100+ datasets found
  1. HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions

    • catalog.data.gov
    • healthdata.gov
    • +1more
    Updated Jul 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agency for Healthcare Research and Quality, Department of Health & Human Services (2023). HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions [Dataset]. https://catalog.data.gov/dataset/hcup-visualization-of-inpatient-trends-in-covid-19-and-other-conditions
    Explore at:
    Dataset updated
    Jul 26, 2023
    Description

    The HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions displays State-specific monthly trends in inpatient stays related to COVID-19 and other conditions, and facilitates comparisons of the number of hospital discharges, the average length of stays, and in-hospital mortality rates across patient/stay characteristics and States. This information is based on the HCUP State Inpatient Databases (SID), starting with 2018 data, plus newer annual and quarterly inpatient data, if and when available.

  2. COVID-19 Data Visualization Using Python

    • kaggle.com
    zip
    Updated Apr 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adithya Wijesinghe (2023). COVID-19 Data Visualization Using Python [Dataset]. https://www.kaggle.com/datasets/adithyawijesinghe/covid-19-data
    Explore at:
    zip(1291081 bytes)Available download formats
    Dataset updated
    Apr 21, 2023
    Authors
    Adithya Wijesinghe
    License

    https://www.usa.gov/government-works/https://www.usa.gov/government-works/

    Description

    Data visualization using Python (Pandas, Plotly).

    Data was used to visualization of the infection rate and the death rate from 01/20 to 04/22.

    The data was made available on Github: https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv

  3. Analytics and Data Visualization for COVID-19 Intelligence

    • coronavirus-resources.esri.com
    Updated Apr 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Analytics and Data Visualization for COVID-19 Intelligence [Dataset]. https://coronavirus-resources.esri.com/documents/810bb6d1ab564283b82c8047fb0e9b5a
    Explore at:
    Dataset updated
    Apr 10, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    Analytics and Data Visualization for COVID-19 Intelligence.An ArcGIS Blog arcticle that explains how to leverage ready-to-use reports and tutorials to gauge COVID-19 pandemic's impact worldwide._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  4. B

    Python Code for Visualizing COVID-19 data

    • borealisdata.ca
    • datasetcatalog.nlm.nih.gov
    • +1more
    Updated Dec 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan Chartier; Geoffrey Rockwell (2023). Python Code for Visualizing COVID-19 data [Dataset]. http://doi.org/10.5683/SP3/PYEQL0
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 16, 2023
    Dataset provided by
    Borealis
    Authors
    Ryan Chartier; Geoffrey Rockwell
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The purpose of this code is to produce a line graph visualization of COVID-19 data. This Jupyter notebook was built and run on Google Colab. This code will serve mostly as a guide and will need to be adapted where necessary to be run locally. The separate COVID-19 datasets uploaded to this Dataverse can be used with this code. This upload is made up of the IPYNB and PDF files of the code.

  5. HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions -...

    • healthdata.gov
    csv, xlsx, xml
    Updated Jul 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions - k2dr-3fsc - Archive Repository [Dataset]. https://healthdata.gov/dataset/HCUP-Visualization-of-Inpatient-Trends-in-COVID-19/hy6f-vipk
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Jul 26, 2023
    Description

    This dataset tracks the updates made on the dataset "HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions" as a repository for previous versions of the data and metadata.

  6. Covid-19 Global Dataset

    • kaggle.com
    zip
    Updated Apr 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khushi Yadav (2025). Covid-19 Global Dataset [Dataset]. https://www.kaggle.com/datasets/khushikyad001/covid-19-global-dataset
    Explore at:
    zip(482555 bytes)Available download formats
    Dataset updated
    Apr 12, 2025
    Authors
    Khushi Yadav
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset contains 3,000 rows and 26 columns of synthetically generated COVID-19 records. It replicates realistic global pandemic data, simulating values for cases, deaths, tests, vaccinations, demographics, and policy measures. The data mimics actual records from sources like Our World in Data, designed specifically for data science experimentation, visualization, and machine learning projects.

    It is ideal for:

    Practicing exploratory data analysis (EDA)

    Creating dashboards

    Building predictive models

    Teaching or student projects

    Kaggle Notebooks without API dependencies

  7. COVID-19 INDIA

    • kaggle.com
    zip
    Updated Apr 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data_explorer (2020). COVID-19 INDIA [Dataset]. https://www.kaggle.com/dataexplorer26/covid-apr16
    Explore at:
    zip(1039 bytes)Available download formats
    Dataset updated
    Apr 16, 2020
    Authors
    data_explorer
    Area covered
    India
    Description

    Context

    COVID-19, India This tutorial help in understanding basics of data visualization and mapping using Python.

    Content

    Data sets contain State wise confirmed cases, death toll, and cured cases till date.

    Acknowledgements

    I owe my thanks to the data sets provider.

    Inspiration

    Data visualization helps in creating trends, patterns, interactive graphs and maps. This will help policy and decision makers to understand,discuss and visualize the data.

  8. WHO COVID-19 global data as of July 20th

    • kaggle.com
    zip
    Updated Jul 24, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paddy Nsubuga (2021). WHO COVID-19 global data as of July 20th [Dataset]. https://www.kaggle.com/datasets/paddynsubuga/who-covid19-global-data-as-of-july-20th
    Explore at:
    zip(8173 bytes)Available download formats
    Dataset updated
    Jul 24, 2021
    Authors
    Paddy Nsubuga
    Description

    Dataset

    This dataset was created by Paddy Nsubuga

    Contents

  9. D

    Data from: International COVID-19 mortality forecast visualization:...

    • datasetcatalog.nlm.nih.gov
    • datadryad.org
    Updated Dec 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bui, Alex; Akre, Samir; Liu, Patrick; Friedman, Joseph (2021). International COVID-19 mortality forecast visualization: covidcompare.io [Dataset]. http://doi.org/10.5068/D1V68X
    Explore at:
    Dataset updated
    Dec 24, 2021
    Authors
    Bui, Alex; Akre, Samir; Liu, Patrick; Friedman, Joseph
    Description

    COVID-19 mortality forecasting models provide critical information about the trajectory of the pandemic, which is used by policymakers and public health officials to guide decision-making. However, thousands of published COVID-19 mortality forecasts now exist, many with their own unique methods, assumptions, format, and visualization. As a result, it is difficult to compare models and understand under which circumstances a model performs best. Here, we describe the construction and usability of covidcompare.io, a web tool built to compare numerous forecasts and offer insight into how each has performed over the course of the pandemic. From its launch in December 2020 to June 2021, we have seen 4,600 unique visitors from 85 countries. A study conducted with public health professionals showed high usability overall as formally assessed using a Post-Study System Usability Questionnaire (PSSUQ). We find that covidcompare.io is an impactful tool for the comparison of international COVID-19 mortality forecasting models.

  10. r

    Indonesia's Covid-19 cases have spiked - Chart

    • restofworld.org
    Updated Jul 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rest of World (2021). Indonesia's Covid-19 cases have spiked - Chart [Dataset]. https://restofworld.org/charts/2021/j1Ngb-indonesias-covid19-cases-spiked
    Explore at:
    Dataset updated
    Jul 26, 2021
    Dataset authored and provided by
    Rest of World
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Indonesia
    Description

    A data visualization representing Indonesia's Covid-19 cases have spiked

  11. f

    Independent Data Aggregation, Quality Control and Visualization of...

    • datasetcatalog.nlm.nih.gov
    Updated Oct 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ly, Chun; Knott, Cheryl; McCleary, Jill; Castiello-Gutiérrez, Santiago (2020). Independent Data Aggregation, Quality Control and Visualization of University of Arizona COVID-19 Re-Entry Testing Data [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000484783
    Explore at:
    Dataset updated
    Oct 21, 2020
    Authors
    Ly, Chun; Knott, Cheryl; McCleary, Jill; Castiello-Gutiérrez, Santiago
    Description

    AbstractThe dataset provided here contains the efforts of independent data aggregation, quality control, and visualization of the University of Arizona (UofA) COVID-19 testing programs for the 2019 novel Coronavirus pandemic. The dataset is provided in the form of machine-readable tables in comma-separated value (.csv) and Microsoft Excel (.xlsx) formats.Additional InformationAs part of the UofA response to the 2019-20 Coronavirus pandemic, testing was conducted on students, staff, and faculty prior to start of the academic year and throughout the school year. These testings were done at the UofA Campus Health Center and through their instance program called "Test All Test Smart" (TATS). These tests identify active cases of SARS-nCoV-2 infections using the reverse transcription polymerase chain reaction (RT-PCR) test and the Antigen test. Because the Antigen test provided more rapid diagnosis, it was greatly used three weeks prior to the start of the Fall semester and throughout the academic year.As these tests were occurring, results were provided on the COVID-19 websites. First, beginning in early March, the Campus Health Alerts website reported the total number of positive cases. Later, numbers were provided for the total number of tests (March 12 and thereafter). According to the website, these numbers were updated daily for positive cases and weekly for total tests. These numbers were reported until early September where they were then included in the reporting for the TATS program.For the TATS program, numbers were provided through the UofA COVID-19 Update website. Initially on August 21, the numbers provided were the total number (July 31 and thereafter) of tests and positive cases. Later (August 25), additional information was provided where both PCR and Antigen testings were available. Here, the daily numbers were also included. On September 3, this website then provided both the Campus Health and TATS data. Here, PCR and Antigen were combined and referred to as "Total", and daily and cumulative numbers were provided.At this time, no official data dashboard was available until September 16, and aside from the information provided on these websites, the full dataset was not made publicly available. As such, the authors of this dataset independently aggregated data from multiple sources. These data were made publicly available through a Google Sheet with graphical illustration provided through the spreadsheet and on social media. The goal of providing the data and illustrations publicly was to provide factual information and to understand the infection rate of SARS-nCoV-2 in the UofA community.Because of differences in reported data between Campus Health and the TATS program, the dataset provides Campus Health numbers on September 3 and thereafter. TATS numbers are provided beginning on August 14, 2020.Description of Dataset ContentThe following terms are used in describing the dataset.1. "Report Date" is the date and time in which the website was updated to reflect the new numbers2. "Test Date" is to the date of testing/sample collection3. "Total" is the combination of Campus Health and TATS numbers4. "Daily" is to the new data associated with the Test Date5. "To Date (07/31--)" provides the cumulative numbers from 07/31 and thereafter6. "Sources" provides the source of information. The number prior to the colon refers to the number of sources. Here, "UACU" refers to the UA COVID-19 Update page, and "UARB" refers to the UA Weekly Re-Entry Briefing. "SS" and "WBM" refers to screenshot (manually acquired) and "Wayback Machine" (see Reference section for links) with initials provided to indicate which author recorded the values. These screenshots are available in the records.zip file.The dataset is distinguished where available by the testing program and the methods of testing. Where data are not available, calculations are made to fill in missing data (e.g., extrapolating backwards on the total number of tests based on daily numbers that are deemed reliable). Where errors are found (by comparing to previous numbers), those are reported on the above Google Sheet with specifics noted.For inquiries regarding the contents of this dataset, please contact the Corresponding Author listed in the README.txt file. Administrative inquiries (e.g., removal requests, trouble downloading, etc.) can be directed to data-management@arizona.edu

  12. d

    Visualizing the lagged connection between COVID-19 cases and deaths in the...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Testa, Christian C.; Krieger, Nancy; Chen, Jarvis T.; Hanage, William P. (2023). Visualizing the lagged connection between COVID-19 cases and deaths in the United States: An animation using per capita state-level data (January 22, 2020 – July 8, 2020) [Dataset]. http://doi.org/10.7910/DVN/0C3BTS
    Explore at:
    Dataset updated
    Nov 19, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Testa, Christian C.; Krieger, Nancy; Chen, Jarvis T.; Hanage, William P.
    Description

    Data visualizations of the COVID-19 pandemic in the United States often have presented case and death rates by state in separate visualizations making it difficult to discern the temporal relationship between these two epidemiological metrics. By combining the COVID-19 case and death rates into a single visualization we have provided an intuitive format for depicting the relationship between cases and deaths. Moreover, by using animation we have made the temporal lag between cases and subsequent deaths more obvious and apparent. This work helps to inform expectations for the trajectory of death rates in the United States given the recent surge in case rates.

  13. Mapping the COVID-19 global response: from grassroots to governments

    • data.niaid.nih.gov
    Updated Jul 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Akligoh, Harry; Havemann, Jo; Restrepo, Martin; Obanda, Johanssen (2024). Mapping the COVID-19 global response: from grassroots to governments [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3732376
    Explore at:
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    Access 2 Perspectives
    Hyper Island, Appiario Lab, Brazil
    Pint of Science & AfricArXiv, Kenya
    Open Bioeconomy Lab, Hive Biolab (Kumasi Hive), Ghana
    Authors
    Akligoh, Harry; Havemann, Jo; Restrepo, Martin; Obanda, Johanssen
    Description

    Visual map at kumu.io/access2perspectives/covid19-resources

    Data set doi: 10.5281/zenodo.3732377 // available in different formats (pdf, xls, ods, csv,)

    Correspondence: (JH) info@access2perspectives.com

    Objectives

    Provide citizens with crucial and reliable information

    Encourage and facilitate South South collaboration

    Bridging language barriers

    Provide local governments and cities with lessons learned about COVID-19 crisis response

    Facilitate global cooperation and immediate response on all societal levels

    Enable LMICs to collaborate and innovate across distances and leverage locally available and context-relevant resources

    Methodology

    The data feeding the map at kumu.io was compiled from online resources and information shared in various community communication channels.

    Kumu.io is a visualization platform for mapping complex systems and to provide a deeper understanding of their intrinsic relationships. It provides blended systems thinking, stakeholder mapping, and social network analysis.

    Explore the map // https://kumu.io/access2perspectives/covid19-resources#global

    Click on individual nodes and view the information by country

    info hotlines

    governmental informational websites, Twitter feeds & Facebook pages

    fact checking online resources

    language indicator

    DIY resources

    clinical staff capacity building

    etc.

    With the navigation buttons to the right, you can zoom in and out, select and focus on specific elements.

    If you have comments, questions or suggestions for improvements on this map email us at info@access2perspectives.com

    Contribute

    Please add data to the spreadsheet at https://tinyurl.com/COVID19-global-response

    you can add additional information on country, city or neighbourhood level (see e.g. the Cape Town entry)

    Related documents

    Google Doc: tinyurl.com/COVID19-Africa-Response

  14. Covid-19_WorldSpreading

    • kaggle.com
    Updated Sep 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamed Hany (2020). Covid-19_WorldSpreading [Dataset]. https://www.kaggle.com/mohamedhanyyy/covid19-worldspreading/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 15, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Mohamed Hany
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The Story behind the dataset

    I wanted to Collect all the Covid-19 cases all over the world and make analysis on it

    Data is simple but can bring a lot of insights

    Data is classified into 4 columns (Country/Region', 'Confirmed', 'Country Abbr 2', 'Country Abbr 3)

    1. Country/Region contain all world Countries

    2. Confirmed contain all confirmed Covid-19 cases

    3. Country Abbr 2 contain every country with the abbreviation of 2 letter

    4. Country Abbr 3 contain every country with the abbreviation of 3 letter

    This 2 columns are useful to use in visualization of Choropleth with plotly to make the world map Data is collected from many resources to be accurate

  15. Additional file 1 of Expediting knowledge acquisition by a web framework for...

    • springernature.figshare.com
    xlsx
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacqueline Peng; David Xu; Ryan Lee; Siwei Xu; Yunyun Zhou; Kai Wang (2023). Additional file 1 of Expediting knowledge acquisition by a web framework for Knowledge Graph Exploration and Visualization (KGEV): case studies on COVID-19 and Human Phenotype Ontology [Dataset]. http://doi.org/10.6084/m9.figshare.19980423.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Jacqueline Peng; David Xu; Ryan Lee; Siwei Xu; Yunyun Zhou; Kai Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Additional file 1: Table S1. A list of normalized COVID-19/SARS-CoV-2-related subjects. Table S2. COVID-19 KG data source comparison.

  16. M

    US Coronavirus Cases & Deaths by State: Track COVID-19 data daily by state...

    • catalog.midasnetwork.us
    Updated Nov 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USAFacts (2025). US Coronavirus Cases & Deaths by State: Track COVID-19 data daily by state and county [Dataset]. https://catalog.midasnetwork.us/collection/275
    Explore at:
    Dataset updated
    Nov 3, 2025
    Dataset provided by
    MIDAS COORDINATION CENTER
    Authors
    USAFacts
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    United States, State, County
    Variables measured
    Viruses, disease, COVID-19, pathogen, Homo sapiens, host organism, mortality data, Population count, infectious disease, viral Infectious disease, and 3 more
    Dataset funded by
    National Institute of General Medical Sciences
    Description

    The dataset data visualization contains information on where COVID-19 is spreading by tracking new cases found each day and the total number of cases and deaths in the US on the county-level. The data can be dowloaded and visualized on the website.

  17. g

    Austria's Covid-19 relief measures - Tableau Visualization

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Austria's Covid-19 relief measures - Tableau Visualization [Dataset]. https://gimi9.com/dataset/eu_5c00e14a-9fa0-43b0-8b9a-6e91551ae2e4
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Austria
    Description

    The Court provides data on public aid between March 2020 and the end of June 2021. The respective sums were added up and provided with interactive visualization in the form of a bar chart. The visualization shows the area, the name, the sum of the aid measures and the external recipient. The X-axis is logarithmically scaled.

  18. COVID-19 DATA [COUNTY,STATE,DEATHS,CONFIRMED CASE]

    • kaggle.com
    zip
    Updated May 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pavithra T (2020). COVID-19 DATA [COUNTY,STATE,DEATHS,CONFIRMED CASE] [Dataset]. https://www.kaggle.com/datasets/pavithrat27/covid19-data-countystatedeathsconfirmed-case/discussion
    Explore at:
    zip(851610 bytes)Available download formats
    Dataset updated
    May 22, 2020
    Authors
    Pavithra T
    Description

    Context

    The DATESET is of US-COUNTRIES for COVID19.

    Description

    1. Covid_Data based on each countystates.csv= Contains Deaths,confirmed_cases,state,county 2.Covid_Data= Contains state,county,country,zipcode,city,Covidimpacted,latitude,longitude,timezone

    Prediction can be done for column CovidImpacted by choosing Deaths,confirmed cases by some algo and show the accuracy,performance etc

    Content

    • The DATASET has city,state,county,Deaths,Confirmed_cases,latitude,longitude,zipcode.
    • DATASET can be used to classification based on cases/Deaths
    • DATA Analysis,DATA VISUALISATION can be done for DATASET.

    Inspiration

    As because we are in COVID19 hope this DATA can be used for beginners,intermediate to work in it Hope it Helps!

  19. m

    COVID-19 Combined Data-set with Improved Measurement Errors

    • data.mendeley.com
    Updated May 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Afshin Ashofteh (2020). COVID-19 Combined Data-set with Improved Measurement Errors [Dataset]. http://doi.org/10.17632/nw5m4hs3jr.3
    Explore at:
    Dataset updated
    May 13, 2020
    Authors
    Afshin Ashofteh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Public health-related decision-making on policies aimed at controlling the COVID-19 pandemic outbreak depends on complex epidemiological models that are compelled to be robust and use all relevant available data. This data article provides a new combined worldwide COVID-19 dataset obtained from official data sources with improved systematic measurement errors and a dedicated dashboard for online data visualization and summary. The dataset adds new measures and attributes to the normal attributes of official data sources, such as daily mortality, and fatality rates. We used comparative statistical analysis to evaluate the measurement errors of COVID-19 official data collections from the Chinese Center for Disease Control and Prevention (Chinese CDC), World Health Organization (WHO) and European Centre for Disease Prevention and Control (ECDC). The data is collected by using text mining techniques and reviewing pdf reports, metadata, and reference data. The combined dataset includes complete spatial data such as countries area, international number of countries, Alpha-2 code, Alpha-3 code, latitude, longitude, and some additional attributes such as population. The improved dataset benefits from major corrections on the referenced data sets and official reports such as adjustments in the reporting dates, which suffered from a one to two days lag, removing negative values, detecting unreasonable changes in historical data in new reports and corrections on systematic measurement errors, which have been increasing as the pandemic outbreak spreads and more countries contribute data for the official repositories. Additionally, the root mean square error of attributes in the paired comparison of datasets was used to identify the main data problems. The data for China is presented separately and in more detail, and it has been extracted from the attached reports available on the main page of the CCDC website. This dataset is a comprehensive and reliable source of worldwide COVID-19 data that can be used in epidemiological models assessing the magnitude and timeline for confirmed cases, long-term predictions of deaths or hospital utilization, the effects of quarantine, stay-at-home orders and other social distancing measures, the pandemic’s turning point or in economic and social impact analysis, helping to inform national and local authorities on how to implement an adaptive response approach to re-opening the economy, re-open schools, alleviate business and social distancing restrictions, design economic programs or allow sports events to resume.

  20. Summary table of the initial T cell subsets test.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Qibin Liu; Xuemin Fang; Shinichi Tokuno; Ungil Chung; Xianxiang Chen; Xiyong Dai; Xiaoyu Liu; Feng Xu; Bing Wang; Peng Peng (2023). Summary table of the initial T cell subsets test. [Dataset]. http://doi.org/10.1371/journal.pone.0239695.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 14, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Qibin Liu; Xuemin Fang; Shinichi Tokuno; Ungil Chung; Xianxiang Chen; Xiyong Dai; Xiaoyu Liu; Feng Xu; Bing Wang; Peng Peng
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary table of the initial T cell subsets test.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Agency for Healthcare Research and Quality, Department of Health & Human Services (2023). HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions [Dataset]. https://catalog.data.gov/dataset/hcup-visualization-of-inpatient-trends-in-covid-19-and-other-conditions
Organization logoOrganization logo

HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions

Explore at:
12 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 26, 2023
Description

The HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions displays State-specific monthly trends in inpatient stays related to COVID-19 and other conditions, and facilitates comparisons of the number of hospital discharges, the average length of stays, and in-hospital mortality rates across patient/stay characteristics and States. This information is based on the HCUP State Inpatient Databases (SID), starting with 2018 data, plus newer annual and quarterly inpatient data, if and when available.

Search
Clear search
Close search
Google apps
Main menu