This dataset contains numbers of COVID-19 outbreaks and associated cases, categorized by setting, reported to CDPH since January 1, 2021.
AB 685 (Chapter 84, Statutes of 2020) and the Cal/OSHA COVID-19 Emergency Temporary Standards (Title 8, Subchapter 7, Sections 3205-3205.4) required non-healthcare employers in California to report workplace COVID-19 outbreaks to their local health department (LHD) between January 1, 2021 – December 31, 2022. Beginning January 1, 2023, non-healthcare employer reporting of COVID-19 outbreaks to local health departments is voluntary, unless a local order is in place. More recent data collected without mandated reporting may therefore be less representative of all outbreaks that have occurred, compared to earlier data collected during mandated reporting. Licensed health facilities continue to be mandated to report outbreaks to LHDs.
LHDs report confirmed outbreaks to the California Department of Public Health (CDPH) via the California Reportable Disease Information Exchange (CalREDIE), the California Connected (CalCONNECT) system, or other established processes. Data are compiled and categorized by setting by CDPH. Settings are categorized by U.S. Census industry codes. Total outbreaks and cases are included for individual industries as well as for broader industrial sectors.
The first dataset includes numbers of outbreaks in each setting by month of onset, for outbreaks reported to CDPH since January 1, 2021. This dataset includes some outbreaks with onset prior to January 1 that were reported to CDPH after January 1; these outbreaks are denoted with month of onset “Before Jan 2021.” The second dataset includes cumulative numbers of COVID-19 outbreaks with onset after January 1, 2021, categorized by setting. Due to reporting delays, the reported numbers may not reflect all outbreaks that have occurred as of the reporting date; additional outbreaks may have occurred that have not yet been reported to CDPH.
While many of these settings are workplaces, cases may have occurred among workers, other community members who visited the setting, or both. Accordingly, these data do not distinguish between outbreaks involving only workers, outbreaks involving only residents or patrons, or outbreaks involving both.
Several additional data limitations should be kept in mind:
Outbreaks are classified as “Insufficient information” for outbreaks where not enough information was available for CDPH to assign an industry code.
Some sectors, particularly congregate residential settings, may have increased testing and therefore increased likelihood of outbreak recognition and reporting. As a result, in congregate residential settings, the number of outbreak-associated cases may be more accurate.
However, in most settings, outbreak and case counts are likely underestimates. For most cases, it is not possible to identify the source of exposure, as many cases have multiple possible exposures.
Because some settings have been at times been closed or open with capacity restrictions, numbers of outbreak reports in those settings do not reflect COVID-19 transmission risk.
The number of outbreaks in different settings will depend on the number of different workplaces in each setting. More outbreaks would be expected in settings with many workplaces compared to settings with few workplaces.
This dataset is not being updated as hospitals are no longer mandated to report COVID Hospitalizations to CDPH.
Data is from the California COVID-19 State Dashboard at https://covid19.ca.gov/state-dashboard/
Note: Hospitalization counts include all patients diagnosed with COVID-19 during their stay. This does not necessarily mean they were hospitalized because of COVID-19 complications or that they experienced COVID-19 symptoms.
Note: Cumulative totals are not available due to the fact that hospitals report the total number of patients each day (as opposed to new patients).
As of March 10, 2023, the state with the highest number of COVID-19 cases was California. Almost 104 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time. When the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide has now reached over 669 million.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. People aged 85 years and older have accounted for around 27 percent of all COVID-19 deaths in the United States, although this age group makes up just two percent of the U.S. population
The California Department of Public Health (CDPH) is coordinating with wastewater utilities, local health departments, academic researchers, and laboratories in California on wastewater surveillance for infectious disease pathogens of interest to public health (such as SARS-CoV-2, the virus causing COVID-19, influenza, respiratory syncytial virus (RSV), mpox, and norovirus). Data collected from this network of participants, called the California Surveillance of Wastewaters (Cal-SuWers) Network, are submitted to the U.S. Centers for Disease Control and Prevention (CDC) National Wastewater Surveillance System (NWSS).
Collecting and analyzing wastewater samples for the presence of, and amount of (concentration), a specified pathogen target can help inform public health about circulation of that infectious disease within a community. Data from wastewater testing do not replace existing public health surveillance systems but complement them. While wastewater surveillance cannot determine the exact number of infected persons in the area being monitored, it can provide overall trends of pathogen concentration within that community.
Please note that data included in the Cal-SuWers Network and available here originate from multiple programs and laboratories. Methodologies for producing wastewater data are not currently standardized, and analyses, comparisons, and aggregations should be done with caution. Wastewater is a complex environmental sample and inherent variability in measured concentrations is expected due to environmental variability, day-to-day differences in sewershed and population dynamics, differences in the amount of shedding between people and pathogens, and laboratory and sampling variability. Please see the CDPH Cal-SuWers, CDC NWSS, and CDC Public Health interpretation and Use of Wastewater Surveillance data webpages for more information.
Historical wastewater data can be found here.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
NOTICE: As of September 6, 2024, the wastewater surveillance dataset will now be hosted on: https://data.chhs.ca.gov/dataset/wastewater-surveillance-data-california. The dataset will no longer be updated on this webpage and will contain a historic dataset. Users who wish to access new and updated data will need to visit the new webpage.
The California Department of Public Health (CDPH) and the California State Water Resources Control Board (SWRCB) together are coordinating with several wastewater utilities, local health departments, universities, and laboratories in California on wastewater surveillance for SARS-CoV-2, the virus causing COVID-19. Data collected from this network of participants, called the California Surveillance of Wastewater Systems (Cal-SuWers) Network, are submitted to the U.S. Centers for Disease Control and Prevention (CDC) National Wastewater Surveillance System (NWSS).
During the COVID-19 pandemic, it has been used for the detection and quantification of SARS-CoV-2 virus shed into wastewater via feces of infected persons. Wastewater surveillance tracks ""pooled samples"" that reflect the overall disease activity for a community serviced by the wastewater treatment plant (an area known as a ""sewershed""), rather than tracking samples from individual people. Notably, while SARS-CoV-2 virus is shed fecally by infected persons, COVID-19 is spread primarily through the respiratory route, and there is no evidence to date that exposure to treated or untreated wastewater has led to infection with COVID-19.
Collecting and analyzing wastewater samples for the overall amount of SARS-CoV-2 viral particles present can help inform public health about the level of viral transmission within a community. Data from wastewater testing are not intended to replace existing COVID-19 surveillance systems, but are meant to complement them. While wastewater surveillance cannot determine the exact number of infected persons in the area being monitored, it can provide the overall trend of virus concentration within that community. With our local partners, the SWRCB and CDPH are currently monitoring and quantifying levels of SARS-CoV-2 at the headworks or ""influent"" of 21 wastewater treatment plants representing approximately 48% of California's population."
COVID cases and deaths for LA County and California State. Updated daily. Data source: Johns Hopkins University (https://coronavirus.jhu.edu/us-map), Johns Hopkins GitHub (https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv). Code available: https://github.com/CityOfLosAngeles/covid19-indicators.
As of March 10, 2023, there have been 1.1 million deaths related to COVID-19 in the United States. There have been 101,159 deaths in the state of California, more than any other state in the country – California is also the state with the highest number of COVID-19 cases.
The vaccine rollout in the U.S. Since the start of the pandemic, the world has eagerly awaited the arrival of a safe and effective COVID-19 vaccine. In the United States, the immunization campaign started in mid-December 2020 following the approval of a vaccine jointly developed by Pfizer and BioNTech. As of March 22, 2023, the number of COVID-19 vaccine doses administered in the U.S. had reached roughly 673 million. The states with the highest number of vaccines administered are California, Texas, and New York.
Vaccines achieved due to work of research groups Chinese authorities initially shared the genetic sequence to the novel coronavirus in January 2020, allowing research groups to start studying how it invades human cells. The surface of the virus is covered with spike proteins, which enable it to bind to human cells. Once attached, the virus can enter the cells and start to make people ill. These spikes were of particular interest to vaccine manufacturers because they hold the key to preventing viral entry.
As of March 10, 2023, the state with the highest rate of COVID-19 cases was Rhode Island followed by Alaska. Around 103.9 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers of infections.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak as a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time; when the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide is roughly 683 million, and it has affected almost every country in the world.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. Those aged 85 years and older have accounted for around 27 percent of all COVID deaths in the United States, although this age group makes up just two percent of the total population
As of November 11, 2022, almost 96.8 million confirmed cases of COVID-19 had been reported by the World Health Organization (WHO) for the United States. The pandemic has impacted all 50 states, with vast numbers of cases recorded in California, Texas, and Florida.
The coronavirus in the U.S. The coronavirus hit the United States in mid-March 2020, and cases started to soar at an alarming rate. The country has performed a high number of COVID-19 tests, which is a necessary step to manage the outbreak, but new coronavirus cases in the U.S. have spiked several times since the pandemic began, most notably at the end of 2022. However, restrictions in many states have been eased as new cases have declined.
The origin of the coronavirus In December 2019, officials in Wuhan, China, were the first to report cases of pneumonia with an unknown cause. A new human coronavirus – SARS-CoV-2 – has since been discovered, and COVID-19 is the infectious disease it causes. All available evidence to date suggests that COVID-19 is a zoonotic disease, which means it can spread from animals to humans. The WHO says transmission is likely to have happened through an animal that is handled by humans. Researchers do not support the theory that the virus was developed in a laboratory.
Note: This dataset is no longer being updated due to the end of the COVID-19 Public Health Emergency. Note: On 2/16/22, 17,467 cases based on at-home positive test results were excluded from the probable case counts. Per national case classification guidelines, cases based on at-home positive results are now classified as “suspect” cases. The majority of these cases were identified between November 2021 and February 2022. CDPH tracks both probable and confirmed cases of COVID-19 to better understand how the virus is impacting our communities. Probable cases are defined as individuals with a positive antigen test that detects the presence of viral antigens. Antigen testing is useful when rapid results are needed, or in settings where laboratory resources may be limited. Confirmed cases are defined as individuals with a positive molecular test, which tests for viral genetic material, such as a PCR or polymerase chain reaction test. Results from both types of tests are reported to CDPH. Due to the expanded use of antigen testing, surveillance of probable cases is increasingly important. The proportion of probable cases among the total cases in California has increased. To provide a more complete picture of trends in case volume, it is now more important to provide probable case data in addition to confirmed case data. The Centers for Disease Control and Prevention (CDC) has begun publishing probable case data for states. Testing data is updated weekly. Due to small numbers, the percentage of probable cases in the first two weeks of the month may change. Probable case data from San Diego County is not included in the statewide table at this time. For more information, please see https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/Probable-Cases.aspx
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY Medical provider confirmed COVID-19 cases and confirmed COVID-19 related deaths in San Francisco, CA aggregated by Census ZIP Code Tabulation Areas and normalized by 2018 American Community Survey (ACS) 5-year estimates for population data to calculate rate per 10,000 residents.
Cases and deaths are both mapped to the residence of the individual, not to where they were infected or died. For example, if one was infected in San Francisco at work but lives in the East Bay, those are not counted as SF Cases or if one dies in Zuckerberg San Francisco General but is from another county, that is also not counted in this dataset.
Dataset is cumulative and covers cases going back to March 2nd, 2020 when testing began. It is updated daily.
B. HOW THE DATASET IS CREATED Addresses from medical data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area. The 2018 ACS estimates for population provided by the Census are used to create a rate which is equal to ([count] / [acs_population]) * 10000) representing the number of cases per 10,000 residents.
C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset each day.
D. HOW TO USE THIS DATASET Privacy rules in effect To protect privacy, certain rules are in effect: 1. Case counts greater than 0 and less than 10 are dropped - these will be null (blank) values 2. Cases dropped altogether for areas where acs_population < 1000
Rate suppression in effect where counts lower than 20 Rates are not calculated unless the case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology.
A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are polygonal representations of USPS ZIP Code service area routes. Read how the Census develops ZCTAs on their website.
This dataset is a filtered view of another dataset You can find a full dataset of cases and deaths summarized by this and other geographic areas.
E. CHANGE LOG
The counties of Trousdale and Lake – both in Tennessee – had the highest COVID-19 infection rates in the United States as of June 9, 2020. Dakota, Nobles, and Lincoln also ranked among the U.S. counties with the highest number of coronavirus cases per 100,000 people.
Coronavirus hits the East Coast In the United States, the novel coronavirus had infected around 5.4 million people and had caused nearly 170,000 deaths by mid-August 2020. The densely populated states of New York and New Jersey were at the epicenter of the outbreak in the country. New York City, which is composed of five counties, was one of the most severely impacted regions. However, the true level of transmission is likely to be much higher because many people will be asymptomatic or suffer only mild symptoms that are not diagnosed.
All states are in crisis The first coronavirus case in the U.S. was confirmed in the state of Washington in mid-January 2020. At the time, it was unclear how the virus was spreading; we now know that close contact with an infected person and breathing in their respiratory droplets is the primary mode of transmission. It is no surprise that the four states with the most coronavirus cases are those with the highest populations: New York, Texas, Florida, and California. However, Louisiana was the state with the highest COVID-19 infection rate per 100,000 people as of August 24, 2020.
Note: In these datasets, a person is defined as up to date if they have received at least one dose of an updated COVID-19 vaccine. The Centers for Disease Control and Prevention (CDC) recommends that certain groups, including adults ages 65 years and older, receive additional doses.
On 6/16/2023 CDPH replaced the booster measures with a new “Up to Date” measure based on CDC’s new recommendations, replacing the primary series, boosted, and bivalent booster metrics The definition of “primary series complete” has not changed and is based on previous recommendations that CDC has since simplified. A person cannot complete their primary series with a single dose of an updated vaccine. Whereas the booster measures were calculated using the eligible population as the denominator, the new up to date measure uses the total estimated population. Please note that the rates for some groups may change since the up to date measure is calculated differently than the previous booster and bivalent measures.
This data is from the same source as the Vaccine Progress Dashboard at https://covid19.ca.gov/vaccination-progress-data/ which summarizes vaccination data at the county level by county of residence. Where county of residence was not reported in a vaccination record, the county of provider that vaccinated the resident is included. This applies to less than 1% of vaccination records. The sum of county-level vaccinations does not equal statewide total vaccinations due to out-of-state residents vaccinated in California.
These data do not include doses administered by the following federal agencies who received vaccine allocated directly from CDC: Indian Health Service, Veterans Health Administration, Department of Defense, and the Federal Bureau of Prisons.
Totals for the Vaccine Progress Dashboard and this dataset may not match, as the Dashboard totals doses by Report Date and this dataset totals doses by Administration Date. Dose numbers may also change for a particular Administration Date as data is updated.
Previous updates:
On March 3, 2023, with the release of HPI 3.0 in 2022, the previous equity scores have been updated to reflect more recent community survey information. This change represents an improvement to the way CDPH monitors health equity by using the latest and most accurate community data available. The HPI uses a collection of data sources and indicators to calculate a measure of community conditions ranging from the most to the least healthy based on economic, housing, and environmental measures.
Starting on July 13, 2022, the denominator for calculating vaccine coverage has been changed from age 5+ to all ages to reflect new vaccine eligibility criteria. Previously the denominator was changed from age 16+ to age 12+ on May 18, 2021, then changed from age 12+ to age 5+ on November 10, 2021, to reflect previous changes in vaccine eligibility criteria. The previous datasets based on age 16+ and age 5+ denominators have been uploaded as archived tables.
Starting on May 29, 2021 the methodology for calculating on-hand inventory in the shipped/delivered/on-hand dataset has changed. Please see the accompanying data dictionary for details. In addition, this dataset is now down to the ZIP code level.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.
The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level was classified as low, medium, or high.
COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Archived Data Notes:
This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.
March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.
March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.
March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.
March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.
March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).
March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.
April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.
May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.
June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.
July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.
July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.
July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.
July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.
July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.
August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.
August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.
August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.
August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.
August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.
September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.
September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY This dataset represents all San Francisco (SF) residents who have received a vaccine for certain respiratory viruses that circulate more heavily in the fall and winter months. All vaccines given to SF residents are included, even if they received their vaccination elsewhere in California. The data are broken down by demographic and geographical stratifications.
COVID-19: This dataset represents all SF residents who are considered up to date on their COVID-19 vaccine. A person is up to date if they have received at least one dose of the 2024–2025 COVID-19 vaccine. The specific up-to-date criteria can be found on the California Department of Public Health (CDPH) website.
(Note: As of November 2024, this dataset only contains data regarding COVID-19 vaccinations. This documentation will be updated as other seasonal vaccination data is added).
B. HOW THE DATASET IS CREATED Information on doses administered to those who live in SF is from the California Immunization Registry (CAIR2), run by CDPH. The information on individuals’ city of residence, age, race, and ethnicity are also recorded in CAIR and are self-reported at the time of vaccine administration.
In order to estimate the percent of San Franciscans vaccinated, we provide the 2018-2022 American Community Survey (ACS) population estimates for each demographic group and analysis neighborhood.
C. UPDATE PROCESS Updated daily via automated process.
D. HOW TO USE THIS DATASET SF population estimates for race/ethnicity and age groups can be found in a https://data.sfgov.org/Economy-and-Community/SF-COVID-19-reporting-demographics-population-esti/cedd-86uf">view based on the San Francisco Population and Demographic Census dataset. SF population estimates for analysis neighborhoods can be found in a view based on the San Francisco Population and Geography Census dataset. Both of these views use population estimates from the 2018-2022 5-year ACS.
Before analysis, you must filter the dataset to the desired stratification of data using the “vaccine_type” and "demographic_group" columns. For example, filtering “vaccine_type” to “COVID-19” will allow you to only look at rows corresponding to COVID-19 vaccinations. Filtering “demographic_subgroup” to “Analysis Neighborhood” will allow you to only look at rows corresponding to SF neighborhoods. You can then calculate the percentages of those up to date with their COVID-19 vaccinations by neighborhood. The “vaccine_subtype” field provides information about the current vaccine product being tracked in this dataset.
E. CHANGE LOG
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
As of 9/12/2024, we will begin reporting on hospitalization data again using a new San Francisco specific dataset. Updated data can be accessed here.
On 5/1/2024, hospitalization data reporting will change from mandatory to optional for all hospitals nationwide. We will be pausing the refresh of the underlying data beginning 5/2/2024.
A. SUMMARY Count of COVID+ patients admitted to the hospital. Patients who are hospitalized and test positive for COVID-19 may be admitted to an acute care bed (a regular hospital bed), or an intensive care unit (ICU) bed. This data shows the daily total count of COVID+ patients in these two bed types, and the data reflects totals from all San Francisco Hospitals.
B. HOW THE DATASET IS CREATED Hospital information is based on admission data reported to the National Healthcare Safety Network (NHSN) and provided by the California Department of Public Health (CDPH).
C. UPDATE PROCESS Updates automatically every week.
D. HOW TO USE THIS DATASET Each record represents how many people were hospitalized on the date recorded in either an ICU bed or acute care bed (shown as Med/Surg under DPHCategory field).
The dataset shown here includes all San Francisco hospitals and updates weekly with data for the past Sunday-Saturday as information is collected and verified. Data may change as more current information becomes available.
E. CHANGE LOG
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
COVID Alert is Canada's free exposure notification application. COVID Alert helps us break the cycle of infection. The application can let people know of possible exposures before any symptoms appear.
As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.
Note: This web page provides data on health facilities only. To file a complaint against a facility, please see: https://www.cdph.ca.gov/Programs/CHCQ/LCP/Pages/FileAComplaint.aspx
Skilled Nursing Facility (SNF) testing and case data for the COVID-19 response. For details on the SNF COVID-19 data, please visit this site: https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/SNFsCOVID_19.aspx
Please note that values of less than eleven (11) are masked (shown as blank) in accordance with de-identification guidelines. This means the cumulative sum in this dataset will not match the totals from the dashboard due to data artifact from small cell size suppression.
This dataset contains numbers of COVID-19 outbreaks and associated cases, categorized by setting, reported to CDPH since January 1, 2021.
AB 685 (Chapter 84, Statutes of 2020) and the Cal/OSHA COVID-19 Emergency Temporary Standards (Title 8, Subchapter 7, Sections 3205-3205.4) required non-healthcare employers in California to report workplace COVID-19 outbreaks to their local health department (LHD) between January 1, 2021 – December 31, 2022. Beginning January 1, 2023, non-healthcare employer reporting of COVID-19 outbreaks to local health departments is voluntary, unless a local order is in place. More recent data collected without mandated reporting may therefore be less representative of all outbreaks that have occurred, compared to earlier data collected during mandated reporting. Licensed health facilities continue to be mandated to report outbreaks to LHDs.
LHDs report confirmed outbreaks to the California Department of Public Health (CDPH) via the California Reportable Disease Information Exchange (CalREDIE), the California Connected (CalCONNECT) system, or other established processes. Data are compiled and categorized by setting by CDPH. Settings are categorized by U.S. Census industry codes. Total outbreaks and cases are included for individual industries as well as for broader industrial sectors.
The first dataset includes numbers of outbreaks in each setting by month of onset, for outbreaks reported to CDPH since January 1, 2021. This dataset includes some outbreaks with onset prior to January 1 that were reported to CDPH after January 1; these outbreaks are denoted with month of onset “Before Jan 2021.” The second dataset includes cumulative numbers of COVID-19 outbreaks with onset after January 1, 2021, categorized by setting. Due to reporting delays, the reported numbers may not reflect all outbreaks that have occurred as of the reporting date; additional outbreaks may have occurred that have not yet been reported to CDPH.
While many of these settings are workplaces, cases may have occurred among workers, other community members who visited the setting, or both. Accordingly, these data do not distinguish between outbreaks involving only workers, outbreaks involving only residents or patrons, or outbreaks involving both.
Several additional data limitations should be kept in mind:
Outbreaks are classified as “Insufficient information” for outbreaks where not enough information was available for CDPH to assign an industry code.
Some sectors, particularly congregate residential settings, may have increased testing and therefore increased likelihood of outbreak recognition and reporting. As a result, in congregate residential settings, the number of outbreak-associated cases may be more accurate.
However, in most settings, outbreak and case counts are likely underestimates. For most cases, it is not possible to identify the source of exposure, as many cases have multiple possible exposures.
Because some settings have been at times been closed or open with capacity restrictions, numbers of outbreak reports in those settings do not reflect COVID-19 transmission risk.
The number of outbreaks in different settings will depend on the number of different workplaces in each setting. More outbreaks would be expected in settings with many workplaces compared to settings with few workplaces.