100+ datasets found
  1. i

    Covid-19 Fake News Infodemic Research Dataset (CoVID19-FNIR Dataset)

    • ieee-dataport.org
    Updated Jul 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DIKSHA SHUKLA (2025). Covid-19 Fake News Infodemic Research Dataset (CoVID19-FNIR Dataset) [Dataset]. https://ieee-dataport.org/open-access/covid-19-fake-news-infodemic-research-dataset-covid19-fnir-dataset
    Explore at:
    Dataset updated
    Jul 29, 2025
    Authors
    DIKSHA SHUKLA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The United States of America

  2. COVID Fake News Dataset

    • zenodo.org
    • data.niaid.nih.gov
    Updated Nov 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sumit Banik; Sumit Banik (2020). COVID Fake News Dataset [Dataset]. http://doi.org/10.5281/zenodo.4282522
    Explore at:
    Dataset updated
    Nov 27, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sumit Banik; Sumit Banik
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Context

    The dataset contains the list of COVID Fake News/Claims which is shared all over the internet.

    Content

    1. Headlines: String attribute consisting of the headlines/fact shared.
    2. Outcome: It is binary data where 0 means the headline is fake and 1 means that it is true.

    Inspiration

    In many research portals, there was this common question in which the combined fake news dataset is available or not. This led to the publication of this dataset.

  3. i

    Data from: COVID-19 News Articles

    • ieee-dataport.org
    Updated May 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Piyush Ghasiya (2022). COVID-19 News Articles [Dataset]. https://ieee-dataport.org/documents/covid-19-news-articles
    Explore at:
    Dataset updated
    May 18, 2022
    Authors
    Piyush Ghasiya
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    India

  4. Covid-19 News Dataset Both Fake and Real

    • zenodo.org
    • explore.openaire.eu
    csv
    Updated Jul 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shagoto Rahman; M. Raihan; M. Raihan; Laboni Akter; Md. Mohsin Sarker Raihan; Shagoto Rahman; Laboni Akter; Md. Mohsin Sarker Raihan (2021). Covid-19 News Dataset Both Fake and Real [Dataset]. http://doi.org/10.5281/zenodo.4722484
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 2, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Shagoto Rahman; M. Raihan; M. Raihan; Laboni Akter; Md. Mohsin Sarker Raihan; Shagoto Rahman; Laboni Akter; Md. Mohsin Sarker Raihan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset contains fake and real news. There are 16898 unique rows that points out the numbers of news as well. The dataset is merged from two datasets one is from different source of CBC news (link: https://zenodo.org/record/4722470) and other is from different web portals (link: https://zenodo.org/record/4282522).

    Data Description:

    Text: Text contains the news that is either fake or real.

    Outcome: Contains either fake or real which is the status of the news.

  5. m

    COVID-19 Fake News Dataset

    • data.mendeley.com
    Updated Feb 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhishek Koirala (2021). COVID-19 Fake News Dataset [Dataset]. http://doi.org/10.17632/zwfdmp5syg.1
    Explore at:
    Dataset updated
    Feb 22, 2021
    Authors
    Abhishek Koirala
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset consists of a collection of true and fake news related to COVID-19. The dataset consists of news between the period of December 2019- July 2020.

  6. i

    Covid-19 and vaccine news dataset

    • ieee-dataport.org
    Updated Oct 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajat Thakur (2021). Covid-19 and vaccine news dataset [Dataset]. https://ieee-dataport.org/documents/covid-19-and-vaccine-news-dataset
    Explore at:
    Dataset updated
    Oct 27, 2021
    Authors
    Rajat Thakur
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains world news related to Covid-19 and vaccine and also with the news article's available metadata.

  7. m

    Covid-19 latest news dataset

    • data.mendeley.com
    Updated Oct 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajat Thakur (2021). Covid-19 latest news dataset [Dataset]. http://doi.org/10.17632/8rbm7d874k.1
    Explore at:
    Dataset updated
    Oct 27, 2021
    Authors
    Rajat Thakur
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Coronavirus disease 2019 (COVID19) time series that lists confirmed cases, reported deaths, and reported recoveries. Data is broken down by country (and sometimes by sub-region).

    Coronavirus disease (COVID19) is caused by severe acute respiratory syndrome Coronavirus 2 (SARSCoV2) and has had an effect worldwide. On March 11, 2020, the World Health Organization (WHO) declared it a pandemic, currently indicating more than 118,000 cases of coronavirus disease in more than 110 countries and territories around the world.

    This dataset contains the latest news related to Covid-19 and it was fetched with the help of Newsdata.io news API.

  8. Most trusted sources of coronavirus news U.S. 2020

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most trusted sources of coronavirus news U.S. 2020 [Dataset]. https://www.statista.com/statistics/1104557/coronavirus-trusted-news-sources-by-us/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 13, 2020 - Mar 16, 2020
    Area covered
    United States
    Description

    As the United States battles the coronavirus, news consumers across the country have been attempting to keep themselves updated with how the pandemic is progressing, and a survey held in March 2020 revealed that the most trusted news source for details on COVID-19 was the CDC, with ** percent of respondents saying that they trusted the centers to provide accurate information on the topic. Following closely behind was the World Health Organization and then the state government, but just ** percent of consumers said that they trusted social media sites to publish reliable and accurate news about the coronavirus outbreak.

  9. c

    The COVID Tracking Project

    • covidtracking.com
    google sheets
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The COVID Tracking Project [Dataset]. https://covidtracking.com/
    Explore at:
    google sheetsAvailable download formats
    Description

    The COVID Tracking Project collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data we can collect for the novel coronavirus, SARS-CoV-2. We attempt to include positive and negative results, pending tests, and total people tested for each state or district currently reporting that data.

    Testing is a crucial part of any public health response, and sharing test data is essential to understanding this outbreak. The CDC is currently not publishing complete testing data, so we’re doing our best to collect it from each state and provide it to the public. The information is patchy and inconsistent, so we’re being transparent about what we find and how we handle it—the spreadsheet includes our live comments about changing data and how we’re working with incomplete information.

    From here, you can also learn about our methodology, see who makes this, and find out what information states provide and how we handle it.

  10. Coronavirus COVID-19 Global Cases

    • redivis.com
    application/jsonl +7
    Updated Jul 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Coronavirus COVID-19 Global Cases [Dataset]. http://doi.org/10.57761/pyf5-4e40
    Explore at:
    sas, csv, application/jsonl, spss, stata, parquet, arrow, avroAvailable download formats
    Dataset updated
    Jul 13, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 22, 2020 - Jul 12, 2020
    Description

    Abstract

    JHU Coronavirus COVID-19 Global Cases, by country

    Documentation

    PHS is updating the Coronavirus Global Cases dataset weekly, Monday, Wednesday and Friday from Cloud Marketplace.

    This data comes from the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). This database was created in response to the Coronavirus public health emergency to track reported cases in real-time. The data include the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries, aggregated at the appropriate province or state. It was developed to enable researchers, public health authorities and the general public to track the outbreak as it unfolds. Additional information is available in the blog post.

    Visual Dashboard (desktop): https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    Section 2

    Included Data Sources are:

    %3C!-- --%3E

    Section 3

    **Terms of Use: **

    This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.

    Section 4

    **U.S. county-level characteristics relevant to COVID-19 **

    Chin, Kahn, Krieger, Buckee, Balsari and Kiang (forthcoming) show that counties differ significantly in biological, demographic and socioeconomic factors that are associated with COVID-19 vulnerability. A range of publicly available county-specific data identifying these key factors, guided by international experiences and consideration of epidemiological parameters of importance, have been combined by the authors and are available for use:

    https://github.com/mkiang/county_preparedness/

  11. Problems with finding coronavirus news worldwide 2020

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Problems with finding coronavirus news worldwide 2020 [Dataset]. https://www.statista.com/statistics/1104506/coronavirus-news-opinions-worldwide/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 6, 2020 - Mar 10, 2020
    Area covered
    Worldwide
    Description

    A global study conducted in March 2020 gathered data on consumers' attitudes to, experiences of, and issues with news consumption regarding the coronavirus pandemic, and found that ** percent of respondents were concerned about the amount of fake news being spread about the virus, which would impede their efforts to find out the facts that they need to stay updated. Others were met with challenges when seeking out trustworthy and reliable information, and ** percent felt that the public should be given more coronavirus news and updates from scientists and less from politicians.

  12. Z

    INTRODUCTION OF COVID-NEWS-US-NNK AND COVID-NEWS-BD-NNK DATASET

    • data.niaid.nih.gov
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nafiz Sadman (2024). INTRODUCTION OF COVID-NEWS-US-NNK AND COVID-NEWS-BD-NNK DATASET [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4047647
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Nishat Anjum
    Nafiz Sadman
    Kishor Datta Gupta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh, United States
    Description

    Introduction

    There are several works based on Natural Language Processing on newspaper reports. Mining opinions from headlines [ 1 ] using Standford NLP and SVM by Rameshbhaiet. Al.compared several algorithms on a small and large dataset. Rubinet. al., in their paper [ 2 ], created a mechanism to differentiate fake news from real ones by building a set of characteristics of news according to their types. The purpose was to contribute to the low resource data available for training machine learning algorithms. Doumitet. al.in [ 3 ] have implemented LDA, a topic modeling approach to study bias present in online news media.

    However, there are not many NLP research invested in studying COVID-19. Most applications include classification of chest X-rays and CT-scans to detect presence of pneumonia in lungs [ 4 ], a consequence of the virus. Other research areas include studying the genome sequence of the virus[ 5 ][ 6 ][ 7 ] and replicating its structure to fight and find a vaccine. This research is crucial in battling the pandemic. The few NLP based research publications are sentiment classification of online tweets by Samuel et el [ 8 ] to understand fear persisting in people due to the virus. Similar work has been done using the LSTM network to classify sentiments from online discussion forums by Jelodaret. al.[ 9 ]. NKK dataset is the first study on a comparatively larger dataset of a newspaper report on COVID-19, which contributed to the virus’s awareness to the best of our knowledge.

    2 Data-set Introduction

    2.1 Data Collection

    We accumulated 1000 online newspaper report from United States of America (USA) on COVID-19. The newspaper includes The Washington Post (USA) and StarTribune (USA). We have named it as “Covid-News-USA-NNK”. We also accumulated 50 online newspaper report from Bangladesh on the issue and named it “Covid-News-BD-NNK”. The newspaper includes The Daily Star (BD) and Prothom Alo (BD). All these newspapers are from the top provider and top read in the respective countries. The collection was done manually by 10 human data-collectors of age group 23- with university degrees. This approach was suitable compared to automation to ensure the news were highly relevant to the subject. The newspaper online sites had dynamic content with advertisements in no particular order. Therefore there were high chances of online scrappers to collect inaccurate news reports. One of the challenges while collecting the data is the requirement of subscription. Each newspaper required $1 per subscriptions. Some criteria in collecting the news reports provided as guideline to the human data-collectors were as follows:

    The headline must have one or more words directly or indirectly related to COVID-19.

    The content of each news must have 5 or more keywords directly or indirectly related to COVID-19.

    The genre of the news can be anything as long as it is relevant to the topic. Political, social, economical genres are to be more prioritized.

    Avoid taking duplicate reports.

    Maintain a time frame for the above mentioned newspapers.

    To collect these data we used a google form for USA and BD. We have two human editor to go through each entry to check any spam or troll entry.

    2.2 Data Pre-processing and Statistics

    Some pre-processing steps performed on the newspaper report dataset are as follows:

    Remove hyperlinks.

    Remove non-English alphanumeric characters.

    Remove stop words.

    Lemmatize text.

    While more pre-processing could have been applied, we tried to keep the data as much unchanged as possible since changing sentence structures could result us in valuable information loss. While this was done with help of a script, we also assigned same human collectors to cross check for any presence of the above mentioned criteria.

    The primary data statistics of the two dataset are shown in Table 1 and 2.

    Table 1: Covid-News-USA-NNK data statistics

    No of words per headline

    7 to 20

    No of words per body content

    150 to 2100

    Table 2: Covid-News-BD-NNK data statistics No of words per headline

    10 to 20

    No of words per body content

    100 to 1500

    2.3 Dataset Repository

    We used GitHub as our primary data repository in account name NKK^1. Here, we created two repositories USA-NKK^2 and BD-NNK^3. The dataset is available in both CSV and JSON format. We are regularly updating the CSV files and regenerating JSON using a py script. We provided a python script file for essential operation. We welcome all outside collaboration to enrich the dataset.

    3 Literature Review

    Natural Language Processing (NLP) deals with text (also known as categorical) data in computer science, utilizing numerous diverse methods like one-hot encoding, word embedding, etc., that transform text to machine language, which can be fed to multiple machine learning and deep learning algorithms.

    Some well-known applications of NLP includes fraud detection on online media sites[ 10 ], using authorship attribution in fallback authentication systems[ 11 ], intelligent conversational agents or chatbots[ 12 ] and machine translations used by Google Translate[ 13 ]. While these are all downstream tasks, several exciting developments have been made in the algorithm solely for Natural Language Processing tasks. The two most trending ones are BERT[ 14 ], which uses bidirectional encoder-decoder architecture to create the transformer model, that can do near-perfect classification tasks and next-word predictions for next generations, and GPT-3 models released by OpenAI[ 15 ] that can generate texts almost human-like. However, these are all pre-trained models since they carry huge computation cost. Information Extraction is a generalized concept of retrieving information from a dataset. Information extraction from an image could be retrieving vital feature spaces or targeted portions of an image; information extraction from speech could be retrieving information about names, places, etc[ 16 ]. Information extraction in texts could be identifying named entities and locations or essential data. Topic modeling is a sub-task of NLP and also a process of information extraction. It clusters words and phrases of the same context together into groups. Topic modeling is an unsupervised learning method that gives us a brief idea about a set of text. One commonly used topic modeling is Latent Dirichlet Allocation or LDA[17].

    Keyword extraction is a process of information extraction and sub-task of NLP to extract essential words and phrases from a text. TextRank [ 18 ] is an efficient keyword extraction technique that uses graphs to calculate the weight of each word and pick the words with more weight to it.

    Word clouds are a great visualization technique to understand the overall ’talk of the topic’. The clustered words give us a quick understanding of the content.

    4 Our experiments and Result analysis

    We used the wordcloud library^4 to create the word clouds. Figure 1 and 3 presents the word cloud of Covid-News-USA- NNK dataset by month from February to May. From the figures 1,2,3, we can point few information:

    In February, both the news paper have talked about China and source of the outbreak.

    StarTribune emphasized on Minnesota as the most concerned state. In April, it seemed to have been concerned more.

    Both the newspaper talked about the virus impacting the economy, i.e, bank, elections, administrations, markets.

    Washington Post discussed global issues more than StarTribune.

    StarTribune in February mentioned the first precautionary measurement: wearing masks, and the uncontrollable spread of the virus throughout the nation.

    While both the newspaper mentioned the outbreak in China in February, the weight of the spread in the United States are more highlighted through out March till May, displaying the critical impact caused by the virus.

    We used a script to extract all numbers related to certain keywords like ’Deaths’, ’Infected’, ’Died’ , ’Infections’, ’Quarantined’, Lock-down’, ’Diagnosed’ etc from the news reports and created a number of cases for both the newspaper. Figure 4 shows the statistics of this series. From this extraction technique, we can observe that April was the peak month for the covid cases as it gradually rose from February. Both the newspaper clearly shows us that the rise in covid cases from February to March was slower than the rise from March to April. This is an important indicator of possible recklessness in preparations to battle the virus. However, the steep fall from April to May also shows the positive response against the attack. We used Vader Sentiment Analysis to extract sentiment of the headlines and the body. On average, the sentiments were from -0.5 to -0.9. Vader Sentiment scale ranges from -1(highly negative to 1(highly positive). There were some cases

    where the sentiment scores of the headline and body contradicted each other,i.e., the sentiment of the headline was negative but the sentiment of the body was slightly positive. Overall, sentiment analysis can assist us sort the most concerning (most negative) news from the positive ones, from which we can learn more about the indicators related to COVID-19 and the serious impact caused by it. Moreover, sentiment analysis can also provide us information about how a state or country is reacting to the pandemic. We used PageRank algorithm to extract keywords from headlines as well as the body content. PageRank efficiently highlights important relevant keywords in the text. Some frequently occurring important keywords extracted from both the datasets are: ’China’, Government’, ’Masks’, ’Economy’, ’Crisis’, ’Theft’ , ’Stock market’ , ’Jobs’ , ’Election’, ’Missteps’, ’Health’, ’Response’. Keywords extraction acts as a filter allowing quick searches for indicators in case of locating situations of the economy,

  13. Share of online fake news related to coronavirus (COVID-19) in Italy 2020

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Share of online fake news related to coronavirus (COVID-19) in Italy 2020 [Dataset]. https://www.statista.com/statistics/1109490/share-of-coronavirus-fake-news-italy/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - May 2020
    Area covered
    Italy
    Description

    In May 2020, up to six percent of all online news and posts related to the coronavirus (COVID-19) and released in Italy were false or not accurate. The percentage was calculated on the average volume of posts and articles published by the Italian media outlets, including posts on social media. The peak in the release of fake news was registered in the early stage of the pandemic at the end of January 2020, with 7.3 percent of the coronavirus-related information.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Fact and Figures page.

  14. i

    free dataset from news/message boards/blogs about CoronaVirus (4 month of...

    • ieee-dataport.org
    Updated Apr 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ran Geva (2020). free dataset from news/message boards/blogs about CoronaVirus (4 month of data - 5.2M posts) [Dataset]. https://ieee-dataport.org/open-access/free-dataset-newsmessage-boardsblogs-about-coronavirus-4-month-data-52m-posts
    Explore at:
    Dataset updated
    Apr 7, 2020
    Authors
    Ran Geva
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Free dataset from news/message boards/blogs about CoronaVirus (4 month of data - 5.2M posts). The time frame of the data is Dec/2019 - March/2020. The posts are in English mentioning at least one of the following: "Covid" OR CoronaVirus OR "Corona Virus".

  15. h

    covid_fake_news

    • huggingface.co
    Updated Mar 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yiyang Nan (2024). covid_fake_news [Dataset]. https://huggingface.co/datasets/nanyy1025/covid_fake_news
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 7, 2024
    Authors
    Yiyang Nan
    Description

    Constraint@AAAI2021 - COVID19 Fake News Detection in English @misc{patwa2020fighting, title={Fighting an Infodemic: COVID-19 Fake News Dataset}, author={Parth Patwa and Shivam Sharma and Srinivas PYKL and Vineeth Guptha and Gitanjali Kumari and Md Shad Akhtar and Asif Ekbal and Amitava Das and Tanmoy Chakraborty}, year={2020}, eprint={2011.03327}, archivePrefix={arXiv}, primaryClass={cs.CL} }

  16. h

    trec-covid

    • huggingface.co
    • opendatalab.com
    Updated Aug 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BEIR (2023). trec-covid [Dataset]. https://huggingface.co/datasets/BeIR/trec-covid
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 16, 2023
    Dataset authored and provided by
    BEIR
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Dataset Card for BEIR Benchmark

      Dataset Summary
    

    BEIR is a heterogeneous benchmark that has been built from 18 diverse datasets representing 9 information retrieval tasks:

    Fact-checking: FEVER, Climate-FEVER, SciFact Question-Answering: NQ, HotpotQA, FiQA-2018 Bio-Medical IR: TREC-COVID, BioASQ, NFCorpus News Retrieval: TREC-NEWS, Robust04 Argument Retrieval: Touche-2020, ArguAna Duplicate Question Retrieval: Quora, CqaDupstack Citation-Prediction: SCIDOCS Tweet… See the full description on the dataset page: https://huggingface.co/datasets/BeIR/trec-covid.

  17. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  18. m

    Covid-19 and vaccine news dataset

    • data.mendeley.com
    Updated Oct 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajat Thakur (2021). Covid-19 and vaccine news dataset [Dataset]. http://doi.org/10.17632/hwrdzw26vk.1
    Explore at:
    Dataset updated
    Oct 27, 2021
    Authors
    Rajat Thakur
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains the latest world news related to Covid-19 and Covid vaccine with the news article's available metadata.

  19. COVID-19 Fake News Dataset

    • kaggle.com
    zip
    Updated Nov 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Möbius (2020). COVID-19 Fake News Dataset [Dataset]. https://www.kaggle.com/arashnic/covid19-fake-news
    Explore at:
    zip(3948402 bytes)Available download formats
    Dataset updated
    Nov 4, 2020
    Authors
    Möbius
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    As the COVID-19 virus quickly spreads around the world, unfortunately, misinformation related to COVID-19 also gets created and spreads like wild fire. Such misinformation has caused confusion among people, disruptions in society, and even deadly consequences in health problems. To be able to understand, detect, and mitigate such COVID-19 misinformation, therefore, has not only deep intellectual values but also huge societal impacts. To help researchers combat COVID-19 health misinformation, this dataset created.

    #
    #

    https://img.etimg.com/thumb/msid-65836641,width-640,resizemode-4,imgsize-272192/fake-news.jpg" width="700">

    Content

    The datasets is a diverse COVID-19 healthcare misinformation dataset, including fake news on websites and social platforms, along with users' social engagement about such news. It includes 4,251 news, 296,000 related user engagements, 926 social platform posts about COVID-19, and ground truth labels.

    • Version 0.1 (05/17/2020) initial version corresponding to arXiv paper CoAID: COVID-19 HEALTHCARE MISINFORMATION DATASET

    • Version 0.2 (08/03/2020) added data from May 1, 2020 through July 1, 2020

    • Version 0.3 (11/03/2020) added data from July 1, 2020 through September 1, 2020

    Acknowledgements

    Limeng Cui Dongwon Lee, Pennsylvania State University.

  20. t

    FakeCovid - A Multilingual Cross-domain Fact Check News Dataset for COVID-19...

    • service.tib.eu
    Updated Dec 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). FakeCovid - A Multilingual Cross-domain Fact Check News Dataset for COVID-19 - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/fakecovid---a-multilingual-cross-domain-fact-check-news-dataset-for-covid-19
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    The FakeCovid dataset contains 5182 fact-checked news articles for COVID-19 collected from January to May 2020.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
DIKSHA SHUKLA (2025). Covid-19 Fake News Infodemic Research Dataset (CoVID19-FNIR Dataset) [Dataset]. https://ieee-dataport.org/open-access/covid-19-fake-news-infodemic-research-dataset-covid19-fnir-dataset

Covid-19 Fake News Infodemic Research Dataset (CoVID19-FNIR Dataset)

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 29, 2025
Authors
DIKSHA SHUKLA
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The United States of America

Search
Clear search
Close search
Google apps
Main menu