47 datasets found
  1. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, xml, jsonAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  2. f

    A Personalized Activity-based Spatiotemporal Risk Mapping Approach to...

    • figshare.com
    tiff
    Updated Mar 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jing Li; Xuantong Wang; Hexuan Zheng; Tong Zhang (2021). A Personalized Activity-based Spatiotemporal Risk Mapping Approach to COVID-19 Pandemic [Dataset]. http://doi.org/10.6084/m9.figshare.13517105.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Mar 18, 2021
    Dataset provided by
    figshare
    Authors
    Jing Li; Xuantong Wang; Hexuan Zheng; Tong Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The datasets used for this manuscript were derived from multiple sources: Denver Public Health, Esri, Google, and SafeGraph. Any reuse or redistribution of the datasets are subjected to the restrictions of the data providers: Denver Public Health, Esri, Google, and SafeGraph and should consult relevant parties for permissions.1. COVID-19 case dataset were retrieved from Denver Public Health (Link: https://storymaps.arcgis.com/stories/50dbb5e7dfb6495292b71b7d8df56d0a )2. Point of Interests (POIs) data were retrieved from Esri and SafeGraph (Link: https://coronavirus-disasterresponse.hub.arcgis.com/datasets/6c8c635b1ea94001a52bf28179d1e32b/data?selectedAttribute=naics_code) and verified with Google Places Service (Link: https://developers.google.com/maps/documentation/javascript/reference/places-service)3. The activity risk information is accessible from Texas Medical Association (TMA) (Link: https://www.texmed.org/TexasMedicineDetail.aspx?id=54216 )The datasets for risk assessment and mapping are included in a geodatabase. Per SafeGraph data sharing guidelines, raw data cannot be shared publicly. To view the content of the geodatabase, users should have installed ArcGIS Pro 2.7. The geodatabase includes the following:1. POI. Major attributes are locations, name, and daily popularity.2. Denver neighborhood with weekly COVID-19 cases and computed regional risk levels.3. Simulated four travel logs with anchor points provided. Each is a separate point layer.

  3. a

    POLICY MAP, COVID-19, COUNTY CASES, DEATHS AND TRENDS, AND SOCIAL...

    • chi-phi-nmcdc.opendata.arcgis.com
    Updated May 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2020). POLICY MAP, COVID-19, COUNTY CASES, DEATHS AND TRENDS, AND SOCIAL DETERMINANTS [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/items/9056b9cce4ac4e3a961bcfd8444e94e4
    Explore at:
    Dataset updated
    May 31, 2020
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Description

    Data in PolicyMap COVID-19 Quick Maps includes:Severe COVID-19 Health Risk Index, created by PolicyMap for the New York Times.COVID-19 Daily Cases and Deaths (counts, rates and weekly averages) as reported by the New York Times.COVID-19 Testing Rates as reported by the COVID Tracking ProjectSocial Vulnerability from the Centers for Disease Control. This includes an overall index created by the CDC, as well as the underlying four categories of indicators used by the CDC in the creation of this index: socioeconomic status, household composition and disability status, minority status and language and, housing and transportation.Underlying Health Conditions, such as asthma and COPD, as estimated by PolicyMap using CDC’s Behavioral Risk Factor Surveillance System.Basic demographics including age, race and incomes from the Census’ American Community Survey.Homeless Population counts from the Department of Housing and Urban Development.Computer and Internet Access from the Census’ American Community Survey.ICU Beds as reported by Kaiser Health News.Hospital Capacity and Federally Qualified Health Centers from the Health Resources and Services Administration.Insured and Uninsured Populations from the Census’ American Community Survey.See also - https://www.policymap.com/2020/05/policymap-covid19-quick-maps/

  4. g

    Analyze COVID-19 Risk Using ArcGIS Pro Lesson

    • coronavirus.geotecnologias.com
    Updated Mar 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Learn ArcGIS (2020). Analyze COVID-19 Risk Using ArcGIS Pro Lesson [Dataset]. https://coronavirus.geotecnologias.com/documents/b49f4226fd1f4bccb72ab5d308c7da73
    Explore at:
    Dataset updated
    Mar 20, 2020
    Dataset authored and provided by
    Learn ArcGIS
    Area covered
    Description

    Create risk maps for transmission, susceptibility, and resource scarcity. You'll also create a map of risk profiles to help pinpoint targeted intervention areas.For more information on the methodology and context behind the analyses, read this Map COVID-19 Risk Story Map.

  5. m

    COVID-19 reporting

    • mass.gov
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Executive Office of Health and Human Services (2023). COVID-19 reporting [Dataset]. https://www.mass.gov/info-details/covid-19-reporting
    Explore at:
    Dataset updated
    Dec 4, 2023
    Dataset provided by
    Executive Office of Health and Human Services
    Department of Public Health
    Area covered
    Massachusetts
    Description

    The COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.

  6. Z

    Data from: A High-Resolution Global-Scale Model for COVID-19 Infection Rate

    • data.niaid.nih.gov
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gianpaolo Coro (2024). A High-Resolution Global-Scale Model for COVID-19 Infection Rate [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4671981
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset authored and provided by
    Gianpaolo Coro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains all information to reproduce our experiment to produce a high-resolution global map (0.1°) of infection-rate risk for COVID-19, based on temperature, precipitation, and CO2.

    The produced risk index map predicts most of the areas with an actual high risk (87% accuracy), which are characterized by a moderate-high level of CO2, moderate-low temperatures, and a moderate level of precipitation. With respect to our previous model (https://zenodo.org/record/3945495#.YG7UEugzaUk) - which had a coarser 0.5° resolution - this new model is much more accurate at predicting real-world scenarios that reported both high and low infection rates in 2020 (80% accuracy).

    Explanation of data and images:

    comparisonvert.png -> Visualisation of the output produced by our model: (a) distribution of high-infection-rate areas using the MaxEnt balanced threshold (0.008), (b) probability peak areas (0.13 threshold), (c) overlap between low infection rate countries extracted from real data and our risk map, and (d) highlight of low infection rate countries not predicted by our model countries_high_rate.csv-> high-infection-rate countries countries_low_rate.csv-> low-infection-rate countries countries_low_rate_mispredicted.csv-> low-infection-rate countries mispredicted by our model covid_derivatives.csv-> extracted average derivatives of world countries

    covid_risk.csv->Risk Map dataset gp.asc-> MaxEnt distribution raster LowDerivativeRegions.png->low-infection-rate countries - image MaxEnt distribution.png->distribution of high-infection-rate areas using the MaxEnt balanced threshold (0.008) - image MaxEnt peaks.png-> MaxEnt probability peak areas (0.13 threshold) Precipitation.png->Average precipitation 2000-2005 RiskMap.png-> New high-infection-rate risk map based on a 0.1° resolution MaxEnt model RiskMap05.png->our previous risk map based on a 0.5° resolution MaxEnt model riskmapcomparison.png-> Visual comparison between (a) our new high-infection-rate risk map based on a 0.1° resolution MaxEnt model and (b) our previous risk map based on a 0.5° resolution MaxEnt model. RiskMapOverlap_mispredicted.png->highlight of low infection rate countries not predicted by our model Temperature.png->Average Surface Air Temperature 2000-2005 time_series_covid19_confirmed_global.csv->World COVID-19 reports up to April 2021

  7. CDC COVID-19 Community Levels by County

    • opendata.ramseycounty.us
    application/rdfxml +5
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Center for Disease Control and Prevention (2025). CDC COVID-19 Community Levels by County [Dataset]. https://opendata.ramseycounty.us/Public-Health/CDC-COVID-19-Community-Levels-by-County/uazb-iwdp
    Explore at:
    application/rdfxml, json, xml, csv, tsv, application/rssxmlAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    Center for Disease Control and Prevention
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties. This dataset contains the same values used to display information available on the COVID Data Tracker at: https://covid.cdc.gov/covid-data-tracker/#county-view?list_select_state=all_states&list_select_county=all_counties&data-type=CommunityLevels The data are updated weekly.

    CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge. Using these data, the COVID-19 community level is classified as low, medium, or high. COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    For more details on the Minnesota Department of Health COVID-19 thresholds, see COVID-19 Public Health Risk Measures: Data Notes (Updated 4/13/22). https://mn.gov/covid19/assets/phri_tcm1148-434773.pdf

    Note: This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022. March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released. March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate. March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset. March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases. March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average). March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior. April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

  8. z

    Data from: Suitability Map of COVID-19 Virus Spread

    • zenodo.org
    • data.niaid.nih.gov
    bin, png
    Updated Jul 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gianpaolo Coro; Gianpaolo Coro (2024). Suitability Map of COVID-19 Virus Spread [Dataset]. http://doi.org/10.5281/zenodo.3725831
    Explore at:
    bin, pngAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    Zenodo
    Authors
    Gianpaolo Coro; Gianpaolo Coro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This image reports a Maximum Entropy model that estimates suitable locations for COVID-19 spread, i.e. places that could favour the spread of the virus just in terms of environmental parameters.

    The model was trained just on locations in Italy that have reported a rate of new infections higher than the geometric mean of all Italian infection rates. The following environmental parameters were used, which are correlated to those used by other studies:

    • Average Annual Surface Air Temperature in 2018 (NASA)
    • Average Annual Precipitation in 2018 (NASA)
    • CO2 emission (natural+artificial) averaged between January 1979 and December 2013 (Copernicus Atmosphere Monitoring Service)
    • Elevation (NOAA ETOPO2)
    • Population per 0.5° cell (NASA Gridded Population of the World)

    A higher resolution map, the model file (in ASC format) and all parameters used are also attached.

    The model indicates highest correlation with infection rate for CO2 around 0.03 gCm^−2day^−1, for Temperature around 11.8 °C, and for Precipitation around 0.3 kg m^-2 s^-1, whereas Elevation and Population density are poorly correlated with infection rate.

    One interesting result is that the model indicates, among others, the Hubei region in China as a high-probability location, and Iran (around Teheran) as a suited location for virus' spread, but the model was not trained on these regions, i.e. it did not know about the actual spread in these regions.

    Evaluation:

    A risk score was calculated for each country/region reported by the JHU monitoring system (https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6). This score is calculated as the summed normalised probability in the populated locations divided by their total surface. This score represents how much the zone would potentially foster the virus' spread.

    We assessed the reliability of this score, by selecting the country/regions that reported the highest rates of infection. These zones were selected as those with a rate higher than the upper confidence of a log-normal distribution of the rates.

    The agreement between the two maps (covid_high_rate_vs_high_risk.png, where violet dots indicate high infection rates and countries' colours indicate estimated high risk score) is the following:

    Accuracy (overall percentage of correctly predicted high-rate zones): 77.25%
    Kappa (agreement between the two maps): 0.46 (Good, according to Fleiss' intepretation of the score)

    This assessment demonstrates that our map can be used to estimate the risk of a certain country to have a high rate of infection, and indicates that the influence of environmental parameters on virus's spread should be further investigated.

  9. COVID19 Flow-Maps Mobility-Associated-Risk

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Feb 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Miguel Ponce de Leon; Miguel Ponce de Leon; Javier del Valle; José María Fernández; Marc Bernardo; Davide Cirillo; Jon Sanchez-Valle; Matthew Smith; Salvador Capella-Gutierrez; Tania Gullón; Alfonso Valencia; Javier del Valle; José María Fernández; Marc Bernardo; Davide Cirillo; Jon Sanchez-Valle; Matthew Smith; Salvador Capella-Gutierrez; Tania Gullón; Alfonso Valencia (2022). COVID19 Flow-Maps Mobility-Associated-Risk [Dataset]. http://doi.org/10.5281/zenodo.5226513
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 22, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Miguel Ponce de Leon; Miguel Ponce de Leon; Javier del Valle; José María Fernández; Marc Bernardo; Davide Cirillo; Jon Sanchez-Valle; Matthew Smith; Salvador Capella-Gutierrez; Tania Gullón; Alfonso Valencia; Javier del Valle; José María Fernández; Marc Bernardo; Davide Cirillo; Jon Sanchez-Valle; Matthew Smith; Salvador Capella-Gutierrez; Tania Gullón; Alfonso Valencia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Mobility Associated Risk

    The Mobility Associated Risk is a risk score combines mobility and COVID-19 incidence to estimate how many cases could theoretically be exported/imported between different origin-destination pairs of regions.

    For more information about how the MAR is calculated visit: https://flowmaps.life.bsc.es/flowboard/board_what_is_risk#what_is_risk

    Dashboard The Mobility Associated Risk combines mobility and COVID-19 incidence to estimate how many cases could theoretically be exported/imported between different origin-destination pairs of regions.

    For more information about how the MAR is calculated visit: https://flowmaps.life.bsc.es/flowboard/board_what_is_risk#what_is_risk

    Dashboard https://flowmaps.life.bsc.es/flowboard/

  10. a

    ABQ Metro Area Sub-County COVID-19 Risk Dashboard

    • chi-phi-nmcdc.opendata.arcgis.com
    Updated May 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2020). ABQ Metro Area Sub-County COVID-19 Risk Dashboard [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/datasets/abq-metro-area-sub-county-covid-19-risk-dashboard
    Explore at:
    Dataset updated
    May 26, 2020
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Albuquerque, NM
    Description

    Contains the following information:COVID cases, case prevalence over different time spans, current COVID hotspots, and number of tests for the ABQ metro area at zip code level. Social vulnerability factors for the ABQ metro area at zip code level. COVID deaths at the small area level. The location of testing sites (updated regularly as new sites and information are found)The spread of COVID, testing, deaths, and PPE supply information by nursing homes (updated regularly)The locations of summer meal sites. This dashboard runs in this app: https://nmcdc.maps.arcgis.com/apps/MapSeries/index.html?appid=1ff0aa71c0ae427cbb5753d08ae19eabThis dashboard runs the following maps:Social Vulnerability Index, Albuquerque Metro Area, Census Tracts & Zip Codes, 2018 - https://nmcdc.maps.arcgis.com/home/item.html?id=850e8f2e7c394fb99041b94f813cb5faCOVID-19 Testing Locations - New Mexico - https://nmcdc.maps.arcgis.com/home/item.html?id=aace827af8fa4d2d9037ce5c7fb0e880COVID Deaths, NM Small Areas - CABQ - https://nmcdc.maps.arcgis.com/home/item.html?id=a56dab27204b4573a7f8d1663bc95844COVID-19 TESTING & CASES by TIME PERIODS, ZIP CODES - v1 - https://nmcdc.maps.arcgis.com/home/item.html?id=14e05ddda38d40cb9746750072d00c80Summer Meal Sites - CABQ - https://nmcdc.maps.arcgis.com/home/item.html?id=5fb8f3e689df4f03ab8be107d04fcd30Nursing Homes, COVID-19 Cases and Deaths, New Mexico and USA - https://nmcdc.maps.arcgis.com/home/item.html?id=8e74a05a32324aa3bcc07e2b1545d446

  11. f

    Data_Sheet_4_Risk and Protective Factors in the COVID-19 Pandemic: A Rapid...

    • frontiersin.figshare.com
    docx
    Updated Jun 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rebecca Elmore; Lena Schmidt; Juleen Lam; Brian E. Howard; Arpit Tandon; Christopher Norman; Jason Phillips; Mihir Shah; Shyam Patel; Tyler Albert; Debra J. Taxman; Ruchir R. Shah (2023). Data_Sheet_4_Risk and Protective Factors in the COVID-19 Pandemic: A Rapid Evidence Map.docx [Dataset]. http://doi.org/10.3389/fpubh.2020.582205.s004
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    Frontiers
    Authors
    Rebecca Elmore; Lena Schmidt; Juleen Lam; Brian E. Howard; Arpit Tandon; Christopher Norman; Jason Phillips; Mihir Shah; Shyam Patel; Tyler Albert; Debra J. Taxman; Ruchir R. Shah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background: Given the worldwide spread of the 2019 Novel Coronavirus (COVID-19), there is an urgent need to identify risk and protective factors and expose areas of insufficient understanding. Emerging tools, such as the Rapid Evidence Map (rEM), are being developed to systematically characterize large collections of scientific literature. We sought to generate an rEM of risk and protective factors to comprehensively inform areas that impact COVID-19 outcomes for different sub-populations in order to better protect the public.Methods: We developed a protocol that includes a study goal, study questions, a PECO statement, and a process for screening literature by combining semi-automated machine learning with the expertise of our review team. We applied this protocol to reports within the COVID-19 Open Research Dataset (CORD-19) that were published in early 2020. SWIFT-Active Screener was used to prioritize records according to pre-defined inclusion criteria. Relevant studies were categorized by risk and protective status; susceptibility category (Behavioral, Physiological, Demographic, and Environmental); and affected sub-populations. Using tagged studies, we created an rEM for COVID-19 susceptibility that reveals: (1) current lines of evidence; (2) knowledge gaps; and (3) areas that may benefit from systematic review.Results: We imported 4,330 titles and abstracts from CORD-19. After screening 3,521 of these to achieve 99% estimated recall, 217 relevant studies were identified. Most included studies concerned the impact of underlying comorbidities (Physiological); age and gender (Demographic); and social factors (Environmental) on COVID-19 outcomes. Among the relevant studies, older males with comorbidities were commonly reported to have the poorest outcomes. We noted a paucity of COVID-19 studies among children and susceptible sub-groups, including pregnant women, racial minorities, refugees/migrants, and healthcare workers, with few studies examining protective factors.Conclusion: Using rEM analysis, we synthesized the recent body of evidence related to COVID-19 risk and protective factors. The results provide a comprehensive tool for rapidly elucidating COVID-19 susceptibility patterns and identifying resource-rich/resource-poor areas of research that may benefit from future investigation as the pandemic evolves.

  12. g

    COVID-19 Deaths Mapping Tool

    • gimi9.com
    Updated Jul 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). COVID-19 Deaths Mapping Tool [Dataset]. https://gimi9.com/dataset/uk_covid-19-deaths-mapping-tool/
    Explore at:
    Dataset updated
    Jul 8, 2025
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This mapping tool enables you to see how COVID-19 deaths in your area may relate to factors in the local population, which research has shown are associated with COVID-19 mortality. It maps COVID-19 deaths rates for small areas of London (known as MSOAs) and enables you to compare these to a number of other factors including the Index of Multiple Deprivation, the age and ethnicity of the local population, extent of pre-existing health conditions in the local population, and occupational data. Research has shown that the mortality risk from COVID-19 is higher for people of older age groups, for men, for people with pre-existing health conditions, and for people from BAME backgrounds. London boroughs had some of the highest mortality rates from COVID-19 based on data to April 17th 2020, based on data from the Office for National Statistics (ONS). Analysis from the ONS has also shown how mortality is also related to socio-economic issues such as occupations classified ‘at risk’ and area deprivation. There is much about COVID-19-related mortality that is still not fully understood, including the intersection between the different factors e.g. relationship between BAME groups and occupation. On their own, none of these individual factors correlate strongly with deaths for these small areas. This is most likely because the most relevant factors will vary from area to area. In some cases it may relate to the age of the population, in others it may relate to the prevalence of underlying health conditions, area deprivation or the proportion of the population working in ‘at risk occupations’, and in some cases a combination of these or none of them. Further descriptive analysis of the factors in this tool can be found here: https://data.london.gov.uk/dataset/covid-19--socio-economic-risk-factors-briefing

  13. COVID-19 Map Series

    • data.amerigeoss.org
    esri rest, html
    Updated Aug 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). COVID-19 Map Series [Dataset]. https://data.amerigeoss.org/es/dataset/covid-19-map-series
    Explore at:
    esri rest, htmlAvailable download formats
    Dataset updated
    Aug 10, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Description

    A series of maps and applications about COVID-19 in Colorado. Includes case rates, impacted job sectors, social vulnerability index, unemployment insurance claims, outbreaks, large potentially at risk workplaces, enterprise zones and dashboards from other agencies. Updated regularly.

  14. a

    COVID-19 Risk

    • open-data-pittsylvania.hub.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Apr 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Risk [Dataset]. https://open-data-pittsylvania.hub.arcgis.com/datasets/UNFPAPDP::covid-19-risk
    Explore at:
    Dataset updated
    Apr 18, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    Description

    covid_risk_index

  15. a

    GRID3 MOZ - COVID-19 Risk Index Profiles and Indicators per Province

    • africageoportal.com
    • grid3.africageoportal.com
    • +2more
    Updated Apr 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GRID3 (2022). GRID3 MOZ - COVID-19 Risk Index Profiles and Indicators per Province [Dataset]. https://www.africageoportal.com/maps/GRID3::grid3-moz-covid-19-risk-index-profiles-and-indicators-per-province/about
    Explore at:
    Dataset updated
    Apr 13, 2022
    Dataset authored and provided by
    GRID3
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Variable name in shapefileTitleInterpretationpopEstimated populationNumber of people per 1x1 square kilometerwater30Need more than 30 minutes to get waterPercent of people who live in a household that takes more than 30 minutes to fetch and retrieve watertoiletShare toilets with others or do not have a toiletProportion of people who live in a household that shares toilets with other households or do not have a toiletno_pipedHave no piped-in drinking waterPercent of people who live in a household that does not have piped-in drinking water in the homehivSelf report positive HIV resultPercent of adults (15-49) that self report a positive HIV resultedu_noHousehold head has no educationPercent of people living in a household whose head has no educationedu_primHousehold head has some or complete primary educationPercent of people living in a household whose head has some or complete primary educationedu_sechHousehold head has at least some secondary educationPercent of people living in a household whose head has at least some secondary educationradioHave access to radio or have regular adult radio listeners at homePercent of people in a household that owns a radio or has at least one adult (15-49) that listens to radio at least once per weektvHave access to TV or have regular adult TV viewers at homePercent of people in a household that owns a TV or has at least one adult (15-49) that watches TV at least once per weeknewsRegularly read newspaperPercent of adults (15-49) that reads newspaper at least once per weekpop1549Estimated adult population (15-49)Number of adults (15-49) per 1x1 square kilometerexp_*Exposure Risk ProfileThis profile is an index representing risk of exposure to COVID-19. Columns exp_1 to exp_5 show the number of people in an area at different risk levels. Column exp_s shows the average risk score at the administrative level of interest.comor_*Co-morbidities Risk ProfileThis profile identifies population that may be at-risk of severe COVID-19 infection or hospitalization. Columns comor_1 to comor_5 show the number of people in an area at different risk levels. Column comor_s shows the average risk score at the administrative level of interest.socio_*Socio-economic Vulnerability RiskThis profile is an index of socio-economic vulnerability to COVID-19, highlighting poor populations with limited options to cope with economic shocks. Columns socio_1 to socio_5 show the number of people in an area at different risk levels. Column socio_s shows the average risk score at the administrative level of interest.com_*Communication Access Risk ProfileThis profile identifies populations with limited access to communications media. Columns com_1 to com_5 show the number of people in an area at different risk levels. Column com_s shows the average risk score at the administrative level of interest.access_*Health Facility Access RiskThis profile identifies population facing high risk resulting from limited access to health facilities. Columns access_1 to access_5 show the number of people in an area at different risk levels. Column access_s shows the average risk score at the administrative level of interest.total_*Total COVID-19 RiskThis profile is an index of the total COVID-19 Risk combining the comorbidities profile, the health facilities access risk profile, and the exposure risk profile. Columns total_1 to total_5 show the number of people in an area at different risk levels. Column total_s shows the average risk score at the administrative level of interest.

  16. Risk and Protective Factors in the COVID-19 Pandemic: A rapid Evidence Map...

    • osf.io
    Updated May 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rebecca Elmore; Lena Schmidt; Juleen Lam; Brian Howard; Arpit Tandon; Christopher Norman; Ruchir Shah (2020). Risk and Protective Factors in the COVID-19 Pandemic: A rapid Evidence Map (rEM) Protocol [Dataset]. http://doi.org/10.17605/OSF.IO/XPCKB
    Explore at:
    Dataset updated
    May 25, 2020
    Dataset provided by
    Center for Open Sciencehttps://cos.io/
    Authors
    Rebecca Elmore; Lena Schmidt; Juleen Lam; Brian Howard; Arpit Tandon; Christopher Norman; Ruchir Shah
    Description

    Objective: To create an evidence map that classifies COVID-19 risk and protective factors, susceptible sub-groups, and the intersections of these categories.

  17. Coronavirus (COVID-19) cases in Italy as of January 2025, by region

    • statista.com
    Updated Nov 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Coronavirus (COVID-19) cases in Italy as of January 2025, by region [Dataset]. https://www.statista.com/statistics/1099375/coronavirus-cases-by-region-in-italy/
    Explore at:
    Dataset updated
    Nov 15, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2025
    Area covered
    Italy
    Description

    After entering Italy, the coronavirus (COVID-19) spread fast. The strict lockdown implemented by the government during the Spring 2020 helped to slow down the outbreak. However, the country had to face four new harsh waves of contagion. As of January 1, 2025, the total number of cases reported by the authorities reached over 26.9 million. The north of the country was mostly hit, and the region with the highest number of cases was Lombardy, which registered almost 4.4 million of them. The north-eastern region of Veneto and the southern region of Campania followed in the list. When adjusting these figures for the population size of each region, however, the picture changed, with the region of Veneto being the area where the virus had the highest relative incidence. Coronavirus in Italy Italy has been among the countries most impacted by the coronavirus outbreak. Moreover, the number of deaths due to coronavirus recorded in Italy is significantly high, making it one of the countries with the highest fatality rates worldwide, especially in the first stages of the pandemic. In particular, a very high mortality rate was recorded among patients aged 80 years or older. Impact on the economy The lockdown imposed during the Spring 2020, and other measures taken in the following months to contain the pandemic, forced many businesses to shut their doors and caused industrial production to slow down significantly. As a result, consumption fell, with the sectors most severely hit being hospitality and tourism, air transport, and automotive. Several predictions about the evolution of the global economy were published at the beginning of the pandemic, based on different scenarios about the development of the pandemic. According to the official results, it appeared that the coronavirus outbreak had caused Italy’s GDP to shrink by approximately nine percent in 2020.

  18. e

    Models and Maps Explore COVID-19 Surges and Capacity to Help Officials...

    • coronavirus-resources.esri.com
    Updated Apr 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Models and Maps Explore COVID-19 Surges and Capacity to Help Officials Prepare [Dataset]. https://coronavirus-resources.esri.com/documents/e486e9b2a0a24c978249d56c7a9ff598
    Explore at:
    Dataset updated
    Apr 9, 2020
    Dataset authored and provided by
    Esri’s Disaster Response Program
    Description

    Models and Maps Explore COVID-19 Surges and Capacity to Help Officials PrepareMultiple models provide up-to-date estimates of how many people will need to be hospitalized, and maps help explore hospital capacity and impacts to people.CHIME model_Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  19. COVID-19 Risk

    • unfpa-stories-unfpapdp.hub.arcgis.com
    Updated Apr 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Risk [Dataset]. https://unfpa-stories-unfpapdp.hub.arcgis.com/maps/UNFPAPDP::covid-19-risk
    Explore at:
    Dataset updated
    Apr 18, 2020
    Dataset authored and provided by
    United Nations Population Fundhttp://www.unfpa.org/
    Area covered
    Description

    covid_risk_index

  20. COVID-19 Trends

    • data.amerigeoss.org
    • coronavirus-resources.esri.com
    esri rest, html
    Updated Apr 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). COVID-19 Trends [Dataset]. https://data.amerigeoss.org/es/dataset/covid-19-trends
    Explore at:
    esri rest, htmlAvailable download formats
    Dataset updated
    Apr 15, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Description

    For the first time, we are experiencing a global pandemic and analyzing it as it happens. Using five-research based pandemic trends we describe how each country is doing. To explain the trends, we created the COVID-19: The First Global Pandemic of the Information Age Story Map. The story also has maps showing the key aspects of each country’s situation. We will update the maps each day with the previous day of data from Johns Hopkins University.


    _

    Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.

    When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.

    Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
Organization logo

United States COVID-19 Community Levels by County

Explore at:
17 scholarly articles cite this dataset (View in Google Scholar)
application/rdfxml, application/rssxml, csv, tsv, xml, jsonAvailable download formats
Dataset updated
Nov 2, 2023
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Authors
CDC COVID-19 Response
License

https://www.usa.gov/government-workshttps://www.usa.gov/government-works

Area covered
United States
Description

Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

Using these data, the COVID-19 community level was classified as low, medium, or high.

COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

Archived Data Notes:

This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

Search
Clear search
Close search
Google apps
Main menu