100+ datasets found
  1. Number of coronavirus infections acquired in hospitals Japan 2020, by...

    • statista.com
    Updated Apr 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Number of coronavirus infections acquired in hospitals Japan 2020, by prefecture [Dataset]. https://www.statista.com/statistics/1114008/japan-number-hospital-acquired-infection-coronavirus-by-prefecture/
    Explore at:
    Dataset updated
    Apr 30, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 20, 2020
    Area covered
    Japan
    Description

    As of April 20, 2020, the highest number of hospital-acquired infections (HAI) with the coronavirus disease(COVID-19) was recorded in Tokyo Prefecture, in which 375 cases were confirmed across eight hospitals. The northernmost prefecture Hokkaido had the second highest number of hospital-acquired infections with 95 cases in seven hospitals.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated facts and figure page.

  2. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Mar 25, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  3. COVID-19 cases treated in hospitals in Australia 2020

    • statista.com
    Updated Aug 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases treated in hospitals in Australia 2020 [Dataset]. https://www.statista.com/statistics/1116682/australia-daily-coronavirus-cases-in-hospital/
    Explore at:
    Dataset updated
    Aug 19, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 7, 2020 - Oct 11, 2020
    Area covered
    Australia
    Description

    On Octover 11, 2020 there were 31 people with COVID-19 that were being treated in hospitals across Australia. Over the period since April 2020 hospitalizations due to COVID-19 rose dramatically from late July after a period of relatively few hospitalizations in June. This corresponds with the second wave of coronavirus cases in the country, which was mostly concentrated in the state of Victoria.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Fact and Figures page.

  4. f

    Table_3_COVID-19 pneumonia assessed at a private hospital, a field hospital,...

    • frontiersin.figshare.com
    docx
    Updated Jan 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrícia Yokoo; Adham do Amaral e Castro; Eduardo Kaiser Ururahy Nunes Fonseca; Rodrigo Caruso Chate; Gustavo Borges da Silva Teles; Marcos Roberto Gomes de Queiroz; Gilberto Szarf (2024). Table_3_COVID-19 pneumonia assessed at a private hospital, a field hospital, and a public-referral hospital: population analysis, chest computed tomography findings, and outcomes.DOCX [Dataset]. http://doi.org/10.3389/fpubh.2023.1280662.s003
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jan 3, 2024
    Dataset provided by
    Frontiers
    Authors
    Patrícia Yokoo; Adham do Amaral e Castro; Eduardo Kaiser Ururahy Nunes Fonseca; Rodrigo Caruso Chate; Gustavo Borges da Silva Teles; Marcos Roberto Gomes de Queiroz; Gilberto Szarf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ObjectiveTo compare a private quaternary referral hospital, a public tertiary hospital, and a field hospital dedicated to patients with COVID-19, regarding patients’ characteristics, clinical parameters, laboratory, imaging findings, and outcomes of patients with confirmed diagnosis of COVID-19.MethodsRetrospective multicenter observational study that assessed the association of clinical, laboratory and CT data of 453 patients with COVID-19, and also their outcomes (hospital discharge or admission, intensive care unit admission, need for mechanical ventilation, and mortality caused by COVID-19).ResultsThe mean age of patients was 55 years (±16 years), 58.1% of them were male, and 41.9% were female. Considering stratification by the hospital of care, significant differences were observed in the dyspnea, fever, cough, hypertension, diabetes mellitus parameters, and CT score (p 

  5. Weekly COVID-19 County Level of Community Transmission as Originally Posted...

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Weekly COVID-19 County Level of Community Transmission as Originally Posted - ARCHIVED [Dataset]. https://data.virginia.gov/dataset/weekly-covid-19-county-level-of-community-transmission-as-originally-posted-archived
    Explore at:
    xsl, csv, rdf, jsonAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    Weekly COVID-19 Community Levels (CCLs) have been replaced with levels of COVID-19 hospital admission rates (low, medium, or high) which demonstrate >99% concordance by county during February 2022–March 2023. For more information on the latest COVID-19 status levels in your area and hospital admission rates, visit United States COVID-19 Hospitalizations, Deaths, and Emergency Visits by Geographic Area.

    This archived public use dataset contains historical case and percent positivity data updated weekly for all available counties and jurisdictions. Each week, the dataset was refreshed to capture any historical updates. Please note, percent positivity data may be incomplete for the most recent time period.

    This archived public use dataset contains weekly community transmission levels data for all available counties and jurisdictions since October 20, 2022. The dataset was appended to contain the most recent week's data as originally posted on COVID Data Tracker. Historical corrections are not made to these data if new case or testing information become available. A separate archived file is made available here (: Weekly COVID-19 County Level of Community Transmission Historical Changes) if historically updated data are desired.

    Related data CDC provides the public with two active versions of COVID-19 county-level community transmission level data: this dataset with the levels as originally posted (Weekly Originally Posted dataset), updated weekly with the most recent week’s data since October 20, 2022, and a historical dataset with the county-level transmission data from January 22, 2020 (Weekly Historical Changes dataset).

    Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.

    CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2 Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have a transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).

    Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests conducted

  6. h

    OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes...

    • healthdatagateway.org
    unknown
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158), OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes [Dataset]. https://healthdatagateway.org/dataset/139
    Explore at:
    unknownAvailable download formats
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 2.0

    Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases & more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS) & death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID OMOP dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.

    PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.

    EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date. This is a subset of data in OMOP format.

    Scope: All COVID swab confirmed hospitalised patients to UHB from January – August 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes.

    Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data. Further OMOP data available as an additional service.

    Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

  7. h

    Deeply-phenotyped hospital COVID patients: severity, acuity, therapies,...

    • healthdatagateway.org
    unknown
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158), Deeply-phenotyped hospital COVID patients: severity, acuity, therapies, outcomes [Dataset]. https://healthdatagateway.org/dataset/145
    Explore at:
    unknownAvailable download formats
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    PIONEER: Deeply-phenotyped hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 4.0

    Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases& more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS)& death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.

    PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.

    EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date.

    Scope: All COVID swab confirmed hospitalised patients to UHB from January – May 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes but also primary care records& clinic letters. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes. Linked images available (radiographs, CT, MRI, ultrasound).

    Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data.

    Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

  8. Preliminary 2024-2025 U.S. COVID-19 Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    application/rdfxml +5
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Preliminary 2024-2025 U.S. COVID-19 Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-COVID-19-Burden-Estimate/ahrf-yqdt
    Explore at:
    csv, application/rdfxml, json, application/rssxml, xml, tsvAvailable download formats
    Dataset updated
    Mar 21, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  9. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, xml, jsonAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  10. Human contact network analytics and COVID-19 hospital incidence in France

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Aug 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christian Selinger; Christian Selinger (2021). Human contact network analytics and COVID-19 hospital incidence in France [Dataset]. http://doi.org/10.5281/zenodo.5207324
    Explore at:
    csvAvailable download formats
    Dataset updated
    Aug 18, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Christian Selinger; Christian Selinger
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    France
    Description

    This data set contains COVID-19 hospital incidence, temperature and human mobility and contact data recorded between 2020-03-24 and 2021-03-30 used in the paper:

    Selinger et al. 2021: Predicting COVID-19 incidence in French hospitals using human contact network analytics. 10.1016/j.ijid.2021.08.029

    See methods in the article for detailed descriptions and the data curation process.

    1) cov_mob_tst_national.csv contains national-level data

    The columns comprise:

    incid_hosp: hospital admission incidence

    incid_rea: ICU admission incidence

    incid_dc: hospital death incidence

    incid_rad: incidence of those returned home

    within_departement_colocation_X%: X%-quantile of colocation probabilities with départements

    between_departement_colocation_X%: X%-quantile of colocation probabilities between départements

    fb_population_coverage_X%: X%-quantile of ratio of fb_population over census population in département

    null_links_X%: X%-quantile of null links across départements

    clustering_X%: X%-quantile of clustering coefficients across départements

    ricci_X%: X%-quantile of curvature across départements

    ricci_min_X%: X%-quantile of minimum curvature across départements

    ricci_mean_X%: X%-quantile of average curvature across départements

    ricci_max_X%: X%-quantile of maximum curvature across départements

    strength_X%: X%-quantile of network strengths across départements

    betweenness_centrality_X%: X%-quantile of betweenness_centrality scores across départements

    positive_test_ratio_weekly: ratio of weekly cumulated positive tested over weekly cumulated tests

    retail_and_recreation_percent_change_from_baseline: Google Mobility Reports

    grocery_and_pharmacy_percent_change_from_baseline: Google Mobility Reports

    parks_percent_change_from_baseline: Google Mobility Reports

    transit_stations_percent_change_from_baseline: Google Mobility Reports

    workplaces_percent_change_from_baseline: Google Mobility Reports

    residential_percent_change_from_baseline: Google Mobility Reports

    mean_temperature_X%: X% quantile of mean daily temperatures averaged over the week across départements

    min_temperature_X%: X% quantile of minimum daily temperatures averaged over the week across départements

    max_temperature_X%: X% quantile of maximum daily temperatures averaged over the week across départements

    2) cov_mob_dep.csv contains département-level data

    The columns comprise:

    dep: département code

    incid_hosp: hospital admission incidence

    incid_rea: ICU admission incidence

    incid_dc: hospital death incidence

    incid_rad: incidence of those returned home

    week: week (matched to colocation data recording usually on Tuesdays)

    dep_name: name of the département

    null_links: number of null links

    betweenness_centrality: betweenness centrality

    clustering: clustering coefficient

    strength: network strength

    ricci_mean: minimum curvature among all edges incident to a département

    ricci_min: mean curvature across all edges incident to a département

    ricci_X%: X%-quantile curvature among all edges incident to a département

    fb_population: number of facebook users

    facebook_colocation_within_dep: colocation probability within département

    fb_population_coverage: ratio of fb_population over census population in département

    facebook_colocation_between_dep_X%: X%-quantile of facebook colocation among all edges incident to the département

    min_temperature: minimum daily temperature averaged over the week

    max_temperature: maximum daily temperature averaged over the week

    mean_temperature: mean daily temperature averaged over the week

    incid_hosp_Y: incidence of hospital admission from Ynd most colocated département

    incid_rea_Y: incidence of ICU admission from Ynd most colocated département

    incid_dc_Y: incidence of hospital deaths from Ynd most colocated département

    incid_rad_Y: incidence of returned home from Ynd most colocated département

  11. COVID-19 cases, hospital admissions, and deaths in the Netherlands 2020, by...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, COVID-19 cases, hospital admissions, and deaths in the Netherlands 2020, by gender [Dataset]. https://www.statista.com/statistics/1109473/coronavirus-death-casulaties-by-gender-in-netherlands/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 1, 2020
    Area covered
    Netherlands
    Description

    As of December, 2020, the coronavirus pandemic in the Netherlands resulted in over 527.5 thousand cases, 17.6 thousand hospital admissions, and 9.4 thousand deaths. To this day, most confirmed COVID-19 cases in the Netherlands were women. However, the distributions of hospital admissions and deaths due to the coronavirus were higher for men.

    Gender aside, COVID-19 figures in the Netherlands differed in terms of age. According to Dutch numbers, the coronavirus infected mostly younger age groups. However, hospital admissions were higher in older people, while the coronavirus was especially deadly for people aged over 80.

  12. COVID-19 Reported Patient Impact and Hospital Capacity by Facility -- RAW

    • healthdata.gov
    • datahub.hhs.gov
    • +1more
    Updated May 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2024). COVID-19 Reported Patient Impact and Hospital Capacity by Facility -- RAW [Dataset]. https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb
    Explore at:
    application/rssxml, tsv, csv, application/rdfxml, xml, kml, kmz, application/geo+jsonAvailable download formats
    Dataset updated
    May 3, 2024
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    U.S. Department of Health & Human Services
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.

    The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Sunday to Saturday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.

    The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.

    For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-15 means the average/sum/coverage of the elements captured from that given facility starting and including Sunday, November 15, 2020, and ending and including reports for Saturday, November 21, 2020.

    Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.

    • A “_coverage” append denotes how many times the facility reported that element during that collection week.
    • A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week.
    • A “_avg” append is the average of the reports provided for that facility for that element during that collection week.

    The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.

    A story page was created to display both corrected and raw datasets and can be accessed at this link: https://healthdata.gov/stories/s/nhgk-5gpv

    This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.

    Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.

    For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied.

    For recent updates to the dataset, scroll to the bottom of the dataset description.

    On May 3, 2021, the following fields have been added to this data set.

    • hhs_ids
    • previous_day_admission_adult_covid_confirmed_7_day_coverage
    • previous_day_admission_pediatric_covid_confirmed_7_day_coverage
    • previous_day_admission_adult_covid_suspected_7_day_coverage
    • previous_day_admission_pediatric_covid_suspected_7_day_coverage
    • previous_week_personnel_covid_vaccinated_doses_administered_7_day_sum
    • total_personnel_covid_vaccinated_doses_none_7_day_sum
    • total_personnel_covid_vaccinated_doses_one_7_day_sum
    • total_personnel_covid_vaccinated_doses_all_7_day_sum
    • previous_week_patients_covid_vaccinated_doses_one_7_day_sum
    • previous_week_patients_covid_vaccinated_doses_all_7_day_sum

    On May 8, 2021, this data set is the originally reported numbers by the facility. This data set may contain data anomalies due to data key entries.

    On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number reported for that metric in a given week.

    On June 7, 2021 Changed vaccination fields from max or min fields to Wednesday reported only. This reflects that the number reported for that metric is only reported on Wednesdays in a given week.

    On January 19, 2022, the following fields have been added to this dataset:

    • inpatient_beds_used_covid_7_day_avg
    • inpatient_beds_used_covid_7_day_sum
    • inpatient_beds_used_covid_7_day_coverage

    On April 28, 2022, the following pediatric fields have been added to this dataset:

    • all_pediatric_inpatient_bed_occupied_7_day_avg
    • all_pediatric_inpatient_bed_occupied_7_day_coverage
    • all_pediatric_inpatient_bed_occupied_7_day_sum
    • all_pediatric_inpatient_beds_7_day_avg
    • all_pediatric_inpatient_beds_7_day_coverage
    • all_pediatric_inpatient_beds_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_0_4_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_12_17_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_5_11_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_unknown_7_day_sum
    • staffed_icu_pediatric_patients_confirmed_covid_7_day_avg
    • staffed_icu_pediatric_patients_confirmed_covid_7_day_coverage
    • staffed_icu_pediatric_patients_confirmed_covid_7_day_sum
    • staffed_pediatric_icu_bed_occupancy_7_day_avg
    • staffed_pediatric_icu_bed_occupancy_7_day_coverage
    • staffed_pediatric_icu_bed_occupancy_7_day_sum
    • total_staffed_pediatric_icu_beds_7_day_avg
    • total_staffed_pediatric_icu_beds_7_day_coverage
    • total_staffed_pediatric_icu_beds_7_day_sum

    Due to changes in reporting requirements, after June 19, 2023, a collection week is defined as starting on a Sunday and ending on the next Saturday.

  13. Number of COVID-19 patients in hospital Australia March 2020 to December...

    • statista.com
    Updated Apr 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Number of COVID-19 patients in hospital Australia March 2020 to December 2022 [Dataset]. https://www.statista.com/statistics/1350861/australia-number-of-covid-19-patients-in-hospital/
    Explore at:
    Dataset updated
    Apr 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 31, 2020 - Dec 1, 2022
    Area covered
    Australia
    Description

    As of December 1, 2022, there were 2,794 COVID-19 patients in hospitals in Australia. The number of COVID-19 patients in hospitals in Australia reached over five thousand in January 2022 and again in July of the same year.

  14. f

    Parameter estimates quantifying the association between RSERs and hospital-...

    • plos.figshare.com
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mona Al-Amin; Md. Nazmul Islam; Kate Li; Natalie Shiels; John Buresh (2023). Parameter estimates quantifying the association between RSERs and hospital- and county-level variables. [Dataset]. http://doi.org/10.1371/journal.pone.0275500.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Mona Al-Amin; Md. Nazmul Islam; Kate Li; Natalie Shiels; John Buresh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Parameter estimates quantifying the association between RSERs and hospital- and county-level variables.

  15. f

    Estimated infected population sizes and infection rates as a function of...

    • plos.figshare.com
    xls
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steen Rasmussen; Michael Skytte Petersen; Niels Høiby (2023). Estimated infected population sizes and infection rates as a function of hospital population using Eqs. [Dataset]. http://doi.org/10.1371/journal.pone.0249733.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Steen Rasmussen; Michael Skytte Petersen; Niels Høiby
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Estimated infected population sizes and infection rates as a function of hospital population using Eqs.

  16. M

    Hospital-Acquired Infection Control Market to Hit US$ 10.7 Billion, 5.1%...

    • media.market.us
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Media (2025). Hospital-Acquired Infection Control Market to Hit US$ 10.7 Billion, 5.1% CAGR [Dataset]. https://media.market.us/hospital-acquired-infection-control-market-news/
    Explore at:
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    Market.us Media
    License

    https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global, United States
    Description

    Introduction

    The Global Hospital Acquired Infection Control (HAIC) Market is anticipated to grow significantly, with projections indicating a rise from USD 6.5 billion in 2022 to USD 10.7 billion by 2032. This growth, estimated at a CAGR of 5.1% from 2023 to 2033, underscores the increasing emphasis on infection prevention and control (IPC) measures within healthcare settings. The need for effective IPC is driven by the potential to enhance patient and healthcare worker safety significantly, as well as to provide substantial economic benefits by reducing the prevalence of hospital-acquired infections (HAIs).

    Efficient hand hygiene and the maintenance of environmental cleanliness are crucial in curbing the spread of antimicrobial-resistant pathogens. Studies have shown that these practices can reduce infection risks by over 50%, highlighting their effectiveness in safeguarding health and reducing long-term complications. Moreover, investing in these preventive strategies offers considerable returns, with every dollar spent potentially saving approximately $16.50 in healthcare costs. This data highlights the cost-effectiveness and critical nature of sustained investment in IPC measures.

    Despite the proven benefits of IPC programs, their global implementation varies significantly. The World Health Organization (WHO) reports that only a minor percentage of countries have fully integrated comprehensive IPC strategies at the national level. This inconsistency points to a pressing need for enhanced political will and increased allocation of resources to strengthen IPC frameworks worldwide, ensuring a broader and more effective implementation.

    The COVID-19 pandemic has further emphasized the importance of rapid IPC training and adequate personal protective equipment (PPE) to prevent virus transmission and protect healthcare workers. The crisis has shown that continuous improvement and investment in IPC capabilities are essential to manage not only the current pandemic but also future healthcare challenges.

    While the implementation of IPC measures faces various challenges, the potential for improving healthcare outcomes and reducing costs is significant. Ongoing global efforts are required to advance IPC strategies effectively. This includes securing adequate funding and strong leadership to foster safer healthcare environments. Continuing to build on these efforts is essential for minimizing the impact of HAIs and enhancing overall health security globally.

    https://market.us/wp-content/uploads/2023/01/Hospital-Acquired-Infection-Control-Market-Size-Forecast.jpg" alt="Hospital Acquired Infection Control Market Size Forecast">

  17. Preliminary Estimates of Cumulative COVID-19-associated Hospitalizations by...

    • data.cdc.gov
    • data.virginia.gov
    application/rdfxml +5
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD) (2025). Preliminary Estimates of Cumulative COVID-19-associated Hospitalizations by Week for 2024-2025 [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-Estimates-of-Cumulative-COVID-19-assoc/xnjn-rdmd
    Explore at:
    tsv, json, application/rdfxml, application/rssxml, csv, xmlAvailable download formats
    Dataset updated
    Mar 21, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD)
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary weekly estimates of cumulative U.S. COVID-19-associated hospitalizations for the 2024-2025 period. The weekly cumulatve COVID-19 –associated hospitalization estimates are preliminary, and use reported weekly hospitalizations among laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data are updated week-by-week as new COVID-19 hospitalizations are reported to CDC from the COVID-NET system and include both new admissions that occurred during the reporting week, as well as those admitted in previous weeks that may not have been included in earlier reporting. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated hospitalizations that have occurred since October 1, 2024. For details, please refer to the publication [7].

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  18. Provider Relief Fund COVID-19 Nursing Home Quality Incentive Program

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Aug 4, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2021). Provider Relief Fund COVID-19 Nursing Home Quality Incentive Program [Dataset]. https://catalog.data.gov/dataset/provider-relief-fund-covid-19-nursing-home-quality-incentive-program-3766a
    Explore at:
    Dataset updated
    Aug 4, 2021
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    The bipartisan CARES Act; and the Paycheck Protection Program and Health Care Enhancement Act (PPPHCEA); and the Coronavirus Response and Relief Supplemental Appropriations (CRRSA) Act provided $178 billion in relief funds to hospitals and other healthcare providers on the front lines of the coronavirus response. The Department of Health and Human Services through the Health Resources and Services Administration is allocating $2 billion in incentive payments to nursing home facilities that reduce both COVID-19 infection rates relative to their county and mortality rates against a national benchmark.

  19. m

    Incidence of SARS-CoV-2 infection among healthcare workers before and after...

    • data.mendeley.com
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Incidence of SARS-CoV-2 infection among healthcare workers before and after COVID-19 vaccination in a tertiary paediatric hospital in Warsaw [Dataset]. https://data.mendeley.com/datasets/4t2z4k2m5z/1
    Explore at:
    Dataset updated
    Dec 4, 2023
    Authors
    Beata Kasztelewicz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Warsaw
    Description

    Conceptual proposition: to identify factors associated with HCW SARS-CoV-2 infection which make it possible to direct the management of health care services. Research objective: to analyse the incidence of new SARS-CoV-2 infection among HCWs (before and after vaccination with BNT162b2) and to explore demographic and occupational factors associated with SARS-CoV-2 infection. To analyse the vaccine effectiveness against any SARS-CoV-2 infection in HCWs.

    Collected data: age, gender, profession, workplace, vaccination status, voluntary SARS-CoV-2 nucleocapsid antibody test results (performed before implementation of the HCW vaccination programme in January 2021), SARS-CoV-2 RNA results from longitudinal universal screening (between October 20, 2020, and May 6, 2021, which correspond to epidemiological (epi) week 43, 2020 and epi week 18, 2021, a period covering the second and third epidemic waves in Poland), and SARS-CoV-2 RNA results from contact tracing, symptomatic testing, or testing upon return to work after sick leave (due to respiratory illness) collected from October 20, 2020, up to August 31, 2021 (epi week 43, 2020 to epi week 35, 2021).

  20. Most common comorbidities in COVID-19 deceased patients in Italy 2022

    • statista.com
    Updated Sep 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Most common comorbidities in COVID-19 deceased patients in Italy 2022 [Dataset]. https://www.statista.com/statistics/1110949/common-comorbidities-in-covid-19-deceased-patients-in-italy/
    Explore at:
    Dataset updated
    Sep 1, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 10, 2022
    Area covered
    Italy
    Description

    An in depth study on patients admitted to hospital and later deceased with the coronavirus (COVID-19) infection revealed that the majority of cases showed one or more comorbidities. As the chart shows, hypertension was the most common pre-existing health condition, detected in 65.8 percent of patients who died after contracting the virus. Type 2-diabetes, ischemic heart disease, and atrial fibrillation were also among the most common comorbidities in COVID-19 patients who lost their lives. More statistics and facts about the virus in Italy are available here. For a global overview visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2020). Number of coronavirus infections acquired in hospitals Japan 2020, by prefecture [Dataset]. https://www.statista.com/statistics/1114008/japan-number-hospital-acquired-infection-coronavirus-by-prefecture/
Organization logo

Number of coronavirus infections acquired in hospitals Japan 2020, by prefecture

Explore at:
Dataset updated
Apr 30, 2020
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Apr 20, 2020
Area covered
Japan
Description

As of April 20, 2020, the highest number of hospital-acquired infections (HAI) with the coronavirus disease(COVID-19) was recorded in Tokyo Prefecture, in which 375 cases were confirmed across eight hospitals. The northernmost prefecture Hokkaido had the second highest number of hospital-acquired infections with 95 cases in seven hospitals.

For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated facts and figure page.

Search
Clear search
Close search
Google apps
Main menu