As of April 20, 2020, the highest number of hospital-acquired infections (HAI) with the coronavirus disease(COVID-19) was recorded in Tokyo Prefecture, in which 375 cases were confirmed across eight hospitals. The northernmost prefecture Hokkaido had the second highest number of hospital-acquired infections with 95 cases in seven hospitals.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated facts and figure page.
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
On Octover 11, 2020 there were 31 people with COVID-19 that were being treated in hospitals across Australia. Over the period since April 2020 hospitalizations due to COVID-19 rose dramatically from late July after a period of relatively few hospitalizations in June. This corresponds with the second wave of coronavirus cases in the country, which was mostly concentrated in the state of Victoria.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Fact and Figures page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveTo compare a private quaternary referral hospital, a public tertiary hospital, and a field hospital dedicated to patients with COVID-19, regarding patients’ characteristics, clinical parameters, laboratory, imaging findings, and outcomes of patients with confirmed diagnosis of COVID-19.MethodsRetrospective multicenter observational study that assessed the association of clinical, laboratory and CT data of 453 patients with COVID-19, and also their outcomes (hospital discharge or admission, intensive care unit admission, need for mechanical ventilation, and mortality caused by COVID-19).ResultsThe mean age of patients was 55 years (±16 years), 58.1% of them were male, and 41.9% were female. Considering stratification by the hospital of care, significant differences were observed in the dyspnea, fever, cough, hypertension, diabetes mellitus parameters, and CT score (p
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
Weekly COVID-19 Community Levels (CCLs) have been replaced with levels of COVID-19 hospital admission rates (low, medium, or high) which demonstrate >99% concordance by county during February 2022–March 2023. For more information on the latest COVID-19 status levels in your area and hospital admission rates, visit United States COVID-19 Hospitalizations, Deaths, and Emergency Visits by Geographic Area.
This archived public use dataset contains historical case and percent positivity data updated weekly for all available counties and jurisdictions. Each week, the dataset was refreshed to capture any historical updates. Please note, percent positivity data may be incomplete for the most recent time period.
This archived public use dataset contains weekly community transmission levels data for all available counties and jurisdictions since October 20, 2022. The dataset was appended to contain the most recent week's data as originally posted on COVID Data Tracker. Historical corrections are not made to these data if new case or testing information become available. A separate archived file is made available here (: Weekly COVID-19 County Level of Community Transmission Historical Changes) if historically updated data are desired.
Related data CDC provides the public with two active versions of COVID-19 county-level community transmission level data: this dataset with the levels as originally posted (Weekly Originally Posted dataset), updated weekly with the most recent week’s data since October 20, 2022, and a historical dataset with the county-level transmission data from January 22, 2020 (Weekly Historical Changes dataset).
Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.
CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2 Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have a transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).
Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests conducted
https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/
OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 2.0
Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases & more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS) & death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID OMOP dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.
PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.
EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date. This is a subset of data in OMOP format.
Scope: All COVID swab confirmed hospitalised patients to UHB from January – August 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes.
Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data. Further OMOP data available as an additional service.
Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.
https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/
PIONEER: Deeply-phenotyped hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 4.0
Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases& more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS)& death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.
PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.
EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date.
Scope: All COVID swab confirmed hospitalised patients to UHB from January – May 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes but also primary care records& clinic letters. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes. Linked images available (radiographs, CT, MRI, ultrasound).
Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data.
Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.
Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
References
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.
The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level was classified as low, medium, or high.
COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Archived Data Notes:
This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.
March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.
March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.
March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.
March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.
March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).
March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.
April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.
May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.
June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.
July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.
July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.
July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.
July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.
July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.
August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.
August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.
August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.
August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.
August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.
September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.
September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set contains COVID-19 hospital incidence, temperature and human mobility and contact data recorded between 2020-03-24 and 2021-03-30 used in the paper:
Selinger et al. 2021: Predicting COVID-19 incidence in French hospitals using human contact network analytics. 10.1016/j.ijid.2021.08.029
See methods in the article for detailed descriptions and the data curation process.
1) cov_mob_tst_national.csv contains national-level data
The columns comprise:
incid_hosp: hospital admission incidence
incid_rea: ICU admission incidence
incid_dc: hospital death incidence
incid_rad: incidence of those returned home
within_departement_colocation_X%: X%-quantile of colocation probabilities with départements
between_departement_colocation_X%: X%-quantile of colocation probabilities between départements
fb_population_coverage_X%: X%-quantile of ratio of fb_population over census population in département
null_links_X%: X%-quantile of null links across départements
clustering_X%: X%-quantile of clustering coefficients across départements
ricci_X%: X%-quantile of curvature across départements
ricci_min_X%: X%-quantile of minimum curvature across départements
ricci_mean_X%: X%-quantile of average curvature across départements
ricci_max_X%: X%-quantile of maximum curvature across départements
strength_X%: X%-quantile of network strengths across départements
betweenness_centrality_X%: X%-quantile of betweenness_centrality scores across départements
positive_test_ratio_weekly: ratio of weekly cumulated positive tested over weekly cumulated tests
retail_and_recreation_percent_change_from_baseline: Google Mobility Reports
grocery_and_pharmacy_percent_change_from_baseline: Google Mobility Reports
parks_percent_change_from_baseline: Google Mobility Reports
transit_stations_percent_change_from_baseline: Google Mobility Reports
workplaces_percent_change_from_baseline: Google Mobility Reports
residential_percent_change_from_baseline: Google Mobility Reports
mean_temperature_X%: X% quantile of mean daily temperatures averaged over the week across départements
min_temperature_X%: X% quantile of minimum daily temperatures averaged over the week across départements
max_temperature_X%: X% quantile of maximum daily temperatures averaged over the week across départements
2) cov_mob_dep.csv contains département-level data
The columns comprise:
dep: département code
incid_hosp: hospital admission incidence
incid_rea: ICU admission incidence
incid_dc: hospital death incidence
incid_rad: incidence of those returned home
week: week (matched to colocation data recording usually on Tuesdays)
dep_name: name of the département
null_links: number of null links
betweenness_centrality: betweenness centrality
clustering: clustering coefficient
strength: network strength
ricci_mean: minimum curvature among all edges incident to a département
ricci_min: mean curvature across all edges incident to a département
ricci_X%: X%-quantile curvature among all edges incident to a département
fb_population: number of facebook users
facebook_colocation_within_dep: colocation probability within département
fb_population_coverage: ratio of fb_population over census population in département
facebook_colocation_between_dep_X%: X%-quantile of facebook colocation among all edges incident to the département
min_temperature: minimum daily temperature averaged over the week
max_temperature: maximum daily temperature averaged over the week
mean_temperature: mean daily temperature averaged over the week
incid_hosp_Y: incidence of hospital admission from Ynd most colocated département
incid_rea_Y: incidence of ICU admission from Ynd most colocated département
incid_dc_Y: incidence of hospital deaths from Ynd most colocated département
incid_rad_Y: incidence of returned home from Ynd most colocated département
As of December, 2020, the coronavirus pandemic in the Netherlands resulted in over 527.5 thousand cases, 17.6 thousand hospital admissions, and 9.4 thousand deaths. To this day, most confirmed COVID-19 cases in the Netherlands were women. However, the distributions of hospital admissions and deaths due to the coronavirus were higher for men.
Gender aside, COVID-19 figures in the Netherlands differed in terms of age. According to Dutch numbers, the coronavirus infected mostly younger age groups. However, hospital admissions were higher in older people, while the coronavirus was especially deadly for people aged over 80.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.
The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Sunday to Saturday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.
The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.
For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-15 means the average/sum/coverage of the elements captured from that given facility starting and including Sunday, November 15, 2020, and ending and including reports for Saturday, November 21, 2020.
Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.
The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.
A story page was created to display both corrected and raw datasets and can be accessed at this link: https://healthdata.gov/stories/s/nhgk-5gpv
This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.
Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.
For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied.
For recent updates to the dataset, scroll to the bottom of the dataset description.
On May 3, 2021, the following fields have been added to this data set.
On May 8, 2021, this data set is the originally reported numbers by the facility. This data set may contain data anomalies due to data key entries.
On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number reported for that metric in a given week.
On June 7, 2021 Changed vaccination fields from max or min fields to Wednesday reported only. This reflects that the number reported for that metric is only reported on Wednesdays in a given week.
On January 19, 2022, the following fields have been added to this dataset:
On April 28, 2022, the following pediatric fields have been added to this dataset:
Due to changes in reporting requirements, after June 19, 2023, a collection week is defined as starting on a Sunday and ending on the next Saturday.
As of December 1, 2022, there were 2,794 COVID-19 patients in hospitals in Australia. The number of COVID-19 patients in hospitals in Australia reached over five thousand in January 2022 and again in July of the same year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Parameter estimates quantifying the association between RSERs and hospital- and county-level variables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Estimated infected population sizes and infection rates as a function of hospital population using Eqs.
https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy
The Global Hospital Acquired Infection Control (HAIC) Market is anticipated to grow significantly, with projections indicating a rise from USD 6.5 billion in 2022 to USD 10.7 billion by 2032. This growth, estimated at a CAGR of 5.1% from 2023 to 2033, underscores the increasing emphasis on infection prevention and control (IPC) measures within healthcare settings. The need for effective IPC is driven by the potential to enhance patient and healthcare worker safety significantly, as well as to provide substantial economic benefits by reducing the prevalence of hospital-acquired infections (HAIs).
Efficient hand hygiene and the maintenance of environmental cleanliness are crucial in curbing the spread of antimicrobial-resistant pathogens. Studies have shown that these practices can reduce infection risks by over 50%, highlighting their effectiveness in safeguarding health and reducing long-term complications. Moreover, investing in these preventive strategies offers considerable returns, with every dollar spent potentially saving approximately $16.50 in healthcare costs. This data highlights the cost-effectiveness and critical nature of sustained investment in IPC measures.
Despite the proven benefits of IPC programs, their global implementation varies significantly. The World Health Organization (WHO) reports that only a minor percentage of countries have fully integrated comprehensive IPC strategies at the national level. This inconsistency points to a pressing need for enhanced political will and increased allocation of resources to strengthen IPC frameworks worldwide, ensuring a broader and more effective implementation.
The COVID-19 pandemic has further emphasized the importance of rapid IPC training and adequate personal protective equipment (PPE) to prevent virus transmission and protect healthcare workers. The crisis has shown that continuous improvement and investment in IPC capabilities are essential to manage not only the current pandemic but also future healthcare challenges.
While the implementation of IPC measures faces various challenges, the potential for improving healthcare outcomes and reducing costs is significant. Ongoing global efforts are required to advance IPC strategies effectively. This includes securing adequate funding and strong leadership to foster safer healthcare environments. Continuing to build on these efforts is essential for minimizing the impact of HAIs and enhancing overall health security globally.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset represents preliminary weekly estimates of cumulative U.S. COVID-19-associated hospitalizations for the 2024-2025 period. The weekly cumulatve COVID-19 –associated hospitalization estimates are preliminary, and use reported weekly hospitalizations among laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data are updated week-by-week as new COVID-19 hospitalizations are reported to CDC from the COVID-NET system and include both new admissions that occurred during the reporting week, as well as those admitted in previous weeks that may not have been included in earlier reporting. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated hospitalizations that have occurred since October 1, 2024. For details, please refer to the publication [7].
Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
References
The bipartisan CARES Act; and the Paycheck Protection Program and Health Care Enhancement Act (PPPHCEA); and the Coronavirus Response and Relief Supplemental Appropriations (CRRSA) Act provided $178 billion in relief funds to hospitals and other healthcare providers on the front lines of the coronavirus response. The Department of Health and Human Services through the Health Resources and Services Administration is allocating $2 billion in incentive payments to nursing home facilities that reduce both COVID-19 infection rates relative to their county and mortality rates against a national benchmark.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Conceptual proposition: to identify factors associated with HCW SARS-CoV-2 infection which make it possible to direct the management of health care services. Research objective: to analyse the incidence of new SARS-CoV-2 infection among HCWs (before and after vaccination with BNT162b2) and to explore demographic and occupational factors associated with SARS-CoV-2 infection. To analyse the vaccine effectiveness against any SARS-CoV-2 infection in HCWs.
Collected data: age, gender, profession, workplace, vaccination status, voluntary SARS-CoV-2 nucleocapsid antibody test results (performed before implementation of the HCW vaccination programme in January 2021), SARS-CoV-2 RNA results from longitudinal universal screening (between October 20, 2020, and May 6, 2021, which correspond to epidemiological (epi) week 43, 2020 and epi week 18, 2021, a period covering the second and third epidemic waves in Poland), and SARS-CoV-2 RNA results from contact tracing, symptomatic testing, or testing upon return to work after sick leave (due to respiratory illness) collected from October 20, 2020, up to August 31, 2021 (epi week 43, 2020 to epi week 35, 2021).
An in depth study on patients admitted to hospital and later deceased with the coronavirus (COVID-19) infection revealed that the majority of cases showed one or more comorbidities. As the chart shows, hypertension was the most common pre-existing health condition, detected in 65.8 percent of patients who died after contracting the virus. Type 2-diabetes, ischemic heart disease, and atrial fibrillation were also among the most common comorbidities in COVID-19 patients who lost their lives. More statistics and facts about the virus in Italy are available here. For a global overview visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.
As of April 20, 2020, the highest number of hospital-acquired infections (HAI) with the coronavirus disease(COVID-19) was recorded in Tokyo Prefecture, in which 375 cases were confirmed across eight hospitals. The northernmost prefecture Hokkaido had the second highest number of hospital-acquired infections with 95 cases in seven hospitals.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated facts and figure page.