60 datasets found
  1. Share of U.S. COVID-19 cases resulting in death from Feb. 12 to Mar. 16, by...

    • statista.com
    Updated Jul 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Share of U.S. COVID-19 cases resulting in death from Feb. 12 to Mar. 16, by age [Dataset]. https://www.statista.com/statistics/1105431/covid-case-fatality-rates-us-by-age-group/
    Explore at:
    Dataset updated
    Jul 27, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 12, 2020 - Mar 16, 2020
    Area covered
    United States
    Description

    Among COVID-19 patients in the United States from February 12 to March 16, 2020, estimated case-fatality rates were highest for adults aged 85 years and older. Younger people appeared to have milder symptoms, and there were no deaths reported among persons aged 19 years and under.

    Tracking the virus in the United States The outbreak of a previously unknown viral pneumonia was first reported in China toward the end of December 2019. The first U.S. case of COVID-19 was recorded in mid-January 2020, confirmed in a patient who had returned to the United States from China. The virus quickly started to spread, and the first community-acquired case was confirmed one month later in California. Overall, there had been approximately 4.5 million coronavirus cases in the country by the start of August 2020.

    U.S. health care system stretched California, Florida, and Texas are among the states with the most coronavirus cases. Even the best-resourced hospitals in the United States have struggled to cope with the crisis, and certain areas of the country were dealt further blows by new waves of infections in July 2020. Attention is rightly focused on fighting the pandemic, but as health workers are redirected to care for COVID-19 patients, the United States must not lose sight of other important health care issues.

  2. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  3. COVID-19 cases, recoveries, deaths in most impacted countries as of May 2,...

    • statista.com
    Updated May 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 cases, recoveries, deaths in most impacted countries as of May 2, 2023 [Dataset]. https://www.statista.com/statistics/1105235/coronavirus-2019ncov-cases-recoveries-deaths-most-affected-countries-worldwide/
    Explore at:
    Dataset updated
    May 2, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    As of May 2, 2023, the coronavirus disease (COVID-19) had been confirmed in almost every country and territory around the world. There had been roughly 687 million cases and 6.86 million deaths.

    Vaccine approval in the United States The United States has recorded more coronavirus infections and deaths than any other country in the world. The regulatory agency in the country authorized three COVID-19 vaccines for emergency use. Both the Pfizer-BioNTech and Moderna vaccines were approved in December 2020, while the Johnson & Johnson vaccine was approved in February 2021. As of April 26, 2023, the number of COVID-19 vaccine doses administered in the U.S. had reached 675 million.

    The difference between vaccines and antivirals Medications can help with the symptoms of viruses, but it is the role of the immune system to take care of them over time. However, the use of vaccines and antivirals can help the immune system in doing its job. The most tried and tested vaccine method is to inject an inactive or weakened form of a virus, encouraging the immune system to produce protective antibodies. The immune system keeps the virus in its memory, and if the real one appears, the body will recognize it and attack it more efficiently. Antivirals are designed to help target viruses, limiting their ability to reproduce and spread to other cells. They are used by patients who are already infected by a virus and can make the infection less severe.

  4. T

    United States Coronavirus COVID-19 Recovered

    • tradingeconomics.com
    csv, excel, json, xml
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Coronavirus COVID-19 Recovered [Dataset]. https://tradingeconomics.com/united-states/coronavirus-recovered
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 21, 2020 - Dec 15, 2021
    Area covered
    United States
    Description

    United States recorded 16306656 Coronavirus Recovered since the epidemic began, according to the World Health Organization (WHO). In addition, United States reported 797346 Coronavirus Deaths. This dataset includes a chart with historical data for the United States Coronavirus Recovered.

  5. COVID-19 death rates in the United States as of March 10, 2023, by state

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 death rates in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109011/coronavirus-covid19-death-rates-us-by-state/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.

  6. Coronavirus (COVID-19) cases, recoveries, and deaths worldwide as of May 2,...

    • statista.com
    Updated Dec 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Coronavirus (COVID-19) cases, recoveries, and deaths worldwide as of May 2, 2023 [Dataset]. https://www.statista.com/statistics/1087466/covid19-cases-recoveries-deaths-worldwide/
    Explore at:
    Dataset updated
    Dec 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2, 2023
    Area covered
    Worldwide
    Description

    As of May 2, 2023, there were roughly 687 million global cases of COVID-19. Around 660 million people had recovered from the disease, while there had been almost 6.87 million deaths. The United States, India, and Brazil have been among the countries hardest hit by the pandemic.

    The various types of human coronavirus The SARS-CoV-2 virus is the seventh known coronavirus to infect humans. Its emergence makes it the third in recent years to cause widespread infectious disease following the viruses responsible for SARS and MERS. A continual problem is that viruses naturally mutate as they attempt to survive. Notable new variants of SARS-CoV-2 were first identified in the UK, South Africa, and Brazil. Variants are of particular interest because they are associated with increased transmission.

    Vaccination campaigns Common human coronaviruses typically cause mild symptoms such as a cough or a cold, but the novel coronavirus SARS-CoV-2 has led to more severe respiratory illnesses and deaths worldwide. Several COVID-19 vaccines have now been approved and are being used around the world.

  7. a

    COVID-19 Vulnerability and Recovery Index

    • hub.arcgis.com
    • geohub.lacity.org
    • +2more
    Updated Aug 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2021). COVID-19 Vulnerability and Recovery Index [Dataset]. https://hub.arcgis.com/datasets/7ca7bb20987f425581c150513381d327
    Explore at:
    Dataset updated
    Aug 5, 2021
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    The COVID-19 Vulnerability and Recovery Index uses Tract and ZIP Code-level data* to identify California communities most in need of immediate and long-term pandemic and economic relief. Specifically, the Index is comprised of three components — Risk, Severity, and Recovery Need with the last scoring the ability to recover from the health, economic, and social costs of the pandemic. Communities with higher Index scores face a higher risk of COVID-19 infection and death and a longer uphill economic recovery. Conversely, those with lower scores are less vulnerable.

    The Index includes one overarching Index score as well as a score for each of the individual components. Each component includes a set of indicators we found to be associated with COVID-19 risk, severity, or recovery in our review of existing indices and independent analysis. The Risk component includes indicators related to the risk of COVID-19 infection. The Severity component includes indicators designed to measure the risk of severe illness or death from COVID-19. The Recovery Need component includes indicators that measure community needs related to economic and social recovery. The overarching Index score is designed to show level of need from Highest to Lowest with ZIP Codes in the Highest or High need categories, or top 20th or 40th percentiles of the Index, having the greatest need for support.

    The Index was originally developed as a statewide tool but has been adapted to LA County for the purposes of the Board motion. To distinguish between the LA County Index and the original Statewide Index, we refer to the revised Index for LA County as the LA County ARPA Index.

    *Zip Code data has been crosswalked to Census Tract using HUD methodology

    Indicators within each component of the LA County ARPA Index are:Risk: Individuals without U.S. citizenship; Population Below 200% of the Federal Poverty Level (FPL); Overcrowded Housing Units; Essential Workers Severity: Asthma Hospitalizations (per 10,000); Population Below 200% FPL; Seniors 75 and over in Poverty; Uninsured Population; Heart Disease Hospitalizations (per 10,000); Diabetes Hospitalizations (per 10,000)Recovery Need: Single-Parent Households; Gun Injuries (per 10,000); Population Below 200% FPL; Essential Workers; Unemployment; Uninsured PopulationData are sourced from US Census American Communities Survey (ACS) and the OSHPD Patient Discharge Database. For ACS indicators, the tables and variables used are as follows:

    Indicator

    ACS Table/Years

    Numerator

    Denominator

    Non-US Citizen

    B05001, 2019-2023

    b05001_006e

    b05001_001e

    Below 200% FPL

    S1701, 2019-2023

    s1701_c01_042e

    s1701_c01_001e

    Overcrowded Housing Units

    B25014, 2019-2023

    b25014_006e + b25014_007e + b25014_012e + b25014_013e

    b25014_001e

    Essential Workers

    S2401, 2019-2023

    s2401_c01_005e + s2401_c01_011e + s2401_c01_013e + s2401_c01_015e + s2401_c01_019e + s2401_c01_020e + s2401_c01_023e + s2401_c01_024e + s2401_c01_029e + s2401_c01_033e

    s2401_c01_001

    Seniors 75+ in Poverty

    B17020, 2019-2023

    b17020_008e + b17020_009e

    b17020_008e + b17020_009e + b17020_016e + b17020_017e

    Uninsured

    S2701, 2019-2023

    s2701_c05_001e

    NA, rate published in source table

    Single-Parent Households

    S1101, 2019-2023

    s1101_c03_005e + s1101_c04_005e

    s1101_c01_001e

    Unemployment

    S2301, 2019-2023

    s2301_c04_001e

    NA, rate published in source table

    The remaining indicators are based data requested and received by Advancement Project CA from the OSHPD Patient Discharge database. Data are based on records aggregated at the ZIP Code level:

    Indicator

    Years

    Definition

    Denominator

    Asthma Hospitalizations

    2017-2019

    All ICD 10 codes under J45 (under Principal Diagnosis)

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    Gun Injuries

    2017-2019

    Principal/Other External Cause Code "Gun Injury" with a Disposition not "Died/Expired". ICD 10 Code Y38.4 and all codes under X94, W32, W33, W34, X72, X73, X74, X93, X95, Y22, Y23, Y35 [All listed codes with 7th digit "A" for initial encounter]

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    Heart Disease Hospitalizations

    2017-2019

    ICD 10 Code I46.2 and all ICD 10 codes under I21, I22, I24, I25, I42, I50 (under Principal Diagnosis)

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    Diabetes (Type 2) Hospitalizations

    2017-2019

    All ICD 10 codes under E11 (under Principal Diagnosis)

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    For more information about this dataset, please contact egis@isd.lacounty.gov.

  8. d

    COVID-19 and Recovery: Estimates From Payment Card Transactions

    • catalog.data.gov
    Updated Jul 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Economic Analysis (2022). COVID-19 and Recovery: Estimates From Payment Card Transactions [Dataset]. https://catalog.data.gov/dataset/covid-19-and-recovery-estimates-from-payment-card-transactions
    Explore at:
    Dataset updated
    Jul 15, 2022
    Dataset provided by
    Bureau of Economic Analysis
    Description

    BEA has been researching the use of card transaction data as an early barometer of spending in the United States. Since the emergence of COVID-19, dramatic and fast-moving changes to the U.S. economy have increased the public and policymakers' need for more frequent and timely economic data. In response, BEA is presenting these estimates using daily payment card data to measure the effects of the pandemic on spending, updated approximately every two weeks. Note that these payment card transactions are not necessarily representative of total spending in an industry and the data have other limitations, described below. The estimates in these charts and tables are not a substitute for BEA's monthly and quarterly official data, which are grounded in well-tested and proven methodologies. An event study methodology is used to estimate the difference (in percentage points) in spending from the typical level (relative to the day of week, month, and annual trends) prior to the pandemic declared by the World Health Organization on March 11, 2020.

  9. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Sep 26, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  10. U.S. small business owners' outlook on economic recovery from COVID-19 Q4...

    • statista.com
    Updated Jul 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. small business owners' outlook on economic recovery from COVID-19 Q4 2020 [Dataset]. https://www.statista.com/statistics/1224016/us-small-business-owners-outlook-covid-19-economic-recovery/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 6, 2020 - Nov 13, 2020
    Area covered
    United States
    Description

    In a 2020 online survey, ** percent of small business owners in the United States said they expected the economy to not recover from the impacts of COVID-19 until beyond 2021. Only ***** percent of respondents believed that the economy would be able to recover in a few more weeks.

  11. D

    Provisional COVID-19 Deaths: Focus on Ages 0-18 Years

    • data.cdc.gov
    • healthdata.gov
    • +3more
    csv, xlsx, xml
    Updated Jun 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCHS/DVS (2023). Provisional COVID-19 Deaths: Focus on Ages 0-18 Years [Dataset]. https://data.cdc.gov/National-Center-for-Health-Statistics/Provisional-COVID-19-Deaths-Focus-on-Ages-0-18-Yea/nr4s-juj3
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 28, 2023
    Dataset authored and provided by
    NCHS/DVS
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Effective June 28, 2023, this dataset will no longer be updated. Similar data are accessible from CDC WONDER (https://wonder.cdc.gov/mcd-icd10-provisional.html).

    Deaths involving coronavirus disease 2019 (COVID-19) with a focus on ages 0-18 years in the United States.

  12. COVID-19 Community Mobility Reports

    • google.com
    • google.com.tr
    • +6more
    csv, pdf
    Updated Oct 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google (2022). COVID-19 Community Mobility Reports [Dataset]. https://www.google.com/covid19/mobility/
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Oct 17, 2022
    Dataset authored and provided by
    Googlehttp://google.com/
    Description

    As global communities responded to COVID-19, we heard from public health officials that the same type of aggregated, anonymized insights we use in products such as Google Maps would be helpful as they made critical decisions to combat COVID-19. These Community Mobility Reports aimed to provide insights into what changed in response to policies aimed at combating COVID-19. The reports charted movement trends over time by geography, across different categories of places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential.

  13. i

    US Macro Update: Fork in the Road to Economic Recovery

    • ibisworld.com
    Updated Sep 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2020). US Macro Update: Fork in the Road to Economic Recovery [Dataset]. https://www.ibisworld.com/blog/us-macro-update-fork-in-the-road-to-economic-recovery/1/1126/
    Explore at:
    Dataset updated
    Sep 1, 2020
    Dataset authored and provided by
    IBISWorld
    Time period covered
    Sep 1, 2020
    Area covered
    United States
    Description

    Despite an initially strong pace of recovery, the economy is a long way from pre-pandemic levels and several threats loom as Q4 approaches.

  14. Z

    Life table data for "Bounce backs amid continued losses: Life expectancy...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dowd, Jennifer B. (2022). Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6241024
    Explore at:
    Dataset updated
    Jul 20, 2022
    Dataset provided by
    Kniffka, Maxi S.
    Kashyap, Ridhi
    Schöley, Jonas
    Dowd, Jennifer B.
    Kashnitsky, Ilya
    Zhang, Luyin
    Jaadla, Hannaliis
    Aburto, José Manuel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19"

    cc-by Jonas Schöley, José Manuel Aburto, Ilya Kashnitsky, Maxi S. Kniffka, Luyin Zhang, Hannaliis Jaadla, Jennifer B. Dowd, and Ridhi Kashyap. "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    These are CSV files of life tables over the years 2015 through 2021 across 29 countries analyzed in the paper "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    40-lifetables.csv

    Life table statistics 2015 through 2021 by sex, region and quarter with uncertainty quantiles based on Poisson replication of death counts. Actual life tables and expected life tables (under the assumption of pre-COVID mortality trend continuation) are provided.

    30-lt_input.csv

    Life table input data.

    id: unique row identifier

    region_iso: iso3166-2 region codes

    sex: Male, Female, Total

    year: iso year

    age_start: start of age group

    age_width: width of age group, Inf for age_start 100, otherwise 1

    nweeks_year: number of weeks in that year, 52 or 53

    death_total: number of deaths by any cause

    population_py: person-years of exposure (adjusted for leap-weeks and missing weeks in input data on all cause deaths)

    death_total_nweeksmiss: number of weeks in the raw input data with at least one missing death count for this region-sex-year stratum. missings are counted when the week is implicitly missing from the input data or if any NAs are encounted in this week or if age groups are implicitly missing for this week in the input data (e.g. 40-45, 50-55)

    death_total_minnageraw: the minimum number of age-groups in the raw input data within this region-sex-year stratum

    death_total_maxnageraw: the maximum number of age-groups in the raw input data within this region-sex-year stratum

    death_total_minopenageraw: the minimum age at the start of the open age group in the raw input data within this region-sex-year stratum

    death_total_maxopenageraw: the maximum age at the start of the open age group in the raw input data within this region-sex-year stratum

    death_total_source: source of the all-cause death data

    death_total_prop_q1: observed proportion of deaths in first quarter of year

    death_total_prop_q2: observed proportion of deaths in second quarter of year

    death_total_prop_q3: observed proportion of deaths in third quarter of year

    death_total_prop_q4: observed proportion of deaths in fourth quarter of year

    death_expected_prop_q1: expected proportion of deaths in first quarter of year

    death_expected_prop_q2: expected proportion of deaths in second quarter of year

    death_expected_prop_q3: expected proportion of deaths in third quarter of year

    death_expected_prop_q4: expected proportion of deaths in fourth quarter of year

    population_midyear: midyear population (July 1st)

    population_source: source of the population count/exposure data

    death_covid: number of deaths due to covid

    death_covid_date: number of deaths due to covid as of

    death_covid_nageraw: the number of age groups in the covid input data

    ex_wpp_estimate: life expectancy estimates from the World Population prospects for a five year period, merged at the midpoint year

    ex_hmd_estimate: life expectancy estimates from the Human Mortality Database

    nmx_hmd_estimate: death rate estimates from the Human Mortality Database

    nmx_cntfc: Lee-Carter death rate projections based on trend in the years 2015 through 2019

    Deaths

    source:

    STMF input data series (https://www.mortality.org/Public/STMF/Outputs/stmf.csv)

    ONS for GB-EAW pre 2020

    CDC for US pre 2020

    STMF:

    harmonized to single ages via pclm

    pclm iterates over country, sex, year, and within-year age grouping pattern and converts irregular age groupings, which may vary by country, year and week into a regular age grouping of 0:110

    smoothing parameters estimated via BIC grid search seperately for every pclm iteration

    last age group set to [110,111)

    ages 100:110+ are then summed into 100+ to be consistent with mid-year population information

    deaths in unknown weeks are considered; deaths in unknown ages are not considered

    ONS:

    data already in single ages

    ages 100:105+ are summed into 100+ to be consistent with mid-year population information

    PCLM smoothing applied to for consistency reasons

    CDC:

    The CDC data comes in single ages 0:100 for the US. For 2020 we only have the STMF data in a much coarser age grouping, i.e. (0, 1, 5, 15, 25, 35, 45, 55, 65, 75, 85+). In order to calculate life-tables in a manner consistent with 2020, we summarise the pre 2020 US death counts into the 2020 age grouping and then apply the pclm ungrouping into single year ages, mirroring the approach to the 2020 data

    Population

    source:

    for years 2000 to 2019: World Population Prospects 2019 single year-age population estimates 1950-2019

    for year 2020: World Population Prospects 2019 single year-age population projections 2020-2100

    mid-year population

    mid-year population translated into exposures:

    if a region reports annual deaths using the Gregorian calendar definition of a year (365 or 366 days long) set exposures equal to mid year population estimates

    if a region reports annual deaths using the iso-week-year definition of a year (364 or 371 days long), and if there is a leap-week in that year, set exposures equal to 371/364*mid_year_population to account for the longer reporting period. in years without leap-weeks set exposures equal to mid year population estimates. further multiply by fraction of observed weeks on all weeks in a year.

    COVID deaths

    source: COVerAGE-DB (https://osf.io/mpwjq/)

    the data base reports cumulative numbers of COVID deaths over days of a year, we extract the most up to date yearly total

    External life expectancy estimates

    source:

    World Population Prospects (https://population.un.org/wpp/Download/Files/1_Indicators%20(Standard)/CSV_FILES/WPP2019_Life_Table_Medium.csv), estimates for the five year period 2015-2019

    Human Mortality Database (https://mortality.org/), single year and age tables

  15. COVID-19 and the potential impacts on employment data tables

    • opendata-nzta.opendata.arcgis.com
    Updated Aug 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Waka Kotahi (2020). COVID-19 and the potential impacts on employment data tables [Dataset]. https://opendata-nzta.opendata.arcgis.com/datasets/9703b6055b7a404582884f33efc4cf69
    Explore at:
    Dataset updated
    Aug 26, 2020
    Dataset provided by
    NZ Transport Agency Waka Kotahihttp://www.nzta.govt.nz/
    Authors
    Waka Kotahi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This 6MB download is a zip file containing 5 pdf documents and 2 xlsx spreadsheets. Presentation on COVID-19 and the potential impacts on employment

    May 2020Waka Kotahi wants to better understand the potential implications of the COVID-19 downturn on the land transport system, particularly the potential impacts on regional economies and communities.

    To do this, in May 2020 Waka Kotahi commissioned Martin Jenkins and Infometrics to consider the potential impacts of COVID-19 on New Zealand’s economy and demographics, as these are two key drivers of transport demand. In addition to providing a scan of national and international COVID-19 trends, the research involved modelling the economic impacts of three of the Treasury’s COVID-19 scenarios, to a regional scale, to help us understand where the impacts might be greatest.

    Waka Kotahi studied this modelling by comparing the percentage difference in employment forecasts from the Treasury’s three COVID-19 scenarios compared to the business as usual scenario.

    The source tables from the modelling (Tables 1-40), and the percentage difference in employment forecasts (Tables 41-43), are available as spreadsheets.

    Arataki - potential impacts of COVID-19 Final Report

    Employment modelling - interactive dashboard

    The modelling produced employment forecasts for each region and district over three time periods – 2021, 2025 and 2031. In May 2020, the forecasts for 2021 carried greater certainty as they reflected the impacts of current events, such as border restrictions, reduction in international visitors and students etc. The 2025 and 2031 forecasts were less certain because of the potential for significant shifts in the socio-economic situation over the intervening years. While these later forecasts were useful in helping to understand the relative scale and duration of potential COVID-19 related impacts around the country, they needed to be treated with care recognising the higher levels of uncertainty.

    The May 2020 research suggested that the ‘slow recovery scenario’ (Treasury’s scenario 5) was the most likely due to continuing high levels of uncertainty regarding global efforts to manage the pandemic (and the duration and scale of the resulting economic downturn).

    The updates to Arataki V2 were framed around the ‘Slower Recovery Scenario’, as that scenario remained the most closely aligned with the unfolding impacts of COVID-19 in New Zealand and globally at that time.

    Find out more about Arataki, our 10-year plan for the land transport system

    May 2021The May 2021 update to employment modelling used to inform Arataki Version 2 is now available. Employment modelling dashboard - updated 2021Arataki used the May 2020 information to compare how various regions and industries might be impacted by COVID-19. Almost a year later, it is clear that New Zealand fared better than forecast in May 2020.Waka Kotahi therefore commissioned an update to the projections through a high-level review of:the original projections for 2020/21 against performancethe implications of the most recent global (eg International monetary fund world economic Outlook) and national economic forecasts (eg Treasury half year economic and fiscal update)The treasury updated its scenarios in its December half year fiscal and economic update (HYEFU) and these new scenarios have been used for the revised projections.Considerable uncertainty remains about the potential scale and duration of the COVID-19 downturn, for example with regards to the duration of border restrictions, update of immunisation programmes. The updated analysis provides us with additional information regarding which sectors and parts of the country are likely to be most impacted. We continue to monitor the situation and keep up to date with other cross-Government scenario development and COVID-19 related work. The updated modelling has produced employment forecasts for each region and district over three time periods - 2022, 2025, 2031.The 2022 forecasts carry greater certainty as they reflect the impacts of current events. The 2025 and 2031 forecasts are less certain because of the potential for significant shifts over that time.

    Data reuse caveats: as per license.

    Additionally, please read / use this data in conjunction with the Infometrics and Martin Jenkins reports, to understand the uncertainties and assumptions involved in modelling the potential impacts of COVID-19.

    COVID-19’s effect on industry and regional economic outcomes for NZ Transport Agency [PDF 620 KB]

    Data quality statement: while the modelling undertaken is high quality, it represents two point-in-time analyses undertaken during a period of considerable uncertainty. This uncertainty comes from several factors relating to the COVID-19 pandemic, including:

    a lack of clarity about the size of the global downturn and how quickly the international economy might recover differing views about the ability of the New Zealand economy to bounce back from the significant job losses that are occurring and how much of a structural change in the economy is required the possibility of a further wave of COVID-19 cases within New Zealand that might require a return to Alert Levels 3 or 4.

    While high levels of uncertainty remain around the scale of impacts from the pandemic, particularly in coming years, the modelling is useful in indicating the direction of travel and the relative scale of impacts in different parts of the country.

    Data quality caveats: as noted above, there is considerable uncertainty about the potential scale and duration of the COVID-19 downturn. Please treat the specific results of the modelling carefully, particularly in the forecasts to later years (2025, 2031), given the potential for significant shifts in New Zealand's socio-economic situation before then.

    As such, please use the modelling results as a guide to the potential scale of the impacts of the downturn in different locations, rather than as a precise assessment of impacts over the coming decade.

  16. m

    Data on the county-level COVID-19 vaccination rate and socio-economic and...

    • data.mendeley.com
    Updated Apr 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Soyoung Jeon (2022). Data on the county-level COVID-19 vaccination rate and socio-economic and political variables [Dataset]. http://doi.org/10.17632/vwfzpgbs2h.1
    Explore at:
    Dataset updated
    Apr 20, 2022
    Authors
    Soyoung Jeon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data across all counties in five states (Arizona, Colorado, New Mexico, Oklahoma, and Texas) in the U.S. were collected for the study on the impact of the socio-economic and political status on the county-level COVID-19 vaccination rates. Variables were obtained from various data sources; the Bureau of Labor Statistics, Bureau of Economic Analysis, 2010 US Census, Politico, and Centers for Disease Control and Prevention (CDC). It was found that county-level vaccination rates were significantly associated with the percentage of Democrat votes, the elderly population, and per capita income of the county. In addition, the results revealed racial and ethnic disparities in COVID-19 vaccination. The manuscript entitled “Impact of Socio-economic Status on the COVID-19 Vaccination: What Can We Learn for the Path of Recovery?” was submitted for publication.

  17. COVID-19 data for the third wave

    • figshare.com
    txt
    Updated Nov 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nasim Vahabi (2020). COVID-19 data for the third wave [Dataset]. http://doi.org/10.6084/m9.figshare.13283810.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Nov 24, 2020
    Dataset provided by
    figshare
    Authors
    Nasim Vahabi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We collected county-level cumulative COVID-19 confirmed cases and death from Mar 25 to Nov 12, 2020, across the contiguous United States from USAFacts (usafacts.org). We considered Mar 25 to Jun 3 as the “1st wave”, Jun 4 to Sep 2 as the “2nd wave”, and Sep 3 to Nov 12 as the “3rd wave” of COVID-19. For the 2nd and 3rd waves, we analyzed the targeted counties in the sunbelt region (including AL, AZ, AR, CA, FL, GA, KS, LA, MS, NV, NM, NC, OK, SC, TX, TN, and UT states) and great plains region (including IA, IL, IN, KS, MI, MO, MN, ND, NE, OH, SD, and WI states), respectively. MIR, as a proxy for survival rate, is calculated by dividing the number of confirmed deaths in each county by the confirmed cases in the same county at the same time-period multiplied by 100. MIR ranges from 0%-100%, 100% indicating the worst situation where all confirmed cases have died.

    Thirty-eight potential risk factors (covariates), including county-level MR of comorbidities & disorders, demographics & social factors, and environmental factors, were retrieved from the University of Washington Global Health Data Exchange (http://ghdx.healthdata.org/us-data). Comorbidities and disorders include CVD, cardiomyopathy and myocarditis and myocarditis, hypertensive heart disease, peripheral vascular disease, atrial fibrillation, cerebrovascular disease, diabetes, hepatitis, HIV/AIDS, tuberculosis (TB), lower respiratory infection, interstitial lung disease and pulmonary sarcoidosis, asthma, COPD, ischemia, mesothelioma, tracheal cancer, leukemia, pancreatic cancer, rheumatic disease, drug use disorder, and alcohol use disorder. Demographics & social factors include age, female African American%, female white American%, male African American%, male white American%, Asian%, smokers%, unemployed%, income rate, food insecurity, fair/poor health, and uninsured%. Environmental factors include county population density, air quality index (AQI), temperature, and PM. A descriptive table, including all potential risk factors, is provided in Table S1).

  18. Daily domestic transport use by mode

    • gov.uk
    Updated Sep 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Transport (2025). Daily domestic transport use by mode [Dataset]. https://www.gov.uk/government/statistics/transport-use-during-the-coronavirus-covid-19-pandemic
    Explore at:
    Dataset updated
    Sep 10, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Transport
    Description

    Our statistical practice is regulated by the Office for Statistics Regulation (OSR). OSR sets the standards of trustworthiness, quality and value in the Code of Practice for Statistics that all producers of official statistics should adhere to. You are welcome to contact us directly by emailing transport.statistics@dft.gov.uk with any comments about how we meet these standards.

    These statistics on transport use are published monthly.

    For each day, the Department for Transport (DfT) produces statistics on domestic transport:

    • road traffic in Great Britain
    • rail passenger journeys in Great Britain
    • Transport for London (TfL) tube and bus routes
    • bus travel in Great Britain (excluding London)

    The associated methodology notes set out information on the data sources and methodology used to generate these headline measures.

    From September 2023, these statistics include a second rail usage time series which excludes Elizabeth Line service (and other relevant services that have been replaced by the Elizabeth line) from both the travel week and its equivalent baseline week in 2019. This allows for a more meaningful like-for-like comparison of rail demand across the period because the effects of the Elizabeth Line on rail demand are removed. More information can be found in the methodology document.

    The table below provides the reference of regular statistics collections published by DfT on these topics, with their last and upcoming publication dates.

    ModePublication and linkLatest period covered and next publication
    Road trafficRoad traffic statisticsFull annual data up to December 2024 was published in June 2025.

    Quarterly data up to March 2025 was published June 2025.
    Rail usageThe Office of Rail and Road (ORR) publishes a range of statistics including passenger and freight rail performance and usage. Statistics are available at the https://dataportal.orr.gov.uk/">ORR website.

    Statistics for rail passenger numbers and crowding on weekdays in major cities in England and Wales are published by DfT.
    ORR’s latest quarterly rail usage statistics, covering January to March 2025, was published in June 2025.

    DfT’s most recent annual passenger numbers and crowding statistics for 2023 were published in September 2024.
    Bus usageBus statisticsThe most recent annual publication covered the year ending March 2024.

    The most recent quarterly publication covered January to March 2025.
    TfL tube and bus usageData on buses is covered by the section above. https://tfl.gov.uk/status-updates/busiest-times-to-travel">Station level business data is available.
    Cycling usageWalking and cycling statistics, England2023 calendar year published in August 2024.
    Cross Modal and journey by purposeNational Travel Survey2023 calendar year data published in August 2024.

  19. Additional deaths of despair given a 1.6% increase in US unemployment...

    • statista.com
    Updated Sep 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). Additional deaths of despair given a 1.6% increase in US unemployment 2020-2029 [Dataset]. https://www.statista.com/statistics/1155389/projected-deaths-of-despair-if-16-percent-unemployment-growth-us/
    Explore at:
    Dataset updated
    Sep 22, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Based on the number of deaths of despair in 2018 and projected levels of unemployment from 2020 to 2029, it is estimated that the additional number of deaths in 2023 could range from 2,017 to 21,457 depending on the rate of economic recovery after the COVID-19 recession. This statistic shows the possible additional deaths of despair following the COVID-19 recession for select economic scenarios, given a 1.6 percent increase in unemployment, in the United States from 2020 to 2029.

  20. Top Covid19 Countries and Health Demographic Trend

    • kaggle.com
    Updated Apr 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tim Xia (2020). Top Covid19 Countries and Health Demographic Trend [Dataset]. https://www.kaggle.com/datasets/timxia/top-covid19-countries-and-health-demographic-trend
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 4, 2020
    Dataset provided by
    Kaggle
    Authors
    Tim Xia
    Description

    Top Covid19 Countries and Health Demographic Trend

    Context

    This is a time-series trend data collection with a series of json files primarily focused on countries most impacted by Covid-19. The tree formatted time series data should be able to enable various different kinds of analysis to answer questions about what may make a country's health system vulnerable to Covid-19 and what health demographics may help reducing the impact.

    Confirmed_cases(by 4/3/2020)Country Name
    245,559US
    115,242Italy
    112,065Spain
    84,794Germany
    82,464China
    59,929France
    34,173United Kingdom
    18,827Switzerland
    18,135Turkey
    15,348Belgium
    14,788Netherlands
    11,284Canada
    11,129Austria
    10,062Korea, South

    Demographic metrics

    Healthcare GDP Expenditure 
    Healthcare Employment
    Hospital Bed Capacity
    Air Pollution and Death Rate
    Chronic illnesses and DALYs(Disability-Adjusted Life Years)
    Body Weight 
    Elderly(Aged 65+) Population
    CT Scanner Density
    Tobacco Consumption(Smoker population %)
    

    More metrics can be added upon request.

    Data Normalization

    The raw CSV includes many different types of measurements such as number, percentage and per 1 million population. This data normalizes the time_series data by selecting data that is more about density, and number per capita data rather than absolute numbers. This could help doing comparison among nations since they may vary significantly on population.

    Content

    Most of the JSON files contain time_series data. For people who want to use the data as country metadata, the most-recent data attribute is collected in top_countries_latest_fact_summary.json

    The JSON data focuses on the above mentioned demographic areas in a simple tree schema { Country_name: { metric_name:[ List of {year, value, unit} ] } }

    Data source & License

    The data is sourced from OECD(https://stats.oecd.org/) and GDHX(http://ghdx.healthdata.org/). The json files with prefix "gbd_" are from GDHX

    Following citation is needed for using GDHX data:

    GBD Results tool: Use the following to cite data included in this download: Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2017 (GBD 2017) Results. Seattle, United States: Institute for Health Metrics and Evaluation (IHME), 2018. Available from http://ghdx.healthdata.org/gbd-results-tool.

    Inspiration

    • Where does US rank in term of Healthcare/Preventive spending in GDP, hospital bed/ICU bed/physician density and long-term illness? In which areas can US do more to prevent future Cov-19 crisis?

    • Is there correlation in a nation's medical preparedness and the rate of growth in confirmation, death rate and recovery rate? From GBD data graphs, it seems that Dalys(DALYs (Disability-Adjusted Life Years), rate per 100k) can divided nations into different camps.

    • How does death rate from Cov-19 correlate with Death rate related to Cardiovascular diseases and Chronic respiratory diseases?

    • What trends can we discover in various nation's health demographics over time? Are some areas getting better while others getting worse?

    • With time span from 2010 to 2018, this dataset can also correlate with data related to recent outbreaks such as seasonal flus, Avian influenza, etc.

    Example Notebook

    With some quick analysis, it shows that the US actually ranks higher than China for DALYs(Disability-adjusted life years) caused by Chronic Respiratory conditions, which could be due to seasonal allergies. It seems counter-intuitive that this may suggest that countries with cleaner air may have higher burden of people with Chronic Respiratory conditions that may have made them more vulnerable in the Covid-19 crisis.

    Example Kernel: https://www.kaggle.com/timxia/bar-chart-comparison-of-countries https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4802460%2F2fce05195108856422b437316f34e837%2FTobacco.png?generation=1585936274243838&alt=media" alt=""> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4802460%2Fe8db14764a47a8bce48fa79bdfdfb0f1%2FChronicDisease.png?generation=1585936274372639&alt=media" alt=""> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4802460%2Fc534d40af042b9a503325f41c49b83cb%2FAirPollution.png?generation=1585936274337626&alt=media" alt="">

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2022). Share of U.S. COVID-19 cases resulting in death from Feb. 12 to Mar. 16, by age [Dataset]. https://www.statista.com/statistics/1105431/covid-case-fatality-rates-us-by-age-group/
Organization logo

Share of U.S. COVID-19 cases resulting in death from Feb. 12 to Mar. 16, by age

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 27, 2022
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Feb 12, 2020 - Mar 16, 2020
Area covered
United States
Description

Among COVID-19 patients in the United States from February 12 to March 16, 2020, estimated case-fatality rates were highest for adults aged 85 years and older. Younger people appeared to have milder symptoms, and there were no deaths reported among persons aged 19 years and under.

Tracking the virus in the United States The outbreak of a previously unknown viral pneumonia was first reported in China toward the end of December 2019. The first U.S. case of COVID-19 was recorded in mid-January 2020, confirmed in a patient who had returned to the United States from China. The virus quickly started to spread, and the first community-acquired case was confirmed one month later in California. Overall, there had been approximately 4.5 million coronavirus cases in the country by the start of August 2020.

U.S. health care system stretched California, Florida, and Texas are among the states with the most coronavirus cases. Even the best-resourced hospitals in the United States have struggled to cope with the crisis, and certain areas of the country were dealt further blows by new waves of infections in July 2020. Attention is rightly focused on fighting the pandemic, but as health workers are redirected to care for COVID-19 patients, the United States must not lose sight of other important health care issues.

Search
Clear search
Close search
Google apps
Main menu