92 datasets found
  1. COVID-19 Global Case and Death Data

    • kaggle.com
    zip
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). COVID-19 Global Case and Death Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/covid-19-global-case-and-death-data
    Explore at:
    zip(81724234 bytes)Available download formats
    Dataset updated
    Dec 4, 2023
    Authors
    The Devastator
    Description

    COVID-19 Global Case and Death Data

    Global COVID-19 Cases and Deaths Over Time

    By Coronavirus (COVID-19) Data Hub [source]

    About this dataset

    The COVID-19 Global Time Series Case and Death Data is a comprehensive collection of global COVID-19 case and death information recorded over time. This dataset includes data from various sources such as JHU CSSE COVID-19 Data and The New York Times.

    The dataset consists of several columns providing detailed information on different aspects of the COVID-19 situation. The COUNTRY_SHORT_NAME column represents the short name of the country where the data is recorded, while the Data_Source column indicates the source from which the data was obtained.

    Other important columns include Cases, which denotes the number of COVID-19 cases reported, and Difference, which indicates the difference in case numbers compared to the previous day. Additionally, there are columns such as CONTINENT_NAME, DATA_SOURCE_NAME, COUNTRY_ALPHA_3_CODE, COUNTRY_ALPHA_2_CODE that provide additional details about countries and continents.

    Furthermore, this dataset also includes information on deaths related to COVID-19. The column PEOPLE_DEATH_NEW_COUNT shows the number of new deaths reported on a specific date.

    To provide more context to the data, certain columns offer demographic details about locations. For instance, Population_Count provides population counts for different areas. Moreover,**FIPS** code is available for provincial/state regions for identification purposes.

    It is important to note that this dataset covers both confirmed cases (Case_Type: confirmed) as well as probable cases (Case_Type: probable). These classifications help differentiate between various types of COVID-19 infections.

    Overall, this dataset offers a comprehensive picture of global COVID-19 situations by providing accurate and up-to-date information on cases, deaths, demographic details like population count or FIPS code), source references (such as JHU CSSE or NY Times), geographical information (country names coded with ALPHA codes) , etcetera making it useful for researchers studying patterns and trends associated with this pandemic

    How to use the dataset

    • Understanding the Dataset Structure:

      • The dataset is available in two files: COVID-19 Activity.csv and COVID-19 Cases.csv.
      • Both files contain different columns that provide information about the COVID-19 cases and deaths.
      • Some important columns to look out for are: a. PEOPLE_POSITIVE_CASES_COUNT: The total number of confirmed positive COVID-19 cases. b. COUNTY_NAME: The name of the county where the data is recorded. c. PROVINCE_STATE_NAME: The name of the province or state where the data is recorded. d. REPORT_DATE: The date when the data was reported. e. CONTINENT_NAME: The name of the continent where the data is recorded. f. DATA_SOURCE_NAME: The name of the data source. g. PEOPLE_DEATH_NEW_COUNT: The number of new deaths reported on a specific date. h.COUNTRY_ALPHA_3_CODE :The three-letter alpha code represents country f.Lat,Long :latitude and longitude coordinates represent location i.Country_Region or COUNTRY_SHORT_NAME:The country or region where cases were reported.
    • Choosing Relevant Columns: It's important to determine which columns are relevant to your analysis or research question before proceeding with further analysis.

    • Exploring Data Patterns: Use various statistical techniques like summarizing statistics, creating visualizations (e.g., bar charts, line graphs), etc., to explore patterns in different variables over time or across regions/countries.

    • Filtering Data: You can filter your dataset based on specific criteria using column(s) such as COUNTRY_SHORT_NAME, CONTINENT_NAME, or PROVINCE_STATE_NAME to focus on specific countries, continents, or regions of interest.

    • Combining Data: You can combine data from different sources (e.g., COVID-19 cases and deaths) to perform advanced analysis or create insightful visualizations.

    • Analyzing Trends: Use the dataset to analyze and identify trends in COVID-19 cases and deaths over time. You can examine factors such as population count, testing count, hospitalization count, etc., to gain deeper insights into the impact of the virus.

    • Comparing Countries/Regions: Compare COVID-19

    Research Ideas

    • Trend Analysis: This dataset can be used to analyze and track the trends of COVID-19 cases and deaths over time. It provides comprehensive global data, allowing researchers and po...
  2. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +4more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  3. COVID-19 Case Mortality Ratios by Country

    • kaggle.com
    zip
    Updated Sep 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul Mooney (2020). COVID-19 Case Mortality Ratios by Country [Dataset]. https://www.kaggle.com/paultimothymooney/coronavirus-covid19-mortality-rate-by-country
    Explore at:
    zip(7847 bytes)Available download formats
    Dataset updated
    Sep 25, 2020
    Authors
    Paul Mooney
    Description

    Context

    The 2019–20 coronavirus pandemic is an ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Source: https://en.wikipedia.org/wiki/2019%E2%80%9320_coronavirus_pandemic.

    Content

    Coronavirus COVID-19 confirmed cases, deaths, case mortality ratios, country, latitude, and longitude.

    Disclaimer: Data will be more accurate as more data comes in. Deaths/Infections will be a better measure of mortality rate after a pandemic is over, when the estimates of the number of infections start to get closer to the true number of infected individuals. Note discussion of case mortality ratio (numbers as they are reported) vs infection mortality ratio (estimates of the actual numbers). This dataset discusses case mortality ratios.

    Acknowledgements

    Banner photo by Adhy Savala on Unsplash.

    Data generated from the notebook https://www.kaggle.com/paultimothymooney/does-latitude-impact-the-spread-of-covid-19 using data from https://www.kaggle.com/paultimothymooney/latitude-and-longitude-for-every-country-and-state and https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset, all of which were released under open data licenses.

  4. COVID-19 State Data

    • kaggle.com
    zip
    Updated Nov 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Night Ranger (2020). COVID-19 State Data [Dataset]. https://www.kaggle.com/nightranger77/covid19-state-data
    Explore at:
    zip(4501 bytes)Available download formats
    Dataset updated
    Nov 3, 2020
    Authors
    Night Ranger
    Description

    This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.

    Deaths, Infections and Tests by State

    The COVID Tracking Project: https://covidtracking.com/data/api

    Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset. Please read the documentation of the API for more context on those columns

    Predictor Data and Sources

    Population (2020)

    Density is people per meter squared https://worldpopulationreview.com/states/

    ICU Beds and Age 60+

    https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-americans-live-in-counties-with-no-icu-beds/

    GDP

    https://worldpopulationreview.com/states/gdp-by-state/

    Income per capita (2018)

    https://worldpopulationreview.com/states/per-capita-income-by-state/

    Gini

    https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient

    Unemployment (2020)

    Rates from Feb 2020 and are percentage of labor force
    https://www.bls.gov/web/laus/laumstrk.htm

    Sex (2017)

    Ratio is Male / Female
    https://www.kff.org/other/state-indicator/distribution-by-gender/

    Smoking Percentage (2020)

    https://worldpopulationreview.com/states/smoking-rates-by-state/

    Influenza and Pneumonia Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm

    Chronic Lower Respiratory Disease Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm

    Active Physicians (2019)

    https://www.kff.org/other/state-indicator/total-active-physicians/

    Hospitals (2018)

    https://www.kff.org/other/state-indicator/total-hospitals

    Health spending per capita

    Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
    https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/

    Pollution (2019)

    Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
    https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL

    Medium and Large Airports

    For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States

    Temperature (2019)

    Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
    https://worldpopulationreview.com/states/average-temperatures-by-state/
    District of Columbia temperature computed as the average of Maryland and Virginia

    Urbanization (2010)

    Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states

    Age Groups (2018)

    https://www.kff.org/other/state-indicator/distribution-by-age/

    School Closure Dates

    Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html

    Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.

  5. d

    ARCHIVED: COVID-19 Cases and Deaths Summarized by Geography

    • catalog.data.gov
    Updated Mar 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). ARCHIVED: COVID-19 Cases and Deaths Summarized by Geography [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-summarized-by-geography
    Explore at:
    Dataset updated
    Mar 29, 2025
    Dataset provided by
    data.sfgov.org
    Description

    A. SUMMARY Medical provider confirmed COVID-19 cases and confirmed COVID-19 related deaths in San Francisco, CA aggregated by several different geographic areas and normalized by 2016-2020 American Community Survey (ACS) 5-year estimates for population data to calculate rate per 10,000 residents. On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021. Cases and deaths are both mapped to the residence of the individual, not to where they were infected or died. For example, if one was infected in San Francisco at work but lives in the East Bay, those are not counted as SF Cases or if one dies in Zuckerberg San Francisco General but is from another county, that is also not counted in this dataset. Dataset is cumulative and covers cases going back to 3/2/2020 when testing began. Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas B. HOW THE DATASET IS CREATED Addresses from medical data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area. The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a rate which is equal to ([count] / [acs_population]) * 10000) representing the number of cases per 10,000 residents. C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 7:30 Pacific Time. D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). Privacy rules in effect To protect privacy, certain rules are in effect: 1. Case counts greater than 0 and less than 10 are dropped - these will be null (blank) values 2. Death counts greater than 0 and less than 10 are dropped - these will be null (blank) values 3. Cases and deaths dropped altogether for areas where acs_population < 1000 Rate suppression in effect where counts lower than 20 Rates are not calculated unless the case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology. A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes. Read how the Census develops ZCTAs on their website. Row included for Citywide case counts, incidence rate, and deaths A single row is included that has the Citywide case counts and incidence rate. This can be used for comparisons. Citywide will capture all cases regardless of address quality. While some cases cannot be mapped to sub-areas like Census Tracts, ongo

  6. Deaths due to COVID-19 by local area and deprivation

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated May 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Deaths due to COVID-19 by local area and deprivation [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsduetocovid19bylocalareaanddeprivation
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 20, 2021
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional age-standardised mortality rates for deaths due to COVID-19 by sex, local authority and deprivation indices, and numbers of deaths by middle-layer super output area.

  7. COVID-19 Outcomes by Vaccination Status

    • kaggle.com
    zip
    Updated Jul 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaushik D (2024). COVID-19 Outcomes by Vaccination Status [Dataset]. https://www.kaggle.com/datasets/kirbysasuke/covid-19
    Explore at:
    zip(90174 bytes)Available download formats
    Dataset updated
    Jul 2, 2024
    Authors
    Kaushik D
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    NOTE: This dataset has been retired and marked as historical-only.

    Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age.

    Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine.

    Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS).

    Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death.

    Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test.

    CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset.

    Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000.

    Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people.

    Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population.

    Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019.

    All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week.

    Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.

    For all datasets related to COVID-19, see https://data.cityofchic

  8. Johns Hopkins COVID-19 Case Tracker

    • kaggle.com
    • data.world
    Updated Aug 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cansin Wayne (2020). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://www.kaggle.com/datasets/thecansin/johns-hopkins-covid19-case-tracker
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 16, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Cansin Wayne
    Description

    DESCRIPTION

    Johns Hopkins' county-level COVID-19 case and death data, paired with population and rates per 100,000

    SUMMARY Updates April 9, 2020 The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County. April 20, 2020 Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well. April 29, 2020 The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.

    Overview The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Filter cases by state here

    Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac

    Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true

    Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.

    Pull the 100 counties with the highest per-capita confirmed cases here

    Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.

    Interactive Embed Code

    Caveats This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website. In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules. In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county" This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members. Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates. Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey. The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories --...

  9. COVID-19 Impact - SQL Project

    • kaggle.com
    zip
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ann Truong (2023). COVID-19 Impact - SQL Project [Dataset]. https://www.kaggle.com/datasets/bvanntruong/covid-impact/discussion
    Explore at:
    zip(14265911 bytes)Available download formats
    Dataset updated
    Jun 8, 2023
    Authors
    Ann Truong
    Description

    This dataset contains information about COVID deaths and vaccinations, illustrating the total impact of the pandemic on mortality globally. The complete Our World in Data COVID-19 dataset is open-source, updated daily, and can be found here.

    The SQL queries I created for Data Exploration can be found on this GitHub Repository.

    The COVID Dashboard I created in summary of this data exploration can be found on this Tableau Public page.

    For this dataset's Data Exploration, we will be utilizing SQL queries to examine the likelihood of death if someone contracts COVID in the United States. This query was created in curiosity of the conditions in my country, the US, but can be modified by location. We also explore the infection rate compared to the total population of each country globally.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2F0931cb21cf68b417fb19bb17f8fe1717%2FCOVID%20Dashboard.png?generation=1686117683189512&alt=media" alt="">

  10. f

    Multiple linear regression table with R2, coefficient and p value for input...

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Satyaki Roy; Preetam Ghosh (2023). Multiple linear regression table with R2, coefficient and p value for input features (population density, normalized busy airport, pre-infected count, pre-death count) and observed factors (post-infected count and post-death count). [Dataset]. http://doi.org/10.1371/journal.pone.0241165.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Satyaki Roy; Preetam Ghosh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Multiple linear regression table with R2, coefficient and p value for input features (population density, normalized busy airport, pre-infected count, pre-death count) and observed factors (post-infected count and post-death count).

  11. f

    COVID-19 infection fatality rates and mortality rates, stratified by age...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Nov 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bertran, Marta; Davison, Chloe; Oligbu, Godwin; Amin-Chowdhury, Zahin; Allen, Hester; Davies, Hannah G.; Seghezzo, Giulia; Gent, Nick; Ramsay, Mary E.; Sinnathamby, Mary; Kall, Meaghan; Clare, Tom; Williams, Hannah; Ladhani, Shamez N. (2022). COVID-19 infection fatality rates and mortality rates, stratified by age group and variant period. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000267875
    Explore at:
    Dataset updated
    Nov 8, 2022
    Authors
    Bertran, Marta; Davison, Chloe; Oligbu, Godwin; Amin-Chowdhury, Zahin; Allen, Hester; Davies, Hannah G.; Seghezzo, Giulia; Gent, Nick; Ramsay, Mary E.; Sinnathamby, Mary; Kall, Meaghan; Clare, Tom; Williams, Hannah; Ladhani, Shamez N.
    Description

    COVID-19 infection fatality rates and mortality rates, stratified by age group and variant period.

  12. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and...

    • data.cdc.gov
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Second Booster Dose [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/ukww-au2k
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138

  13. Summary of features and their statistics (i.e., mean, standard deviation...

    • plos.figshare.com
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Satyaki Roy; Preetam Ghosh (2023). Summary of features and their statistics (i.e., mean, standard deviation (dev.), maximum (max.) and minimum (min.)). [Dataset]. http://doi.org/10.1371/journal.pone.0241165.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Satyaki Roy; Preetam Ghosh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The features in the order shown under “Feature name” are: GDP, inter-state distance based on lat-long coordinates, gender, ethnicity, quality of health care facility, number of homeless people, total infected and death, population density, airport passenger traffic, age group, days for infection and death to peak, number of people tested for COVID-19, days elapsed between first reported infection and the imposition of lockdown measures at a given state.

  14. Infected and death cases Covid-19 of Bangladesh

    • kaggle.com
    zip
    Updated Nov 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md. Akbar Hossain (2023). Infected and death cases Covid-19 of Bangladesh [Dataset]. https://www.kaggle.com/datasets/mdakbarhossain12/infected-and-death-cases-covid-19-of-bangladesh
    Explore at:
    zip(2840 bytes)Available download formats
    Dataset updated
    Nov 15, 2023
    Authors
    Md. Akbar Hossain
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Bangladesh
    Description

    Dataset Description: Infected and Death Cases of Covid-19 in Bangladesh This dataset contains detailed information on Covid-19 cases in Bangladesh, focusing on the number of new cases and deaths reported. The data spans from September 27, 2020, to November 19, 2021. The dataset is structured with three primary columns:

    Date: The date when the data was recorded, formatted as YYYY-MM-DD. New Cases: The number of new Covid-19 cases reported on the corresponding date. Deaths: The number of deaths attributed to Covid-19 on the corresponding date. Key Features: Time Range: Covers over a year of data, capturing various waves of the pandemic. Granularity: Daily records, providing detailed insights into the daily progression of the pandemic. Size: The dataset is compact, with a file size of 7.91 KB, making it easy to handle and analyze. Cite this paper

    @InProceedings{10.1007/978-981-19-2445-3_38, author="Rahman, Ashifur and Hossain, Md. Akbar and Moon, Mohasina Jannat", editor="Hossain, Sazzad and Hossain, Md. Shahadat and Kaiser, M. Shamim and Majumder, Satya Prasad and Ray, Kanad", title="An LSTM-Based Forecast Of COVID-19 For Bangladesh", booktitle="Proceedings of International Conference on Fourth Industrial Revolution and Beyond 2021 ", year="2022", publisher="Springer Nature Singapore", address="Singapore", pages="551--561", abstract="Preoperative events can be predicted using deep learning-based forecasting techniques. It can help to improve future decision-making. Deep learning has traditionally been used to identify and evaluate adverse risks in a variety of major applications. Numerous prediction approaches are commonly applied to deal with forecasting challenges. The number of infected people, as well as the mortality rate of COVID-19, is increasing every day. Many countries, including India, Brazil, and the United States, were severely affected; however, since the very first case was identified, the transmission rate has decreased dramatically after a set time period. Bangladesh, on the other hand, was unable to keep the rate of infection low. In this situation, several methods have been developed to forecast the number of affected, time to recover, and the number of deaths. This research illustrates the ability of DL models to forecast the number of affected and dead people as a result of COVID-19, which is now regarded as a possible threat to humanity. As part of this study, we developed an LSTM based method to predict the next 100 days of death and newly identified COVID-19 cases in Bangladesh. To do this experiment we collect data on death and newly detected COVID-19 cases through Bangladesh's national COVID-19 help desk website. After collecting data we processed it to make a dataset for training our LSTM model. After completing the training, we predict our model with the test dataset. The result of our model is very robust on the basis of the training and testing dataset. Finally, we forecast the subsequent 100 days of deaths and newly infected COVID-19 cases in Bangladesh.", isbn="978-981-19-2445-3" }

  15. m

    COVID-19 Patients' Dataset

    • data.mendeley.com
    Updated Aug 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md Motaleb Hossen Manik (2023). COVID-19 Patients' Dataset [Dataset]. http://doi.org/10.17632/xn455k9jch.1
    Explore at:
    Dataset updated
    Aug 25, 2023
    Authors
    Md Motaleb Hossen Manik
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a comprehensive dataset that includes statistics of COVID-19 patients (infected, death, recovered).

  16. M

    COVID-19 Daily State Statistics

    • catalog.midasnetwork.us
    Updated Apr 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colorado Department of Public Health and Environment (2022). COVID-19 Daily State Statistics [Dataset]. https://catalog.midasnetwork.us/collection/139
    Explore at:
    Dataset updated
    Apr 4, 2022
    Dataset provided by
    MIDAS COORDINATION CENTER
    Authors
    Colorado Department of Public Health and Environment
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    State
    Variables measured
    Viruses, disease, COVID-19, pathogen, Homo sapiens, host organism, mortality data, Population count, diagnostic tests, infectious disease, and 5 more
    Dataset funded by
    National Institute of General Medical Sciences
    Description

    Colorado Department of Public Health and Environment COVID19 Daily State Statistics contains published state-level data and statistics on the following indicators: number of cases, people tested, deaths among cases, deaths due to COVID-19 (death certificate), rate of COVID-19 infection per 100,000 persons, COVID-19 hospitalizations, counties with cases, and number of outbreaks. This dataset represents a cumulative repository of daily published data.

  17. f

    Age Specific Death Rate (ASDR).

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Feb 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Faisel, Abul Jamil; Hussain, Mofakhar; Sultana, Nasrin; Kuddus, Abdul; Shimul, Shafiun Nahin; Hamid, Syed Abdul (2024). Age Specific Death Rate (ASDR). [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001492206
    Explore at:
    Dataset updated
    Feb 23, 2024
    Authors
    Faisel, Abul Jamil; Hussain, Mofakhar; Sultana, Nasrin; Kuddus, Abdul; Shimul, Shafiun Nahin; Hamid, Syed Abdul
    Description

    The COVID-19 pandemic has been a major health concern in Bangladesh until very recently. Although the Bangladesh government has employed various infection control strategies, more targeted Non-Pharmaceutical interventions (NPIs), including school closure, mask-wearing, hand washing, and social distancing have gained special attention. Despite significant long-term adverse effects of school closures, authorities have opted to keep schools closed to curb the spread of COVID-19 infection. However, there is limited knowledge about the impact of reopening schools alongside other NPI measures on the course of the epidemic. In this study, we implemented a mathematical modeling framework developed by the CoMo Consortium to explore the impact of NPIs on the dynamics of the COVID-19 outbreak and deaths for Bangladesh. For robustness, the results of prediction models are then validated through model calibration with incidence and mortality data and using external sources. Hypothetical projections are made under alternative NPIs where we compare the impact of current NPIs with school closures versus enhanced NPIs with school openings. Results suggest that enhanced NPIs with schools opened may have lower COVID-19 related prevalence and deaths. This finding indicates that enhanced NPIs and school openings may mitigate the long-term negative impacts of COVID-19 in low- and middle-income countries. Potential shortcomings and ways to improve the research are also discussed.

  18. Preliminary 2024-2025 U.S. COVID-19 Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD). (2025). Preliminary 2024-2025 U.S. COVID-19 Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-COVID-19-Burden-Estimate/ahrf-yqdt
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  19. Coronavirus (COVID-19) related deaths by occupation, England and Wales:...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Sep 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2020). Coronavirus (COVID-19) related deaths by occupation, England and Wales: before and during the lockdown [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/datasets/coronaviruscovid19relateddeathsbyoccupationenglandandwalesbeforeandduringthelockdown
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Sep 22, 2020
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    England, Wales
    Description

    Provisional counts of the number of deaths and annualised age-standardised mortality rates involving the coronavirus (COVID-19) by major occupations, where the infection may have been acquired either before or during the period of lockdown. The deaths have been registered in England and Wales. Figures are provided for males and females.

  20. g

    COVID-19-associated deaths electronic certification data (CepiDC) |...

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    COVID-19-associated deaths electronic certification data (CepiDC) | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_5ec29690e2e5bc38ffc5aae7/
    Explore at:
    Description

    The actions of Public Health France Public Health France’s mission is to improve and protect the health of populations. During the health crisis linked to the COVID-19 epidemic, Public Health France is responsible for monitoring and understanding the dynamics of the epidemic, anticipating the various scenarios and implementing actions to prevent and limit the transmission of this virus on the national territory. ### The electronic certification of deaths The Centre for Epidemiology on Medical Causes of Death (CépiDc) is the laboratory of the Inserm (National Institute of Health and Medical Research) in charge of producing statistics on the medical causes of death. The data are derived from the medical part of the certificate of death certified electronically. Deaths can be recorded in all types of place of death (public or private health institutions, EHPAD/retirement home, home, or other unspecified places). However, a health facility does not necessarily use electronic death certification in all of these services. Deaths associated with Covid-19 are identified from the statements expressed by doctors in the medical causes of death. COVID-19 infection may be suspected or biologically confirmed. ### Description of the data This dataset provides information on: — The cumulative number of deaths associated with Covid-19 by sex and by department; — The cumulative number of deaths associated with COVID-19 by age group and region; — The cumulative number of non-affiliated establishments or physicians who have certified at least 1 Covid-19-associated deaths per region. ** Methodological warning:** The data have been accumulated since 1 March 2020. At the beginning of 2020, about 20 % of deaths in France were electronically certified, with a heterogeneity ranging from 0 % to 28 % depending on the region. A surge has been observed since the beginning of April 2020, in particular by private institutions and EHPADs, without it being possible to assess the proportion of additional deaths recorded by this increase.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Devastator (2023). COVID-19 Global Case and Death Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/covid-19-global-case-and-death-data
Organization logo

COVID-19 Global Case and Death Data

Global COVID-19 Cases and Deaths Over Time

Explore at:
zip(81724234 bytes)Available download formats
Dataset updated
Dec 4, 2023
Authors
The Devastator
Description

COVID-19 Global Case and Death Data

Global COVID-19 Cases and Deaths Over Time

By Coronavirus (COVID-19) Data Hub [source]

About this dataset

The COVID-19 Global Time Series Case and Death Data is a comprehensive collection of global COVID-19 case and death information recorded over time. This dataset includes data from various sources such as JHU CSSE COVID-19 Data and The New York Times.

The dataset consists of several columns providing detailed information on different aspects of the COVID-19 situation. The COUNTRY_SHORT_NAME column represents the short name of the country where the data is recorded, while the Data_Source column indicates the source from which the data was obtained.

Other important columns include Cases, which denotes the number of COVID-19 cases reported, and Difference, which indicates the difference in case numbers compared to the previous day. Additionally, there are columns such as CONTINENT_NAME, DATA_SOURCE_NAME, COUNTRY_ALPHA_3_CODE, COUNTRY_ALPHA_2_CODE that provide additional details about countries and continents.

Furthermore, this dataset also includes information on deaths related to COVID-19. The column PEOPLE_DEATH_NEW_COUNT shows the number of new deaths reported on a specific date.

To provide more context to the data, certain columns offer demographic details about locations. For instance, Population_Count provides population counts for different areas. Moreover,**FIPS** code is available for provincial/state regions for identification purposes.

It is important to note that this dataset covers both confirmed cases (Case_Type: confirmed) as well as probable cases (Case_Type: probable). These classifications help differentiate between various types of COVID-19 infections.

Overall, this dataset offers a comprehensive picture of global COVID-19 situations by providing accurate and up-to-date information on cases, deaths, demographic details like population count or FIPS code), source references (such as JHU CSSE or NY Times), geographical information (country names coded with ALPHA codes) , etcetera making it useful for researchers studying patterns and trends associated with this pandemic

How to use the dataset

  • Understanding the Dataset Structure:

    • The dataset is available in two files: COVID-19 Activity.csv and COVID-19 Cases.csv.
    • Both files contain different columns that provide information about the COVID-19 cases and deaths.
    • Some important columns to look out for are: a. PEOPLE_POSITIVE_CASES_COUNT: The total number of confirmed positive COVID-19 cases. b. COUNTY_NAME: The name of the county where the data is recorded. c. PROVINCE_STATE_NAME: The name of the province or state where the data is recorded. d. REPORT_DATE: The date when the data was reported. e. CONTINENT_NAME: The name of the continent where the data is recorded. f. DATA_SOURCE_NAME: The name of the data source. g. PEOPLE_DEATH_NEW_COUNT: The number of new deaths reported on a specific date. h.COUNTRY_ALPHA_3_CODE :The three-letter alpha code represents country f.Lat,Long :latitude and longitude coordinates represent location i.Country_Region or COUNTRY_SHORT_NAME:The country or region where cases were reported.
  • Choosing Relevant Columns: It's important to determine which columns are relevant to your analysis or research question before proceeding with further analysis.

  • Exploring Data Patterns: Use various statistical techniques like summarizing statistics, creating visualizations (e.g., bar charts, line graphs), etc., to explore patterns in different variables over time or across regions/countries.

  • Filtering Data: You can filter your dataset based on specific criteria using column(s) such as COUNTRY_SHORT_NAME, CONTINENT_NAME, or PROVINCE_STATE_NAME to focus on specific countries, continents, or regions of interest.

  • Combining Data: You can combine data from different sources (e.g., COVID-19 cases and deaths) to perform advanced analysis or create insightful visualizations.

  • Analyzing Trends: Use the dataset to analyze and identify trends in COVID-19 cases and deaths over time. You can examine factors such as population count, testing count, hospitalization count, etc., to gain deeper insights into the impact of the virus.

  • Comparing Countries/Regions: Compare COVID-19

Research Ideas

  • Trend Analysis: This dataset can be used to analyze and track the trends of COVID-19 cases and deaths over time. It provides comprehensive global data, allowing researchers and po...
Search
Clear search
Close search
Google apps
Main menu