100+ datasets found
  1. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +2more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. Rate of U.S. COVID-19 cases as of March 10, 2023, by state

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Rate of U.S. COVID-19 cases as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109004/coronavirus-covid19-cases-rate-us-americans-by-state/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the state with the highest rate of COVID-19 cases was Rhode Island followed by Alaska. Around 103.9 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers of infections.

    From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak as a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time; when the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide is roughly 683 million, and it has affected almost every country in the world.

    The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. Those aged 85 years and older have accounted for around 27 percent of all COVID deaths in the United States, although this age group makes up just two percent of the total population

  3. COVID-19 death rates in the United States as of March 10, 2023, by state

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 death rates in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109011/coronavirus-covid19-death-rates-us-by-state/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.

  4. c

    The COVID Tracking Project

    • covidtracking.com
    google sheets
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The COVID Tracking Project [Dataset]. https://covidtracking.com/
    Explore at:
    google sheetsAvailable download formats
    Description

    The COVID Tracking Project collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data we can collect for the novel coronavirus, SARS-CoV-2. We attempt to include positive and negative results, pending tests, and total people tested for each state or district currently reporting that data.

    Testing is a crucial part of any public health response, and sharing test data is essential to understanding this outbreak. The CDC is currently not publishing complete testing data, so we’re doing our best to collect it from each state and provide it to the public. The information is patchy and inconsistent, so we’re being transparent about what we find and how we handle it—the spreadsheet includes our live comments about changing data and how we’re working with incomplete information.

    From here, you can also learn about our methodology, see who makes this, and find out what information states provide and how we handle it.

  5. United States COVID-19 County Level Data Sources - ARCHIVED

    • healthdata.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated May 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2022). United States COVID-19 County Level Data Sources - ARCHIVED [Dataset]. https://healthdata.gov/CDC/United-States-COVID-19-County-Level-Data-Sources-A/33na-pr4u
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, json, xmlAvailable download formats
    Dataset updated
    May 21, 2022
    Dataset provided by
    data.cdc.gov
    Area covered
    United States
    Description

    The Public Health Emergency (PHE) declaration for COVID-19 expired on May 11, 2023. As a result, the Aggregate Case and Death Surveillance System will be discontinued. Although these data will continue to be publicly available, this dataset will no longer be updated.

    On October 20, 2022, CDC began retrieving aggregate case and death data from jurisdictional and state partners weekly instead of daily.

    This dataset includes the URLs that were used by the aggregate county data collection process that compiled aggregate case and death counts by county. Within this file, each of the states (plus select jurisdictions and territories) are listed along with the county web sources which were used for pulling these numbers. Some states had a single statewide source for collecting the county data, while other states and local health jurisdictions may have had standalone sources for individual counties. In the cases where both local and state web sources were listed, a composite approach was taken so that the maximum value reported for a location from either source was used. The initial raw data were sourced from these links and ingested into the CDC aggregate county dataset before being published on the COVID Data Tracker.

  6. a

    COVID-19 Trends in Each Country-Heb

    • hub.arcgis.com
    • coronavirus-response-israel-systematics.hub.arcgis.com
    Updated Apr 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mory (2020). COVID-19 Trends in Each Country-Heb [Dataset]. https://hub.arcgis.com/maps/f8b6e9872cac47aaa33b123d6e2de8d4
    Explore at:
    Dataset updated
    Apr 16, 2020
    Dataset authored and provided by
    mory
    Area covered
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. 100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent one third of case days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 63 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 6-21 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 6 to 21 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 6-21 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 6-21 days and less than past 2 days indicates slight positive trend, but likely still within peak trend timeframe.Past five days is less than the past 6-21 days. This means a downward trend. This would be an important trend for any administrative area in an epidemic trend that the rate of spread is slowing.If less than the past 2 days, but not the last 6-21 days, this is still positive, but is not indicating a passage out of the peak timeframe of the daily new cases curve.Past 5 days has only one or two new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 6 to 21 days. Most recent 6-21 days: Represents the full tail of the curve and provides context for the past 2- and 5-day trends.If this is greater than both the 2- and 5-day trends, then a short-term downward trend has begun. Mean of Recent Tail NCD in the context of the Mean of All NCD, and raw counts of cases:Mean of Recent NCD is less than 0.5 cases per 100,000 = high level of controlMean of Recent NCD is less than 1.0 and fewer than 30 cases indicate continued emergent trend.3. Mean of Recent NCD is less than 1.0 and greater than 30 cases indicate a change from emergent to spreading trend.Mean of All NCD less than 2.0 per 100,000, and areas that have been in epidemic trends have Mean of Recent NCD of less than 5.0 per 100,000 is a significant indicator of changing trends from epidemic to spreading, now going in the direction of controlled trend.Similarly, in the context of Mean of All NCD greater than 2.0

  7. m

    COVID-19 NE Dataset

    • data.mendeley.com
    • narcis.nl
    Updated Aug 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joel Mintz (2020). COVID-19 NE Dataset [Dataset]. http://doi.org/10.17632/42wzh29xrp.2
    Explore at:
    Dataset updated
    Aug 18, 2020
    Authors
    Joel Mintz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    COVID-19 Dataset for Correlation Between Early Government Interventions in the Northeastern United States and Peak COVID-19 Disease Burden by Joel Mintz. File Type: Excel Contents: Tab 1 ("Raw")=Raw Data as Downloaded directly from COVID Tracking Project, sorted by date Tab 2-14 ("State Name') = Data Sorted by State Tab 2-14 Headers: Column 1: Population per state, as recorded by latest American Community Survey, maximum (peak) COVID-19 outcome, with date on which outcome occurred. Column 2: Date on which numbers were recorded* Column 3: State Name* Column 4: Number of reported positive COVID-19 tests* Column 5: Number of reported negative COVID-19 tests* Column 6: Pending COVID-19 tests* Column 7: Currently Hospitalized* Column 8: Cumulatively Hospitalized* Column 9: Currently in ICU* Column 10: Cumulatively in ICU* Column 11: Currently on Ventilator Support* Column 12: Cumulatively on Ventilator Support* Column 13: Total Recovered* Column 14: Cumulative Mortality* *Provided in Original Raw Data Column 15: Total Tests Administered (Column 4+Column 5) Column 16: Placeholder Column 17: % of total population tested Column 18: New Cases Per day Column 19: Change in new cases per day Column 20: Positive cases per day per capita in number per/ hundreds of thousands: (Column 18/total population*100000) Column 21: Change in Positive cases per day per capita in number per/ hundreds of thousands: (Column 19/total population*100000) Column 22: Hospitalizations per day per capita in number per/ hundreds of thousands Column 23: Change in Hospitalizations per day per capita in number per/ hundreds of thousands Column 24: Deaths per day per capita in number per/ hundreds of thousands Column 25: Change in Deaths per day per capita in number per/ hundreds of thousands Column 26-31: Columns 20-25 with an applied 5 day moving average filter Column 32: Adjusted hospitalization: (Subtract number of hospitalizations from the initial number of hospitalzations where reporting bean) Column 33: Adjusted hospitalizations per day per capita Column 34: Adjusted hospitalizations per day per capita, with applied 5 day moving average filter

  8. f

    Average number of people in each state of the simulation for the first 226...

    • figshare.com
    xlsx
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pinar Keskinocak; Buse Eylul Oruc; Arden Baxter; John Asplund; Nicoleta Serban (2023). Average number of people in each state of the simulation for the first 226 days. [Dataset]. http://doi.org/10.1371/journal.pone.0239798.s017
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Pinar Keskinocak; Buse Eylul Oruc; Arden Baxter; John Asplund; Nicoleta Serban
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data values are averages from the 30 runs. The various states recorded are susceptible, exposed, pre-symptomatic, symptomatic, asymptomatic, recovered, hospitalized and dead. Since the simulation is based on the population of Georgia, and each entity in the simulation represents ten people, all data values recorded are based on one-tenth of the population of Georgia, that is, there are a total of roughly one million people in the simulation. (XLSX)

  9. d

    Data from: COVID-19 prevalence and predictors in United States adults during...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Morlock (2025). COVID-19 prevalence and predictors in United States adults during peak stay-at-home orders [Dataset]. http://doi.org/10.5061/dryad.2547d7wpq
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Robert Morlock
    Time period covered
    Jan 1, 2021
    Area covered
    United States
    Description

    This was a cross-sectional nationwide survey of adults in the US conducted between April 24 and May 13, 2020. The survey targeted a representative sample of approximately 5,000 respondents. The rate of COVID-19 cases and testing, most frequently reported symptoms, symptom severity, treatment received, impact of COVID-19 on mental and physical health, and factors predictive of testing positive were assessed.

  10. COVID-19 Reported Patient Impact and Hospital Capacity by Facility

    • healthdata.gov
    • data.ct.gov
    • +5more
    Updated May 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2024). COVID-19 Reported Patient Impact and Hospital Capacity by Facility [Dataset]. https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u
    Explore at:
    tsv, application/rssxml, csv, xml, application/rdfxml, application/geo+json, kmz, kmlAvailable download formats
    Dataset updated
    May 3, 2024
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    U.S. Department of Health & Human Services
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.

    The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Sunday to Saturday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.

    The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.

    For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-15 means the average/sum/coverage of the elements captured from that given facility starting and including Sunday, November 15, 2020, and ending and including reports for Saturday, November 21, 2020.

    Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.

    • A “_coverage” append denotes how many times the facility reported that element during that collection week.
    • A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week.
    • A “_avg” append is the average of the reports provided for that facility for that element during that collection week.

    The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.

    A story page was created to display both corrected and raw datasets and can be accessed at this link: https://healthdata.gov/stories/s/nhgk-5gpv

    This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.

    Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.

    For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied.

    For recent updates to the dataset, scroll to the bottom of the dataset description.

    On May 3, 2021, the following fields have been added to this data set.

    • hhs_ids
    • previous_day_admission_adult_covid_confirmed_7_day_coverage
    • previous_day_admission_pediatric_covid_confirmed_7_day_coverage
    • previous_day_admission_adult_covid_suspected_7_day_coverage
    • previous_day_admission_pediatric_covid_suspected_7_day_coverage
    • previous_week_personnel_covid_vaccinated_doses_administered_7_day_sum
    • total_personnel_covid_vaccinated_doses_none_7_day_sum
    • total_personnel_covid_vaccinated_doses_one_7_day_sum
    • total_personnel_covid_vaccinated_doses_all_7_day_sum
    • previous_week_patients_covid_vaccinated_doses_one_7_day_sum
    • previous_week_patients_covid_vaccinated_doses_all_7_day_sum

    On May 8, 2021, this data set has been converted to a corrected data set. The corrections applied to this data set are to smooth out data anomalies caused by keyed in data errors. To help determine which records have had corrections made to it. An additional Boolean field called is_corrected has been added.

    On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number reported for that metric in a given week.

    On June 7, 2021 Changed vaccination fields from max or min fields to Wednesday reported only. This reflects that the number reported for that metric is only reported on Wednesdays in a given week.

    On September 20, 2021, the following has been updated: The use of analytic dataset as a source.

    On January 19, 2022, the following fields have been added to this dataset:

    • inpatient_beds_used_covid_7_day_avg
    • inpatient_beds_used_covid_7_day_sum
    • inpatient_beds_used_covid_7_day_coverage

    On April 28, 2022, the following pediatric fields have been added to this dataset:

    • all_pediatric_inpatient_bed_occupied_7_day_avg
    • all_pediatric_inpatient_bed_occupied_7_day_coverage
    • all_pediatric_inpatient_bed_occupied_7_day_sum
    • all_pediatric_inpatient_beds_7_day_avg
    • all_pediatric_inpatient_beds_7_day_coverage
    • all_pediatric_inpatient_beds_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_0_4_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_12_17_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_5_11_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_unknown_7_day_sum
    • staffed_icu_pediatric_patients_confirmed_covid_7_day_avg
    • staffed_icu_pediatric_patients_confirmed_covid_7_day_coverage
    • staffed_icu_pediatric_patients_confirmed_covid_7_day_sum
    • staffed_pediatric_icu_bed_occupancy_7_day_avg
    • staffed_pediatric_icu_bed_occupancy_7_day_coverage
    • staffed_pediatric_icu_bed_occupancy_7_day_sum
    • total_staffed_pediatric_icu_beds_7_day_avg
    • total_staffed_pediatric_icu_beds_7_day_coverage
    • total_staffed_pediatric_icu_beds_7_day_sum

    On October 24, 2022, the data includes more analytical calculations in efforts to provide a cleaner dataset. For a raw version of this dataset, please follow this link: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb

    Due to changes in reporting requirements, after June 19, 2023, a collection week is defined as starting on a Sunday and ending on the next Saturday.

  11. e

    COVID-19 Trends in Each Country

    • coronavirus-resources.esri.com
    • hub.arcgis.com
    • +2more
    Updated Mar 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-resources.esri.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset authored and provided by
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  12. g

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • github.com
    • systems.jhu.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  13. Average number of daily new infections in the simulation for the first 226...

    • figshare.com
    xlsx
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pinar Keskinocak; Buse Eylul Oruc; Arden Baxter; John Asplund; Nicoleta Serban (2023). Average number of daily new infections in the simulation for the first 226 days in counties. [Dataset]. http://doi.org/10.1371/journal.pone.0239798.s021
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Pinar Keskinocak; Buse Eylul Oruc; Arden Baxter; John Asplund; Nicoleta Serban
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data values are averages from the 30 runs. Since the simulation is based on the population of Georgia, and each entity in the simulation represents ten people, all data values recorded are based on one-tenth of the population of Georgia, that is, there are a total of roughly one million people in the simulation. (XLSX)

  14. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    • ai-chatbox.pro
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  15. Number of U.S. COVID-19 cases from Jan. 20, 2020 - Nov. 11, 2022, by week

    • statista.com
    Updated Nov 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Number of U.S. COVID-19 cases from Jan. 20, 2020 - Nov. 11, 2022, by week [Dataset]. https://www.statista.com/statistics/1102816/coronavirus-covid19-cases-number-us-americans-by-day/
    Explore at:
    Dataset updated
    Nov 17, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 20, 2020 - Nov 11, 2022
    Area covered
    United States
    Description

    Around 282 thousand new cases of COVID-19 were reported in the United States during the week ending November 11, 2022. Between January 20, 2020 and November 11, 2022 there had been around 96.8 million confirmed cases of COVID-19 with over one million deaths in the U.S. as reported by the World Health Organization.

    How did the coronavirus outbreak start? Pneumonia cases with an unknown cause were first reported in the Hubei province of China at the end of December 2019. Patients described symptoms including a fever and difficulty breathing, and early reports suggested no evidence of human-to-human transmission. We now know that a novel coronavirus named SARS-CoV-2 is causing the disease COVID-19. The virus has been characterized as a pandemic and continues to spread from person to person – there have been around 642 million cases worldwide as of November 17, 2022.

    The importance of isolation and quarantine In an effort to contain the early spread of the virus, China tightened travel restrictions and enforced isolation measures in the hardest-hit areas. The World Health Organization endorsed this strategy, and countries around the world implemented similar quarantine measures. Staying at home can limit the spread of the virus, and this applies to individuals who are only showing mild symptoms or none at all. Asymptomatic carriers of the virus – those that are experiencing no symptoms – may transmit the virus to people who are at a higher risk of getting very sick.

  16. a

    COVID-19 Trends in Each Country-Copy

    • census-unfpapdp.hub.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Jun 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://census-unfpapdp.hub.arcgis.com/datasets/UNFPAPDP::covid-19-trends-in-each-country-copy
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  17. Average number of daily new infections in the simulation for the first 226...

    • plos.figshare.com
    xlsx
    Updated Jun 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pinar Keskinocak; Buse Eylul Oruc; Arden Baxter; John Asplund; Nicoleta Serban (2023). Average number of daily new infections in the simulation for the first 226 days. [Dataset]. http://doi.org/10.1371/journal.pone.0239798.s018
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Pinar Keskinocak; Buse Eylul Oruc; Arden Baxter; John Asplund; Nicoleta Serban
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data values are averages from the 30 runs. The number of children, adults, elderly and total number of people infected on a given day in the simulation is recorded. Since the simulation is based on the population of Georgia, and each entity in the simulation represents ten people, all data values recorded are based on one-tenth of the population of Georgia, that is, there are a total of roughly one million people in the simulation. (XLSX)

  18. Number of COVID-19 deaths in the United States as of March 10, 2023, by...

    • statista.com
    Updated Mar 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Number of COVID-19 deaths in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1103688/coronavirus-covid19-deaths-us-by-state/
    Explore at:
    Dataset updated
    Mar 28, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, there have been 1.1 million deaths related to COVID-19 in the United States. There have been 101,159 deaths in the state of California, more than any other state in the country – California is also the state with the highest number of COVID-19 cases.

    The vaccine rollout in the U.S. Since the start of the pandemic, the world has eagerly awaited the arrival of a safe and effective COVID-19 vaccine. In the United States, the immunization campaign started in mid-December 2020 following the approval of a vaccine jointly developed by Pfizer and BioNTech. As of March 22, 2023, the number of COVID-19 vaccine doses administered in the U.S. had reached roughly 673 million. The states with the highest number of vaccines administered are California, Texas, and New York.

    Vaccines achieved due to work of research groups Chinese authorities initially shared the genetic sequence to the novel coronavirus in January 2020, allowing research groups to start studying how it invades human cells. The surface of the virus is covered with spike proteins, which enable it to bind to human cells. Once attached, the virus can enter the cells and start to make people ill. These spikes were of particular interest to vaccine manufacturers because they hold the key to preventing viral entry.

  19. Weekly number of COVID-19 hospitalizations in the U.S., Mar 2020 - Feb 2022,...

    • statista.com
    Updated Feb 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Weekly number of COVID-19 hospitalizations in the U.S., Mar 2020 - Feb 2022, by age [Dataset]. https://www.statista.com/statistics/1254477/weekly-number-of-covid-19-hospitalizations-in-the-us-by-age/
    Explore at:
    Dataset updated
    Feb 11, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 7, 2020 - Feb 5, 2022
    Area covered
    United States
    Description

    The previous highest peak in the reported time interval of COVID-19 hospitalizations was the week ending January 9, 2021. A year later in the week ending January 8, 2022, a new peak was recorded. However, this time hospitalizations were more spread out in the age groups, with those under 65 years making up roughly 60 percent of total hospitalizations, compared to 50 percent back in January 2021. This statistic illustrates the weekly number of COVID-19 associated hospitalizations in the United States from the week ending March 7, 2020 to February 5, 2022, by age group.

  20. COVID-19 tests in India April 2020 by state

    • statista.com
    Updated Apr 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). COVID-19 tests in India April 2020 by state [Dataset]. https://www.statista.com/statistics/1107186/india-coronavirus-covid-19-testing-numbers-by-state/
    Explore at:
    Dataset updated
    Apr 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    Just like any country, India has struggled against the coronavirus (COVID-19) pandemic. Various factors like financial inequality, inadequate healthcare, and a huge population have made the matter even worse. In April 2020, after conducting the maximum number of tests in the country, the state of Maharashtra was able to detect over 1,900 cases. For the same period, the state of Sikkim carried out the minimum number of tests with zero cases detected.

    What do people think about COVID-19 in India?

    According to an online survey in February 2020, when the respondents were asked about their opinion on the issue of coronavirus, over 70 percent of the participants showed belief in staying alert and taking precautions. However, 16 percent of participants believed that the virus will not have a major influence on the country. To learn how people from different age groups are dealing with the fear of catching the virus, another survey was conducted in March 2020. It was discovered that the millennials were the most scared of contracting the virus. On the other hand, baby boomers showed minimum fear.

    Impact of COVID-19 on India’s economy

    The coronavirus has influenced the Indian economy in many ways. China has a major share in India’s import and export market. Therefore, any strain on the Chinese economy directly shows its effect on India too. This is true for all major economies of the world. Apart from this, the internal trade in the country has also taken a huge hit due to a series of lockdowns. In April 2020, the overall cost of a complete lockdown in India was estimated at around 26 billion U.S. dollars. India’s gross domestic product (GDP) growth in the second quarter of 2020 was estimated to show a negative growth of nine percent. This was a huge decline as compared to the last quarter in which positive growth was observed.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Fact and Figures page.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data

Coronavirus (Covid-19) Data in the United States

Explore at:
csvAvailable download formats
Dataset provided by
New York Times
License

https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu