 Ab concentrations were compared between the Vax and NVax patients.ResultsWhile mortality rates were 36% (n=25) and 27% (n=15) for non-COVID-19 NVax and Vax patients, respectively, in COVID-19 patients mortality rates were 37% (NVax, n=89) and 70% (Vax, n=23). Among COVID-19 patients, mortality rate was significantly higher among Vax vs. NVax patients (p=0.002). The Charlson’s Comorbidity Index score (CCI) was also significantly higher among Vax vs. NVax COVID-19 patients. However, the mortality risk remained significantly higher (p=0.02) when we compared COVID-19 Vax vs. NVax patients with similar CCI score, suggesting that additional factors may increase risk of mortality. Higher levels of SARS-CoV-2 Abs were noted among survivors, suggestive of their protective role. We observed a trend for increased total IgG4 Ab, which promotes immune tolerance, in the Vax vs. NVax patients in week 3.ConclusionAlthough our cohort size is small, our results suggest that vaccination status of hospital-admitted COVID-19 patients may not be instructive in determining mortality risk. This may reflect that within the general population, those individuals at highest risk for COVID-19 mortality/immune failure are likely to be vaccinated. Importantly, the value of vaccination may be in preventing hospitalization as opposed to stratifying outcome among hospitalized patients, although our data do not address this possibility. Additional research to identify factors predictive of aberrant immunogenic responses to vaccination is warranted.

  19. Covid_Research_Funds_Vaccination_Infection_Rate

    • kaggle.com
    zip
    Updated Apr 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thien (Andrew) Nguyen (2022). Covid_Research_Funds_Vaccination_Infection_Rate [Dataset]. https://www.kaggle.com/datasets/thienhuu/covid-research-funds-vaccination-infection-rate
    Explore at:
    zip(43210344 bytes)Available download formats
    Dataset updated
    Apr 9, 2022
    Authors
    Thien (Andrew) Nguyen
    Description

    The research data in this project is drawn from 5 primary sources: The data obtained from the COVID-19 Data Repository by the Centre for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) will be used to address the infection of the SARS-CoV-2 pandemic. Meanwhile, the second component examines the meaningful findings of human attitude towards vaccination by analysing our World in Data GitHub repository data and taken from Kaggle and Willingness to Get Vaccinated repository. Furthermore, the usage of different vaccines will be investigated. The final section ties together the diverse discoveries of the research funds for the COVID related schemes from two different sources, Universities Allied for Essential Medicines: COVID Mapping and OECD Global Science Forum (GSF) Research funding initiative

  20. e

    Coronavirus (COVID-19) Vaccine Roll Out

    • data.europa.eu
    • ckan.publishing.service.gov.uk
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority, Coronavirus (COVID-19) Vaccine Roll Out [Dataset]. https://data.europa.eu/data/datasets/coronavirus-covid-19-vaccine-roll-out~~1?locale=en
    Explore at:
    Dataset authored and provided by
    Greater London Authority
    Description

    Vaccinations in London Between 8 December 2020 and 15 September 2021 5,838,305 1st doses and 5,232,885 2nd doses have been administered to London residents.

    Differences in vaccine roll out between London and the Rest of England London Rest of England Priority Group Vaccinations given Percentage vaccinated Vaccinations given Percentage vaccinated Group 1 Older Adult Care Home Residents 21,883 95% 275,964 96% Older Adult Care Home Staff 29,405 85% 381,637 88% Group 2 80+ years 251,021 83% 2,368,284 93% Health Care Worker 174,944 99% 1,139,243 100%* Group 3 75 - 79 years 177,665 90% 1,796,408 99% Group 4 70 - 74 years 252,609 90% 2,454,381 97% Clinically Extremely Vulnerable 278,967 88% 1,850,485 95% Group 5 65 - 69 years 285,768 90% 2,381,250 97% Group 6 At Risk or Carer (Under 65) 983,379 78% 6,093,082 88% Younger Adult Care Home Residents 3,822 92% 30,321 93% Group 7 60 - 64 years 373,327 92% 2,748,412 98% Group 8 55 - 59 years 465,276 91% 3,152,412 97% Group 9 50 - 54 years 510,132 90% 3,141,219 95% Data as at 15 September 2021 for age based groups and as at 12 September 2021 for non-age based groups * The number who have received their first dose exceeds the latest official estimate of the population for this group There is considerable uncertainty in the population denominators used to calculate the percentage vaccinated. Comparing implied vaccination rates for multiple sources of denominators provides some indication of uncertainty in the true values. Confidence is higher where the results from multiple sources agree more closely. Because the denominator sources are not fully independent of one another, users should interpret the range of values across sources as indicating the minimum range of uncertainty in the true value. The following datasets can be used to estimate vaccine uptake by age group for London:

    ONS 2020 mid-year estimates (MYE). This is the population estimate used for age groups throughout the rest of the analysis.
    
    
    Number of people ages 18 and over on the National Immunisation Management Service (NIMS)
    
    
    ONS Public Health Data Asset (PHDA) dataset. This is a linked dataset combining the 2011 Census, the General Practice Extraction Service (GPES) data for pandemic planning and research and the Hospital Episode Statistics (HES). This data covers a subset of the population.
    

    Vaccine roll out in London by Ethnic Group Understanding how vaccine uptake varies across different ethnic groups in London is complicated by two issues:

    Ethnicity information for recipients is unavailable for a very large number of the vaccinations that have been delivered. As a result, estimates of vaccine uptake by ethnic group are highly sensitive to the assumptions about and treatment of the Unknown group in calculations of rates.

    For vaccinations given to people aged 50 and over in London nearly 10% do not have ethnicity information available,

    The accuracy of available population denominators by ethnic group is limited. Because ethnicity information is not captured in official estimates of births, deaths, and migration, the available population denominators typically rely on projecting forward patterns captured in the 2011 Census. Subsequent changes to these patterns, particularly with respect to international migration, leads to increasing uncertainty in the accuracy of denominators sources as we move further away from 2011.

    Comparing estimated population sizes and implied vaccination rates for multiple sources of denominators provides some indication of uncertainty in the true values. Confidence is higher where the results from multiple sources agree more closely. Because the denominator sources are not fully independent of one another, users should interpret the range of values across sources as indicating the minimum range of uncertainty in the true value. The following population estimates are available by Ethnic group for London:

    GLA Ethnic group population projections - 2016 as at 2021
    
    
    ONS Population Denominators produced for Race Disparity Audit as at 2018
    
    
    ETHPOP population projections produced by the University of Leeds as at 2020
    

    Antibody prevalence estimates As part of the ONS Coronavirus (COVID-19) Infection Survey ONS publish a modelled estimate of the percent of the adult population testing positive for antibodies to Coronavirus by region. Antibodies can be generated by vaccination or previous infection.

    Vaccine effects on cases, hospitalisations and deaths When the vaccine roll out began in December 2020 coronavirus cases, hospital admissions and deaths were rising steeply. The peak of infections came in London in early January 2021, before reducing during the national lockdown and as the vaccine roll out progressed. As the vaccine roll out began in older age groups the effect of vaccinations can be separated from the effect of national lockdown by comparing changes in cases, admissions and deaths

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/w/3rge-nu2a/tdwk-ruhb?cur=9Dqe1nvydOt
Organization logo

Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

Explore at:
xlsx, xml, csvAvailable download formats
Dataset updated
Feb 22, 2023
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Authors
CDC COVID-19 Response, Epidemiology Task Force
Description

Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

Search
Clear search
Close search
Google apps
Main menu