100+ datasets found
  1. g

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • github.com
    • systems.jhu.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  2. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Sep 26, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  3. V

    Johns Hopkins COVID-19 Data (Virginia only)

    • data.virginia.gov
    csv
    Updated Feb 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Other (2024). Johns Hopkins COVID-19 Data (Virginia only) [Dataset]. https://data.virginia.gov/dataset/johns-hopkins-covid-19-data-virginia-only
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 3, 2024
    Dataset authored and provided by
    Other
    Description

    Made available through Socrata COVID-19 Plugin via API. This data is for Virginia only.

    This data comes from: COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University This is the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL).

    https://github.com/CSSEGISandData/COVID-19#covid-19-data-repository-by-the-center-for-systems-science-and-engineering-csse-at-johns-hopkins-university

  4. s

    COVID-19 Pandemic - Worldwide

    • ods.backoffice.smartidf.services
    • opendata.bruxelles.be
    • +4more
    csv, excel, geojson +1
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). COVID-19 Pandemic - Worldwide [Dataset]. https://ods.backoffice.smartidf.services/explore/dataset/covid-19-pandemic-worldwide-data/?flg=fr-fr
    Explore at:
    geojson, excel, csv, jsonAvailable download formats
    Dataset updated
    Jun 21, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the data for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL).Data SourcesWorld Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-casesMinistry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus

  5. COVID-19 US County JHU Data & Demographics

    • kaggle.com
    zip
    Updated Jun 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heads or Tails (2020). COVID-19 US County JHU Data & Demographics [Dataset]. https://www.kaggle.com/headsortails/covid19-us-county-jhu-data-demographics
    Explore at:
    zip(18275905 bytes)Available download formats
    Dataset updated
    Jun 10, 2020
    Authors
    Heads or Tails
    Area covered
    United States
    Description

    Context

    The United States have recently become the country with the most reported cases of 2019 Novel Coronavirus (COVID-19). This dataset contains daily updated number of reported cases & deaths in the US on the state and county level, as provided by the Johns Hopkins University. In addition, I provide matching demographic information for US counties.

    Content

    The dataset consists of two main csv files: covid_us_county.csv and us_county.csv. See the column descriptions below for more detailed information. In addition, I've added US county shape files for geospatial plots: us_county.shp/dbf/prj/shx.

    • covid_us_county.csv: COVID-19 cases and deaths which will be updated daily. The data is provided by the Johns Hopkins University through their excellent github repo. I combined the separate "confirmed cases" and "deaths" files into a single table, removed a few (I think to be) redundant geo identifier columns, and reshaped the data into long format with a single date column. The earliest recorded cases are from 2020-01-22.

    • us_counties.csv: Demographic information on the US county level based on the (most recent) 2014-18 release of the Amercian Community Survey. Derived via the great tidycensus package.

    Column Description

    COVID-19 dataset covid_us_county.csv:

    • fips: County code in numeric format (i.e. no leading zeros). A small number of cases have NA values here, but can still be used for state-wise aggregation. Currently, this only affect the states of Massachusetts and Missouri.

    • county: Name of the US county. This is NA for the (aggregated counts of the) territories of American Samoa, Guam, Northern Mariana Islands, Puerto Rico, and Virgin Islands.

    • state: Name of US state or territory.

    • state_code: Two letter abbreviation of US state (e.g. "CA" for "California"). This feature has NA values for the territories listed above.

    • lat and long: coordinates of the county or territory.

    • date: Reporting date.

    • cases & deaths: Cumulative numbers for cases & deaths.

    Demographic dataset us_counties.csv:

    • fips, county, state, state_code: same as above. The county names are slightly different, but mostly the difference is that this dataset has the word "County" added. I recommend to join on fips.

    • male & female: Population numbers for male and female.

    • population: Total population for the county. Provided as convenience feature; is always the sum of male + female.

    • female_percentage: Another convenience feature: female / population in percent.

    • median_age: Overall median age for the county.

    Acknowledgements

    Data provided for educational and academic research purposes by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE).

    Licence

    The github repo states that:

    This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.
    

    Version history

    • In version 1, a small number of cases had values of `county == "Unassigned". Those have been superseded.
    • Version 5: added US county shape files
  6. Coronavirus COVID-19 Global Cases Dashboard from Johns Hopkins University

    • healthdata.gov
    • data.colorado.gov
    application/rdfxml +5
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.colorado.gov (2025). Coronavirus COVID-19 Global Cases Dashboard from Johns Hopkins University [Dataset]. https://healthdata.gov/State/Coronavirus-COVID-19-Global-Cases-Dashboard-from-J/vrfm-d4r7
    Explore at:
    application/rdfxml, xml, tsv, application/rssxml, json, csvAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    data.colorado.gov
    Description

    Global Map of Coronavirus cases

  7. JHU CSSE COVID-19 Data

    • kaggle.com
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony (2023). JHU CSSE COVID-19 Data [Dataset]. https://www.kaggle.com/datasets/anthonyylee/jhu-csse-covid-19-data/suggestions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 10, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Anthony
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview

    Full dataset from Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE) GitHub repository.

    This is the full and complete dataset linked from JHU CSSE GitHub repository. The intent of this dataset is to provide access to the full dataset on the platform in contrast to the various other subsets.

    Since the original GitHub repository has been archived, there are no planned updates to this dataset.

    Citation

    All citation please cite according to specification in the GitHub repository README.

    Source

    COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University

    Reference

    Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Inf Dis. 20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1

  8. h

    JHU COVID-19 Data

    • health-atlas.de
    Updated Sep 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University (2020). JHU COVID-19 Data [Dataset]. https://health-atlas.de/data_files/292
    Explore at:
    Dataset updated
    Sep 11, 2020
    Authors
    Johns Hopkins University
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description not specified.........................

  9. Z

    Linked COVID-19 Data: Johns Hopkins University (JHU) and European Centre for...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Thiery (2020). Linked COVID-19 Data: Johns Hopkins University (JHU) and European Centre for Disease Prevention and Control (ECDC) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3757279
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset authored and provided by
    Florian Thiery
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Linked COVID-19 Data derived from

    Johns Hopkins University

    and

    European Centre for Disease Prevention and Control

    using the COVID-19 Ontology

    10.5281/zenodo.3757828

    developed for the Linked COVID-19 Data Dashboard: http://covid19data.link

    This files include data for

    covid19_jhu.ttl - COVID-19 data collected by the JHU

    covid19_ecdc.ttl - COVID-19 data collected by the ECDC

    This RDF files are based on

    https://pomber.github.io/covid19/timeseries.json

    https://opendata.ecdc.europa.eu/covid19/casedistribution/json/

  10. o

    Coronavirus COVID-19 global cases by Johns Hopkins CSSE

    • data.opendevelopmentmekong.net
    Updated Mar 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Coronavirus COVID-19 global cases by Johns Hopkins CSSE [Dataset]. https://data.opendevelopmentmekong.net/dataset/coronavirus-covid-19-global-cases-by-johns-hopkins
    Explore at:
    Dataset updated
    Mar 5, 2020
    Description

    This interactive web-based dashboard hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, to visualize and track reported cases in real-time. The dashboard, first shared publicly on 22nd January 2020, illustrates the location and number of confirmed Coronavirus COVID-19 cases, deaths and recoveries for all affected countries.

  11. COVID-19 Trends in Each Country

    • coronavirus-response-israel-systematics.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +2more
    Updated Mar 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-response-israel-systematics.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  12. V

    Covid-19 | Johns Hopkins CSSE Daily Reports (Virginia Only)

    • data.virginia.gov
    • data.dumfriesva.gov
    • +1more
    csv, json, rdf, xsl
    Updated Jul 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dumfries (2023). Covid-19 | Johns Hopkins CSSE Daily Reports (Virginia Only) [Dataset]. https://data.virginia.gov/dataset/covid-19-johns-hopkins-csse-daily-reports-virginia-only
    Explore at:
    csv, xsl, rdf, jsonAvailable download formats
    Dataset updated
    Jul 28, 2023
    Dataset provided by
    data.dumfriesva.gov
    Authors
    Dumfries
    Area covered
    Virginia
    Description

    February 23rd, 2020 - Present. Daily reports of Covid-19 confirmed cases, deaths, and recoveries for the Commonwealth of Virginia. Updated daily at 10:00 a.m.

    This data comes from the COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. This is the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL).

    https://github.com/CSSEGISandData/COVID-19#covid-19-data-repository-by-the-center-for-systems-science-and-engineering-csse-at-johns-hopkins-university

  13. COVID-19 Data Repository by CSSE at JHU

    • console.cloud.google.com
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:Johns%20Hopkins%20University&hl=de (2023). COVID-19 Data Repository by CSSE at JHU [Dataset]. https://console.cloud.google.com/marketplace/product/johnshopkins/covid19_jhu_global_case?hl=de
    Explore at:
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    Googlehttp://google.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). The data include the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries, aggregated at the appropriate province/state. It was developed to enable researchers, public health authorities and the general public to track the outbreak. Additional information is available in the blog post, Mapping 2019-nCoV , and included data sources are listed here . For publications that use the data, please cite the following publication Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Inf Dis. 20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1" This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .This dataset has significant public interest in light of the COVID-19 crisis. All bytes processed in queries against this dataset will be zeroed out, making this part of the query free. Data joined with the dataset will be billed at the normal rate to prevent abuse. After September 15, queries over these datasets will revert to the normal billing rate.

  14. Coronavirus COVID-19 Global Cases Dashboard from Johns Hopkins University -...

    • healthdata.gov
    application/rdfxml +5
    Updated Sep 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Coronavirus COVID-19 Global Cases Dashboard from Johns Hopkins University - vrfm-d4r7 - Archive Repository [Dataset]. https://healthdata.gov/dataset/Coronavirus-COVID-19-Global-Cases-Dashboard-from-J/h68t-hsz8
    Explore at:
    csv, json, application/rdfxml, application/rssxml, tsv, xmlAvailable download formats
    Dataset updated
    Sep 10, 2025
    Description

    This dataset tracks the updates made on the dataset "Coronavirus COVID-19 Global Cases Dashboard from Johns Hopkins University" as a repository for previous versions of the data and metadata.

  15. n

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins...

    • scidm.nchc.org.tw
    Updated Oct 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE (csse_covid_19_data) - Dataset - 國網中心Dataset平台 [Dataset]. https://scidm.nchc.org.tw/dataset/csse-covid-19-dataset
    Explore at:
    Dataset updated
    Oct 10, 2020
    Description

    Ref: https://github.com/CSSEGISandData/COVID-19 Daily reports (csse_covid_19_daily_reports) This folder contains daily case reports. All timestamps are in UTC (GMT+0). File naming convention MM-DD-YYYY.csv in UTC. Field description Province/State: China - province name; US/Canada/Australia/ - city name, state/province name; Others - name of the event (e.g., "Diamond Princess" cruise ship); other countries - blank. Country/Region: country/region name conforming to WHO (will be updated). Last Update: MM/DD/YYYY HH:mm (24 hour format, in UTC). Confirmed: the number of confirmed cases. For Hubei Province: from Feb 13 (GMT +8), we report both clinically diagnosed and lab-confirmed cases. For lab-confirmed cases only (Before Feb 17), please refer to who_covid_19_situation_reports. For Italy, diagnosis standard might be changed since Feb 27 to "slow the growth of new case numbers." (Source) Deaths: the number of deaths. Recovered: the number of recovered cases. Update frequency Files after Feb 1 (UTC): once a day around 23:59 (UTC). Files on and before Feb 1 (UTC): the last updated files before 23:59 (UTC). Sources: archived_data and dashboard. Data sources Refer to the mainpage. Why create this new folder? Unifying all timestamps to UTC, including the file name and the "Last Update" field. Pushing only one file every day. All historic data is archived in archived_data. Time series summary (csse_covid_19_time_series) This folder contains daily time series summary tables, including confirmed, deaths and recovered. All data are from the daily case report. Field descriptioin Province/State: same as above. Country/Region: same as above. Lat and Long: a coordinates reference for the user. Date fields: M/DD/YYYY (UTC), the same data as MM-DD-YYYY.csv file.

  16. COVID-19 data available by county from Johns Hopkins University (ArcGIS...

    • coronavirus-disasterresponse.hub.arcgis.com
    • coronavirus-resources.esri.com
    Updated Mar 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). COVID-19 data available by county from Johns Hopkins University (ArcGIS Blog) [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/datasets/covid-19-data-available-by-county-from-johns-hopkins-university-arcgis-blog
    Explore at:
    Dataset updated
    Mar 24, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    COVID-19 data available by county from Johns Hopkins University (ArcGIS Blog).Johns Hopkins University is now providing data in a map layer by county for COVID-19 cases and deaths. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team and JHU Data Services. See the FAQ or contact Johns Hopkins for more information._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  17. D

    COVID-19 Cases in United States (Johns Hopkins University)

    • dallasopendata.com
    csv, xlsx, xml
    Updated Jul 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University (2021). COVID-19 Cases in United States (Johns Hopkins University) [Dataset]. https://www.dallasopendata.com/Other/COVID-19-Cases-in-United-States-Johns-Hopkins-Univ/ibnu-6tdz
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Jul 22, 2021
    Dataset authored and provided by
    Johns Hopkins University
    Area covered
    United States
    Description

    This dataset contains COVID-19 cases by county in the United States and is sourced from Johns Hopkins University. Johns Hopkins is responsible for the regular maintenance and refresh of this data. Johns Hopkins is currently expected to refresh the data daily. The City of Dallas is not responsible for the accuracy of this data.

  18. New Cases of COVID-19 In World Countries

    • kaggle.com
    Updated Apr 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mehmet Akturk (2020). New Cases of COVID-19 In World Countries [Dataset]. https://kaggle.com/mathchi/new-cases-of-covid19-in-world-countries
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 26, 2020
    Dataset provided by
    Kaggle
    Authors
    Mehmet Akturk
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Has the curve flattened?

    Countries around the world are working to “flatten the curve” of the coronavirus pandemic. Flattening the curve involves reducing the number of new COVID-19 cases from one day to the next. This helps prevent healthcare systems from becoming overwhelmed. When a country has fewer new COVID-19 cases emerging today than it did on a previous day, that’s a sign that the country is flattening the curve.

    On a trend line of total cases, a flattened curve looks how it sounds: flat. On the charts on this page, which show new cases per day, a flattened curve will show a downward trend in the number of daily new cases.

    This analysis uses a 5-day moving average to visualize the number of new COVID-19 cases and calculate the rate of change. This is calculated for each day by averaging the values of that day, the two days before, and the two next days. This approach helps prevent major events (such as a change in reporting methods) from skewing the data. The interactive charts below show the daily number of new cases for the 10 most affected countries, based on the reported number of deaths by COVID-19.

    This datas were last updated on Saturday, April 25, 2020 at 11:51 PM EDT.

  19. h

    Johns Hopkins Coronavirus Resource center - Dataset - NASA Harvest Portal

    • data.harvestportal.org
    Updated Mar 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Johns Hopkins Coronavirus Resource center - Dataset - NASA Harvest Portal [Dataset]. https://data.harvestportal.org/dataset/johns-hopkins-coronavirus-resource-center
    Explore at:
    Dataset updated
    Mar 24, 2021
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The COVID-19 crisis has created an unprecedented need for contact tracing across the country, requiring thousands of people to learn key skills quickly. The job qualifications for contact tracing positions differ throughout the country and the world, with some new positions open to individuals with a high school diploma or equivalent.

  20. COVID-19 Data Checking and Repairing (CDCAR)

    • figshare.com
    txt
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guannan Wang; Zhiling Gu; Xinyi Li; Shan Yu; Myungjin Kim; Yueying Wang; Lei Gao; Lily Wang (2023). COVID-19 Data Checking and Repairing (CDCAR) [Dataset]. http://doi.org/10.6084/m9.figshare.12418550.v3
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Guannan Wang; Zhiling Gu; Xinyi Li; Shan Yu; Myungjin Kim; Yueying Wang; Lei Gao; Lily Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Over the past several months, the outbreak of COVID-19 has been expanding over the world. A reliable and accurate dataset of the cases is vital for scientists to conduct related research and for policy-makers to make better decisions. We collect the COVID-19 daily reported data from four open sources: the New York Times, the COVID-19 Data Repository by Johns Hopkins University, the COVID Tracking Project at the Atlantic, and the USAFacts, and compare the similarities and differences among them. In addition, we examine the following problems which occur frequently: (1) the order dependencies violation, (2) abnormal data point and/or period, and (3) the delay-reported issue on weekends and/or holidays. We also integrate the COVID-19 reported cases with the county-level auxiliary information of the local features from official sources, such as health infrastructure, demographic, socioeconomic, and environment information, which are essential for understanding the spread of the virus.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19

Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)

Explore at:
Dataset provided by
Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
Area covered
Global
Description

2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

  • Confirmed Cases by Country/Region/Sovereignty
  • Confirmed Cases by Province/State/Dependency
  • Deaths
  • Recovered

Downloadable data:
https://github.com/CSSEGISandData/COVID-19

Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov

Search
Clear search
Close search
Google apps
Main menu