Facebook
TwitterBy Valtteri Kurkela [source]
The dataset is constantly updated and synced hourly to ensure up-to-date information. With over several columns available for analysis and exploration purposes, users can extract valuable insights from this extensive dataset.
Some of the key metrics covered in the dataset include:
Vaccinations: The dataset covers total vaccinations administered worldwide as well as breakdowns of people vaccinated per hundred people and fully vaccinated individuals per hundred people.
Testing & Positivity: Information on total tests conducted along with new tests conducted per thousand people is provided. Additionally, details on positive rate (percentage of positive Covid-19 tests out of all conducted) are included.
Hospital & ICU: Data on ICU patients and hospital patients are available along with corresponding figures normalized per million people. Weekly admissions to intensive care units and hospitals are also provided.
Confirmed Cases: The number of confirmed Covid-19 cases globally is captured in both absolute numbers as well as normalized values representing cases per million people.
5.Confirmed Deaths: Total confirmed deaths due to Covid-19 worldwide are provided with figures adjusted for population size (total deaths per million).
6.Reproduction Rate: The estimated reproduction rate (R) indicates the contagiousness of the virus within a particular country or region.
7.Policy Responses: Besides healthcare-related metrics, this comprehensive dataset includes policy responses implemented by countries or regions such as lockdown measures or travel restrictions.
8.Other Variables of InterestThe data encompasses various socioeconomic factors that may influence Covid-19 outcomes including population density,membership in a continent,gross domestic product(GDP)per capita;
For demographic factors: -Age Structure : percentage populations aged 65 and older,aged (70)older,median age -Gender-specific factors: Percentage of female smokers -Lifestyle-related factors: Diabetes prevalence rate and extreme poverty rate
- Excess Mortality: The dataset further provides insights into excess mortality rates, indicating the percentage increase in deaths above the expected number based on historical data.
The dataset consists of numerous columns providing specific information for analysis, such as ISO code for countries/regions, location names,and units of measurement for different parameters.
Overall,this dataset serves as a valuable resource for researchers, analysts, and policymakers seeking to explore various aspects related to Covid-19
Introduction:
Understanding the Basic Structure:
- The dataset consists of various columns containing different data related to vaccinations, testing, hospitalization, cases, deaths, policy responses, and other key variables.
- Each row represents data for a specific country or region at a certain point in time.
Selecting Desired Columns:
- Identify the specific columns that are relevant to your analysis or research needs.
- Some important columns include population, total cases, total deaths, new cases per million people, and vaccination-related metrics.
Filtering Data:
- Use filters based on specific conditions such as date ranges or continents to focus on relevant subsets of data.
- This can help you analyze trends over time or compare data between different regions.
Analyzing Vaccination Metrics:
- Explore variables like total_vaccinations, people_vaccinated, and people_fully_vaccinated to assess vaccination coverage in different countries.
- Calculate metrics such as people_vaccinated_per_hundred or total_boosters_per_hundred for standardized comparisons across populations.
Investigating Testing Information:
- Examine columns such as total_tests, new_tests, and tests_per_case to understand testing efforts in various countries.
- Calculate rates like tests_per_case to assess testing efficiency or identify changes in testing strategies over time.
Exploring Hospitalization and ICU Data:
- Analyze variables like hosp_patients, icu_patients, and hospital_beds_per_thousand to understand healthcare systems' strain.
- Calculate rates like icu_patients_per_million or hosp_patients_per_million for cross-country comparisons.
Assessing Covid-19 Cases and Deaths:
- Analyze variables like total_cases, new_ca...
Facebook
TwitterAs of June 13, 2023, there have been almost 768 million cases of coronavirus (COVID-19) worldwide. The disease has impacted almost every country and territory in the world, with the United States confirming around 16 percent of all global cases.
COVID-19: An unprecedented crisis Health systems around the world were initially overwhelmed by the number of coronavirus cases, and even the richest and most prepared countries struggled. In the most vulnerable countries, millions of people lacked access to critical life-saving supplies, such as test kits, face masks, and respirators. However, several vaccines have been approved for use, and more than 13 billion vaccine doses had already been administered worldwide as of March 2023.
The coronavirus in the United Kingdom Over 202 thousand people have died from COVID-19 in the UK, which is the highest number in Europe. The tireless work of the National Health Service (NHS) has been applauded, but the country’s response to the crisis has drawn criticism. The UK was slow to start widespread testing, and the launch of a COVID-19 contact tracing app was delayed by months. However, the UK’s rapid vaccine rollout has been a success story, and around 53.7 million people had received at least one vaccine dose as of July 13, 2022.
Facebook
TwitterAs of November 18, 2022, the number of confirmed COVID-19 cases in Africa amounted to around 12.7 million, which represented around two percent of the infections around the world. By the same date, coronavirus cases globally were over 640 million, deaths were over six million, while approximately 620 million people recovered from the disease. On the African continent, South Africa was the most drastically affected country, with more than 3.6 million infections.
The African continent fighting the pandemic
The African continent first came in contact with the coronavirus pandemic on February 14, 2020, in the northernmost part, particularly Egypt. Since then, the different governments took severe restrictive measures to try to curb the spread of the disease. Moreover, the official numbers of the African continent are significantly lower than those of Europe, North America, South America, and Asia. Nevertheless, the infectious disease still managed to have its effects on several countries. South Africa had the highest number of deaths. Morocco and Tunisia, the second and third most affected in Africa, recorded 16,002 and 27,824 deaths, respectively, while Egypt registered at 24,132 as of March 02, 2022.
The light at the end of the tunnel
Although the African countries still have a long way to fully combat the virus, vaccination programs have been rolled out in the majority of Africa. Also, according to a survey, public opinion in several African countries shows a high willingness to be vaccinated, with Ethiopia having numbers as high as 94 percent. As of March 2022, Egypt was the country administering the highest number of vaccine doses, however, Seychelles had the highest per rate per 100 people .
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterAs of August 17, 2020, it was estimated that the case fatality rate for COVID-19 in Italy was around 14 percent. Case fatality rates are calculated by dividing the number of confirmed deaths by the number of confirmed cases. It is important to understand that the case fatality rate is not a good measure of the mortality risk of COVID-19. For a variety of reasons the case fatality rate varies over time and from country to country. Case fatality rates need to be interpreted with caution, especially when the total number of cases is not known, as is the current case with the COVID-19 pandemic. This statistic shows the development of the case fatality rates in select countries worldwide from February 25 to August 17, 2020.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
During the first two year of the Covid-19 pandemic, deaths tolls differed from a country to another. In a previous research work on 39 countries, we have found that some population’s characteristics were either negatively (birth rate/mortality rate, fertility rate) or positively (cancer score, Alzheimer disease score, percent of people above 65 years old, levels of alcohol intake) correlated with Covid-19 mortality. We also found that low levels of climate factors (average annual temperature, average hours of sunshine, average annual level of UV index) were positively correlated with Covid-19 deaths numbers as well. In the present study, we have developped an anti-Covid Capacity index that takes into account all the above mentioned parameters. The polynomial analysis of the anti-Covid Capacity and its corresponding geographic latitude of each country has generated a bell-shaped curve, with a high coefficient of determination (R2= 0.78). Lower anti-Covid capacity values were recorded in countries of low and high latitudes, respectively. Instead, plotting covid-19 deaths numbers against geographic latitude levels has generated an inverted bell-shaped curve, with higher deaths numbers at low and high latitudes, respectively. The analysis by a simple linear regression has shown that Covid-19 deaths numbers were significantly (p= 2,40 x 10-9) and negatively correlated to the anti-Covid Capacity index values. Our data demonstrate that the negative prepandemic human conditions, and the low scores of both annual temperature and UV index in many countries were the key factors behind high Covid-19 mortality, and they can be expressed as a simple index of anti-Covid capacity of a country that can predict the death-associated severity of Covid-19 disease, and thus, according to a country’s geographic latitude.
Facebook
TwitterAttribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
There are two datasets. 1. owid-covid-data.csv :- Contains covid data from 1st Jan 2020 to 7th Feb, 2023 2. owid-covid-latest.csv:- Contains covid data from 8th Feb, 2023.
Dataset Attribute Details:
iso_code: ISO 3166-1 alpha-3 – three-letter country codes continent: Continent of the geographical location location: Geographical location date: Date of observation total_cases: Total confirmed cases of COVID-19 new_cases: New confirmed cases of COVID-19 new_cases_smoothed: New confirmed cases of COVID-19 (7-day smoothed) total_cases_per_million: Total confirmed cases of COVID-19 per 1,000,000 people new_cases_per_million: New confirmed cases of COVID-19 per 1,000,000 people new_cases_smoothed_per_million: New confirmed cases of COVID-19 (7-day smoothed) per 1,000,000 people total_deaths: Total deaths attributed to COVID-19 new_deaths: New deaths attributed to COVID-19 new_deaths_smoothed: New deaths attributed to COVID-19 (7-day smoothed) total_deaths_per_million: Total deaths attributed to COVID-19 per 1,000,000 people new_deaths_per_million: New deaths attributed to COVID-19 per 1,000,000 people new_deaths_smoothed_per_million: New deaths attributed to COVID-19 (7-day smoothed) per 1,000,000 people excess_mortality: Percentage difference between the reported number of weekly or monthly deaths in 2020–2021 and the projected number of deaths for the same period based on previous years. excess_mortality_cumulative: Percentage difference between the cumulative number of deaths since 1 January 2020 and the cumulative projected deaths for the same period based on previous years. excess_mortality_cumulative_absolute: Cumulative difference between the reported number of deaths since 1 January 2020 and the projected number of deaths for the same period based on previous years. excess_mortality_cumulative_per_million: Cumulative difference between the reported number of deaths since 1 January 2020 and the projected number of deaths for the same period based on previous years, per million people. icu_patients: Number of COVID-19 patients in intensive care units (ICUs) on a given day icu_patients_per_million: Number of COVID-19 patients in intensive care units (ICUs) on a given day per 1,000,000 people hosp_patients: Number of COVID-19 patients in the hospital on a given day hosp_patients_per_million: Number of COVID-19 patients in hospital on a given day per 1,000,000 people weekly_icu_admissions: Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week weekly_icu_admissions_per_million: Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week per 1,000,000 people weekly_hosp_admissions: Number of COVID-19 patients newly admitted to hospitals in a given week weekly_hosp_admissions_per_million: Number of COVID-19 patients newly admitted to hospitals in a given week per 1,000,000 people stringency_index: Government Response Stringency Index: composite measure based on 9 response indicators including school closures, workplace closures, and travel bans, rescaled to a value from 0 to 100 (100 = strictest response) reproduction_rate: Real-time estimate of the effective reproduction rate (R) of COVID-19. total_tests: Total tests for COVID-19 new_tests: New tests for COVID-19 (only calculated for consecutive days) total_tests_per_thousand: Total tests for COVID-19 per 1,000 people new_tests_per_thousand: New tests for COVID-19 per 1,000 people new_tests_smoothed: New tests for COVID-19 (7-day smoothed). For countries that don't report testing data on a daily basis, we assume that testing changed equally on a daily basis over any periods in which no data was reported. This produces a complete series of daily figures, which is then averaged over a rolling 7-day window new_tests_smoothed_per_thousand: New tests for COVID-19 (7-day smoothed) per 1,000 people positive_rate: The share of COVID-19 tests that are positive, given as a rolling 7-day average (this is the inverse of tests_per_case) tests_per_case: Tests conducted per new confirmed case of COVID-19, given as a rolling 7-day average (this is the inverse of positive_rate) tests_units: Units used by the location to report its testing data total_vaccinations: Total number of COVID-19 vaccination doses administered people_vaccinated: Total number of people who received at least one vaccine dose people_fully_vaccinated: Total number of people who received all doses prescribed by the vaccination protocol total_boosters: Total number of COVID-19 vaccination booster doses administered (doses administered beyond the number prescribed by the vaccination protocol) new_vaccinations: New COVID-19 vaccination doses a...
Facebook
TwitterAs of November 11, 2022, almost 96.8 million confirmed cases of COVID-19 had been reported by the World Health Organization (WHO) for the United States. The pandemic has impacted all 50 states, with vast numbers of cases recorded in California, Texas, and Florida.
The coronavirus in the U.S. The coronavirus hit the United States in mid-March 2020, and cases started to soar at an alarming rate. The country has performed a high number of COVID-19 tests, which is a necessary step to manage the outbreak, but new coronavirus cases in the U.S. have spiked several times since the pandemic began, most notably at the end of 2022. However, restrictions in many states have been eased as new cases have declined.
The origin of the coronavirus In December 2019, officials in Wuhan, China, were the first to report cases of pneumonia with an unknown cause. A new human coronavirus – SARS-CoV-2 – has since been discovered, and COVID-19 is the infectious disease it causes. All available evidence to date suggests that COVID-19 is a zoonotic disease, which means it can spread from animals to humans. The WHO says transmission is likely to have happened through an animal that is handled by humans. Researchers do not support the theory that the virus was developed in a laboratory.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: To develop an effective countermeasure and determine our susceptibilities to the outbreak of COVID-19 is challenging for a densely populated developing country like Bangladesh and a systematic review of the disease on a continuous basis is necessary.Methods: Publicly available and globally acclaimed datasets (4 March 2020–30 September 2020) from IEDCR, Bangladesh, JHU, and ECDC database are used for this study. Visual exploratory data analysis is used and we fitted a polynomial model for the number of deaths. A comparison of Bangladesh scenario over different time points as well as with global perspectives is made.Results: In Bangladesh, the number of active cases had decreased, after reaching a peak, with a constant pattern of death rate at from July to the end of September, 2020. Seventy-one percent of the cases and 77% of the deceased were males. People aged between 21 and 40 years were most vulnerable to the coronavirus and most of the fatalities (51.49%) were in the 60+ population. A strong positive correlation (0.93) between the number of tests and confirmed cases and a constant incidence rate (around 21%) from June 1 to August 31, 2020 was observed. The case fatality ratio was between 1 and 2. The number of cases and the number of deaths in Bangladesh were much lower compared to other countries.Conclusions: This study will help to understand the patterns of spread and transition in Bangladesh, possible measures, effectiveness of the preparedness, implementation gaps, and their consequences to gather vital information and prevent future pandemics.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Coloring for districts and countries with relative values, line graph, play mode and min/max function * positively tested * Percentage of recoveries * The sick * Percentage of deaths * New cases
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Throughout history, the human race has often faced pandemics with substantial numbers of fatalities. As the COVID-19 pandemic has now affected the whole planet, even countries with moderate to strong healthcare support and expenditure have struggled to contain disease transmission and casualties. Countries affected by COVID-19 have different demographics, socioeconomic, and lifestyle health indicators. In this context, it is important to find out to what extent these parametric variations are modulating disease outcomes. To answer this, this study selected demographic, socioeconomic, and health indicators e.g., population density, percentage of the urban population, median age, health expenditure per capita, obesity, diabetes prevalence, alcohol intake, tobacco use, case fatality of non-communicable diseases (NCDs) as independent variables. Countries were grouped according to these variables and influence on dependent variables e.g., COVID-19 positive tests, case fatality, and case recovery rates were statistically analyzed. The results suggested that countries with variable median age had a significantly different outcome on positive test rate (P < 0.01). Both the median age (P = 0.0397) and health expenditure per capita (P = 0.0041) showed a positive relation with case recovery. An increasing number of tests per 100 K of the population showed a positive and negative relationship with the number of positives per 100 K population (P = 0.0001) and the percentage of positive tests (P < 0.0001), respectively. Alcohol intake per capita in liter (P = 0.0046), diabetes prevalence (P = 0.0389), and NCDs mortalities (P = 0.0477) also showed a statistical relation to the case fatality rate. Further analysis revealed that countries with high healthcare expenditure along with high median age and increased urban population showed more case fatality but also had a better recovery rate. Investment in the health sector alone is insufficient in controlling the severity of the pandemic. Intelligent and sustainable healthcare both in urban and rural settings and healthy lifestyle acquired immunity may reduce disease transmission and comorbidity induced fatalities, respectively.
Facebook
TwitterA survey of people from 30 different countries around the world found that mental health was the biggest health problem respondents said was facing their country in 2025. Other health problems reported by respondents included cancer, stress, and obesity. The COVID-19 pandemic The COVID-19 pandemic impacted almost every country in the world and was the biggest global health crisis in recent history. It resulted in hundreds of millions of cases and millions of deaths, causing unprecedented disruption in health care systems. Lockdowns imposed in many countries to halt the spread of the virus also resulted in a rise of mental health issues as feelings of stress, isolation, and hopelessness arose. However, vaccines to combat the virus were developed at record speed, and many countries have now vaccinated large shares of their population. Nevertheless, in 2025, six percent of respondents still stated that COVID-19 was the biggest health problem facing their country. Mental health issues One side effect of the COVID-19 pandemic has been a focus on mental health around the world. The two most common mental health issues worldwide are anxiety disorders and depression. In 2021, it was estimated that around 4.4 percent of the global population had an anxiety disorder, while four percent suffered from depression. Rates of depression are higher among females than males, with some 4.3 percent of females suffering from depression, compared to 2.9 percent of men. However, rates of suicide in most countries are higher among men than women. One positive outcome of the COVID-19 pandemic and the spotlight it shined on mental health may be a decrease in stigma surrounding mental health issues and seeking help for such issues. This would be a positive development, as many people around the world do not or cannot receive the necessary treatment they need for their mental health.
Facebook
TwitterUpdate: Denmark becomes the second country in Europe to go on coronavirus lockdown
According to WHO, Europe is now the 'epicenter' of the coronavirus pandemic. Among those EU countries, Denmark has attracted significant attention from other countries. Within two days, the confirmed cases jumped from 92 to 516. As of 15 March, among nations with at least one million citizens, Denmark has the world's sixth-highest per-capita rate of positive coronavirus cases at 144.3 cases per million people.
The Danish government has introduced stringent restrictions such as:
From 14 March to 13 April, all Danish borders will be closed.
Denmark's parliament has passed an emergency coronavirus law which gives health authorities powers to force testing, treatment a and quarantine with the backing of the police.
The dataset (by Mar.14) includes four columns: date, confirmed cases, increased percent by day, and deaths. It is a good source for data visualization or exploring different models of disease transmission, such as exponential and logistic regression. To learn more about the exponential model, please watch this video which is short enough but well explained.
Danish Health Authority (Sundhedsstyrelsen)
Facebook
TwitterA global survey on attitudes towards coronavirus COVID-19 vaccinations found out that people from Hong Kong tended to think more positively about a COVID-19 vaccine if it was developed in Singapore, Germany, or the United Kingdom. As per the survey results generated in *************, about ** percent of Hong Kong respondents had a positive impression of the coronavirus vaccines from Singapore, compared to only ***** percent when it comes to Indian vaccines.
Facebook
TwitterIn the WAEMU countries, COVID-19 is expected to affect households in many ways. First, governments might reduce social transfers to households due to the decline in revenue arising from the potential COVID-19 economic recession. Second households deriving income from vulnerable sectors such as tourism and related activities will likely face risk of unemployment or loss of income. Third an increase in prices of imported goods can also negatively impact household welfare, as a direct consequence of the increase of these imported items or as indirect increase of prices of local good manufactured using imported inputs. In this context, there is a need to produce high frequency data to help policy makers in monitoring the channels by which the pandemic affects households and assessing its distributional impact. To do so, the sample of the longitudinal survey will be a sub-sample of the 2018/19 household survey in each country.
For Mali, the survey which is implemented by the National Statistical Office (INSTAT), is conducted using cell phone numbers of household members collected during the 2018/19 survey. This has the advantage of conducting cost effectively welfare analysis without collecting new consumption data. The 35 minutes questionnaires covered 10 modules (knowledge, behaviour, access to services, food security, employment, safety nets, shocks, etc…). Data collection is planned for six months (six rounds) and the questionnaire is designed with core modules and rotating modules. Survey data collection started on May 11th, 2020 and households are expected to be called back every three to four weeks.
The main objectives of the survey are to: • Identify type of households directly or indirectly affected by the pandemic; • Identify the main channels by which the pandemic affects households; • Provide relevant data on income and socioeconomic indicators to assess the welfare impact of the pandemic.
National coverage
Households
The survey covered only households of the 2018/19 survey which excluded populations in prisons, hospitals, military barracks, and school dormitories.
Sample survey data [ssd]
SAMPLING PROCEDURE The Mali COVID-19 impact monitoring survey is a high frequency Computer Assisted Telephone Interview (CATI). The survey's sample was drawn from the population of the 2018/19 - Enquête Harmonisée des Conditions de Vie des Ménages (EHCVM) -, which was conducted between October 2018 and July 2019. EHCVM is itself a sample survey representative at national, regional and by urban/rural. For the 7,000 HHs in EHCVM, phone numbers were collected for about 90 percent of them. Each HH has between 1-4 phone numbers. The sampling, which was similar across WAEMU, aimed at having representative estimates by three zones: the capital city of Bamako, other urban areas and the rural area. The minimum sample size was 1,908 for which 1,766 were successfully interviewed, that is about 98 % of the expected minimal sample size at the national level. Given that Mali is conducting a phone survey for the first time, a total of 2,270 were drawn (25% increase) to take into account unknown non-response rates or presence of invalid numbers in the database.
The total number of completed interviews in round one is 1,766. The total number of completed interviews in round two is 1,935. The total number of completed interviews in round three is 1,901. The total number of completed interviews in round four is 1,797. The total number of completed interviews in round five is 1,766.
Computer Assisted Telephone Interview [cati]
All the interview materials were translated in french for the NSO. The questionnaire was administered in local languages with about varying length (30-35 minutes) and covered the following topics:
1- Household Roster 2- Knowledge of COVID-19 3- Behaviour and Social Distancing 4- Access to Basic Services 5- Employment and Income 6- Prices and Food Security 7- Other Impacts of COVID-19 8- Income Loss 9- Coping/Shocks 10- Social Safety Nets 11- Fragility 12- Governance and socio-political crisis
At the end of data collection, the raw dateset was cleaned by the NSO. This included formatting, and correcting results based on monitoring issues, enumerator feedback and survey changes.
The minimum sample expected is 1,809 households (with 603 households per domain). This sample was therefore 99% covered for Bamako, about 100% for other urban areas and 91% for rural areas. Overall, the minimum sample is 98% covered. This level of coverage provides reliable data at national level and for each domain.
Round one response rate was 77.8%. Round two response rate was 85.2%. Round three response rate was 83.7%. Round four response rate was 79.2%. Round five response rate was 79.7%.
Facebook
TwitterAs of March 10, 2023, the state with the highest number of COVID-19 cases was California. Almost 104 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time. When the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide has now reached over 669 million.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. People aged 85 years and older have accounted for around 27 percent of all COVID-19 deaths in the United States, although this age group makes up just two percent of the U.S. population
Facebook
TwitterAs of November 2021, the U.S. goverment dedicated ***** percent of the GDP to soften the effects of the coronavirus pandemic. This translates to stimulus packages worth **** trillion U.S. dollars Economic impact of the Coronavirus pandemic The impact of the COVID-19 pandemic was felt throughout the whole world. Lockdowns forced many industries to close completely for many months and restrictions were put on almost all economic activity. In 2020, the worldwide GDP loss due to Covid was *** percent. The global unemployment rate rocketed to **** percent in 2020 and confidence in governments’ ability to deal with the crisis diminished significantly. Governmental response In order to stimulate the economies and bring them out of recession, many countries have decided to release so called stimulus packages. These are fiscal and monetary policies used to support the recovery process. Through application of lower taxes and interest rates, direct financial aid, or facilitated access to funding, the governments aim to boost the employment, investment, and demand. Stimulus packages Until November 2021, Japan has dedicated the largest share of the GDP to stimulus packages among the G20 countries, with ***** percent (*** trillion Yen or **** trillion U.S. dollars). While the first help package aimed at maintaining employment and securing businesses, the second and third ones focused more on structural changes and positive developments in the country in the post-pandemic future.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Respondent’s knowledge towards COVID-19 of a study COVID-19 vaccine acceptance and its associated factors in Debre Berhan City, Ethiopia, 2022.
Facebook
TwitterIn 2020, global gross domestic product declined by 6.7 percent as a result of the coronavirus (COVID-19) pandemic outbreak. In Latin America, overall GDP loss amounted to 8.5 percent.
Facebook
TwitterThe coronavirus (COVID-19) pandemic is going to have repercussions on most of the countries worldwide, as is the case for Egypt as well. The Gross Domestic Product (GDP) was grew by *** percent in 2020 and was estimated to grow *** percent in 2021. In fact, Egypt was one of the few African countries showing a positive real GDP growth rate and the only in the North African region in 2020, regardless of the negative effects of the pandemic. Moreover, it is projected that in 2022 the Egyptian real GDP would grow by *** percent.
With regards to Egyptian cumulative coronavirus cases, Egypt is the fourth most hit country in the continent with ******* cases as of early 2022. Tourism receipts are believed to be drastically affected, along with remittances.
Facebook
TwitterBy Valtteri Kurkela [source]
The dataset is constantly updated and synced hourly to ensure up-to-date information. With over several columns available for analysis and exploration purposes, users can extract valuable insights from this extensive dataset.
Some of the key metrics covered in the dataset include:
Vaccinations: The dataset covers total vaccinations administered worldwide as well as breakdowns of people vaccinated per hundred people and fully vaccinated individuals per hundred people.
Testing & Positivity: Information on total tests conducted along with new tests conducted per thousand people is provided. Additionally, details on positive rate (percentage of positive Covid-19 tests out of all conducted) are included.
Hospital & ICU: Data on ICU patients and hospital patients are available along with corresponding figures normalized per million people. Weekly admissions to intensive care units and hospitals are also provided.
Confirmed Cases: The number of confirmed Covid-19 cases globally is captured in both absolute numbers as well as normalized values representing cases per million people.
5.Confirmed Deaths: Total confirmed deaths due to Covid-19 worldwide are provided with figures adjusted for population size (total deaths per million).
6.Reproduction Rate: The estimated reproduction rate (R) indicates the contagiousness of the virus within a particular country or region.
7.Policy Responses: Besides healthcare-related metrics, this comprehensive dataset includes policy responses implemented by countries or regions such as lockdown measures or travel restrictions.
8.Other Variables of InterestThe data encompasses various socioeconomic factors that may influence Covid-19 outcomes including population density,membership in a continent,gross domestic product(GDP)per capita;
For demographic factors: -Age Structure : percentage populations aged 65 and older,aged (70)older,median age -Gender-specific factors: Percentage of female smokers -Lifestyle-related factors: Diabetes prevalence rate and extreme poverty rate
- Excess Mortality: The dataset further provides insights into excess mortality rates, indicating the percentage increase in deaths above the expected number based on historical data.
The dataset consists of numerous columns providing specific information for analysis, such as ISO code for countries/regions, location names,and units of measurement for different parameters.
Overall,this dataset serves as a valuable resource for researchers, analysts, and policymakers seeking to explore various aspects related to Covid-19
Introduction:
Understanding the Basic Structure:
- The dataset consists of various columns containing different data related to vaccinations, testing, hospitalization, cases, deaths, policy responses, and other key variables.
- Each row represents data for a specific country or region at a certain point in time.
Selecting Desired Columns:
- Identify the specific columns that are relevant to your analysis or research needs.
- Some important columns include population, total cases, total deaths, new cases per million people, and vaccination-related metrics.
Filtering Data:
- Use filters based on specific conditions such as date ranges or continents to focus on relevant subsets of data.
- This can help you analyze trends over time or compare data between different regions.
Analyzing Vaccination Metrics:
- Explore variables like total_vaccinations, people_vaccinated, and people_fully_vaccinated to assess vaccination coverage in different countries.
- Calculate metrics such as people_vaccinated_per_hundred or total_boosters_per_hundred for standardized comparisons across populations.
Investigating Testing Information:
- Examine columns such as total_tests, new_tests, and tests_per_case to understand testing efforts in various countries.
- Calculate rates like tests_per_case to assess testing efficiency or identify changes in testing strategies over time.
Exploring Hospitalization and ICU Data:
- Analyze variables like hosp_patients, icu_patients, and hospital_beds_per_thousand to understand healthcare systems' strain.
- Calculate rates like icu_patients_per_million or hosp_patients_per_million for cross-country comparisons.
Assessing Covid-19 Cases and Deaths:
- Analyze variables like total_cases, new_ca...