6 datasets found
  1. O

    Municipal Wastewater COVID19 Sampling Data 10/1/2020-6/30/2022

    • data.cambridgema.gov
    application/rdfxml +5
    Updated Jul 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cambridge Public Health Department (2022). Municipal Wastewater COVID19 Sampling Data 10/1/2020-6/30/2022 [Dataset]. https://data.cambridgema.gov/widgets/ayt4-g2ye?mobile_redirect=true
    Explore at:
    csv, xml, application/rssxml, tsv, application/rdfxml, jsonAvailable download formats
    Dataset updated
    Jul 7, 2022
    Dataset authored and provided by
    Cambridge Public Health Department
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    This dataset is no longer being updated as of 6/30/2022. It is being retained on the Open Data Portal for its potential historical interest.

    In November 2020, the City of Cambridge began collecting and analyzing COVID-19 data from municipal wastewater, which can serve as an early indicator of increased COVID-19 infections in the city. The Cambridge Public Health Department and Cambridge Department of Public Works are using technology developed by Biobot, a Cambridge based company, and partnering with the Massachusetts Water Resources Authority (MWRA). This Cambridge wastewater surveillance initiative is funded through a $175,000 appropriation from the Cambridge City Council.

    This dataset indicates the presence of the COVID-19 virus (measured as viral RNA particles from the novel coronavirus per ml) in municipal wastewater. The Cambridge site data here were collected as a 24-hour composite sample, which is taken weekly. The MWRA site data ere were collected as a 24-hour composite sample, which is taken daily. MWRA and Cambridge data are listed here in a single table.

    An interactive graph of this data is available here: https://cityofcambridge.shinyapps.io/COVID19/?tab=wastewater

    All areas within the City of Cambridge are captured across four separate catchment areas (or sewersheds) as indicated on the map viewable here: https://cityofcambridge.shinyapps.io/COVID19/_w_484790f7/BioBot_Sites.png. The North and West Cambridge sample also includes nearly all of Belmont and very small areas of Arlington and Somerville (light yellow). The remaining collection sites are entirely -- or almost entirely -- drawn from Cambridge households and workplaces.

    Data are corrected for wastewater flow rate, which adjusts for population in general. Data listed are expected to reflect the burden of COVID-19 infections within each of the four sewersheds. A lag of approximately 4-7 days will occur before new transmissions captured in wastewater data would result in a positive PCR test for COVID-19, the most common testing method used. While this wastewater surveillance tool can provide an early indication of major changes in transmission within the community, it remains an emerging technology. In assessing community transmission, wastewater surveillance data should only be considered in conjunction with other clinical measures, such as current infection rates and test positivity.

    Each location is selected because it reflects input from a distinct catchment area (or sewershed) as identified on the color-coded map. Viral data collected from small catchment areas like these four Cambridge sites are more variable than data collected from central collection points (e.g., the MWRA facility on Deer Island) where wastewater from dozens of communities are joined and mixed. Data from each catchment area will be impacted by daily activity among individuals living in that area (e.g., working from home vs. traveling to work) and by daytime activities that are not from residences (businesses, schools, etc.) As such, the Regional MWRA data provides a more stable measure of regional viral counts. COVID wastewater data for Boston North and Boston South regions is available at https://www.mwra.com/biobot/biobotdata.htm

  2. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, xml, jsonAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  3. g

    California State Water Resources Control Board. Office of Information...

    • gimi9.com
    Updated Mar 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). California State Water Resources Control Board. Office of Information Management and Analysis. - COVID-19 Wastewater Surveillance Data. California [Dataset]. https://www.gimi9.com/dataset/california_covid-19-wastewater-surveillance-data-california/
    Explore at:
    Dataset updated
    Mar 2, 2022
    Area covered
    California
    Description

    NOTICE: As of September 6, 2024, the wastewater surveillance dataset will now be hosted on: https://data.chhs.ca.gov/dataset/wastewater-surveillance-data-california. The dataset will no longer be updated on this webpage and will contain a historic dataset. Users who wish to access new and updated data will need to visit the new webpage. The California Department of Public Health (CDPH) and the California State Water Resources Control Board (SWRCB) together are coordinating with several wastewater utilities, local health departments, universities, and laboratories in California on wastewater surveillance for SARS-CoV-2, the virus causing COVID-19. Data collected from this network of participants, called the California Surveillance of Wastewater Systems (Cal-SuWers) Network, are submitted to the U.S. Centers for Disease Control and Prevention (CDC) National Wastewater Surveillance System (NWSS). During the COVID-19 pandemic, it has been used for the detection and quantification of SARS-CoV-2 virus shed into wastewater via feces of infected persons. Wastewater surveillance tracks ""pooled samples"" that reflect the overall disease activity for a community serviced by the wastewater treatment plant (an area known as a ""sewershed""), rather than tracking samples from individual people. Notably, while SARS-CoV-2 virus is shed fecally by infected persons, COVID-19 is spread primarily through the respiratory route, and there is no evidence to date that exposure to treated or untreated wastewater has led to infection with COVID-19. Collecting and analyzing wastewater samples for the overall amount of SARS-CoV-2 viral particles present can help inform public health about the level of viral transmission within a community. Data from wastewater testing are not intended to replace existing COVID-19 surveillance systems, but are meant to complement them. While wastewater surveillance cannot determine the exact number of infected persons in the area being monitored, it can provide the overall trend of virus concentration within that community. With our local partners, the SWRCB and CDPH are currently monitoring and quantifying levels of SARS-CoV-2 at the headworks or ""influent"" of 21 wastewater treatment plants representing approximately 48% of California's population."

  4. m

    Viral respiratory illness reporting

    • mass.gov
    Updated Oct 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Executive Office of Health and Human Services (2022). Viral respiratory illness reporting [Dataset]. https://www.mass.gov/info-details/viral-respiratory-illness-reporting
    Explore at:
    Dataset updated
    Oct 21, 2022
    Dataset provided by
    Department of Public Health
    Executive Office of Health and Human Services
    Area covered
    Massachusetts
    Description

    The following dashboards provide data on contagious respiratory viruses, including acute respiratory diseases, COVID-19, influenza (flu), and respiratory syncytial virus (RSV) in Massachusetts. The data presented here can help track trends in respiratory disease and vaccination activity across Massachusetts.

  5. The global Water and Waste Water market size will be USD 351425.6 million in...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). The global Water and Waste Water market size will be USD 351425.6 million in 2024. [Dataset]. https://www.cognitivemarketresearch.com/water-and-waste-water-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Water and Waste Water market size will be USD 351425.6 million in 2024. It will expand at a compound annual growth rate (CAGR) of 8.00% from 2024 to 2031.

    North America held the major market share for more than 40% of the global revenue with a market size of USD 140570.24 million in 2024 and will grow at a compound annual growth rate (CAGR) of 6.2% from 2024 to 2031.
    Europe accounted for a market share of over 30% of the global revenue with a market size of USD 105427.68 million.
    Asia Pacific held a market share of around 23% of the global revenue with a market size of USD 80827.89 million in 2024 and will grow at a compound annual growth rate (CAGR) of 10.0% from 2024 to 2031.
    Latin America had a market share of more than 5% of the global revenue with a market size of USD 17571.28 million in 2024 and will grow at a compound annual growth rate (CAGR) of 7.4% from 2024 to 2031.
    Middle East and Africa had a market share of around 2% of the global revenue and was estimated at a market size of USD 7028.51 million in 2024 and will grow at a compound annual growth rate (CAGR) of 7.7% from 2024 to 2031.
    The Chemicals category is the fastest growing segment of the Water and Waste Water industry
    

    Market Dynamics of Water and Waste Water Market

    Key Drivers for Water and Waste Water Market

    Growing Population and Urbanization to Boost Market Growth

    The growing global population and rapid urbanization are driving significant demand in the water and wastewater market. As cities expand, there is an increasing need for efficient water management systems to ensure a reliable water supply and effective wastewater treatment. Urban areas face challenges such as water scarcity, pollution, and ageing infrastructure, prompting investments in advanced technologies for water recycling, desalination, and wastewater treatment plants. This trend is further amplified by stricter environmental regulations and the growing awareness of sustainable water practices, fueling the market’s expansion in both developed and developing regions.

    Water Scarcity and Climate Change to Drive Market Growth

    Water scarcity and climate change are significantly contributing to the growth of the water and wastewater market. As global temperatures rise and rainfall patterns become more unpredictable, regions face increasing water shortages, particularly in arid and semi-arid areas. Climate change exacerbates the challenge of water availability, pushing governments and industries to invest in innovative solutions like water recycling, desalination, and efficient irrigation systems. Additionally, rising awareness of sustainable water management practices and the need for advanced wastewater treatment technologies are driving demand for more resilient infrastructure, making this market crucial in combating the impacts of climate change and ensuring water security.

    Restraint Factor for the Water and Waste Water Market

    High Investment Costs, will Limit Market Growth

    High investment costs pose a significant barrier to the growth of the water and wastewater market. The development of advanced infrastructure, such as water treatment plants, desalination facilities, and water distribution systems, requires substantial capital, making it difficult for many regions, especially in developing countries, to invest in modern solutions—additionally, the ongoing maintenance and upgrading of ageing infrastructure further strain financial resources. While technological advancements can improve efficiency, the high initial costs can deter public and private sector investments, limiting market expansion and delaying the implementation of essential water management systems in many regions facing growing demand.

    Impact of Covid-19 on the Water and Waste Water Market

    The COVID-19 pandemic had a mixed impact on the water and wastewater market. On the one hand, it disrupted supply chains, delayed infrastructure projects, and strained financial resources, particularly in regions facing economic hardships. On the other hand, the pandemic highlighted the importance of resilient water systems and efficient wastewater management for public health, leading to increased investments in infrastructure and technology. The demand for better sanitation, clean water access, and wastewater treatment solutions grew as countries focused on improving hygiene and preventing the spread of dise...

  6. SARS-CoV-2 WW and Mass Vaccination

    • osf.io
    Updated Aug 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron Bivins (2024). SARS-CoV-2 WW and Mass Vaccination [Dataset]. http://doi.org/10.17605/OSF.IO/T6HC9
    Explore at:
    Dataset updated
    Aug 13, 2024
    Dataset provided by
    Center for Open Sciencehttps://cos.io/
    Authors
    Aaron Bivins
    Description

    SARS-CoV-2 RNA in wastewater solids compared to COVID-19 clinical data at a large university in the US during a mass vaccination campaign.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Cambridge Public Health Department (2022). Municipal Wastewater COVID19 Sampling Data 10/1/2020-6/30/2022 [Dataset]. https://data.cambridgema.gov/widgets/ayt4-g2ye?mobile_redirect=true

Municipal Wastewater COVID19 Sampling Data 10/1/2020-6/30/2022

Explore at:
csv, xml, application/rssxml, tsv, application/rdfxml, jsonAvailable download formats
Dataset updated
Jul 7, 2022
Dataset authored and provided by
Cambridge Public Health Department
License

ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically

Description

This dataset is no longer being updated as of 6/30/2022. It is being retained on the Open Data Portal for its potential historical interest.

In November 2020, the City of Cambridge began collecting and analyzing COVID-19 data from municipal wastewater, which can serve as an early indicator of increased COVID-19 infections in the city. The Cambridge Public Health Department and Cambridge Department of Public Works are using technology developed by Biobot, a Cambridge based company, and partnering with the Massachusetts Water Resources Authority (MWRA). This Cambridge wastewater surveillance initiative is funded through a $175,000 appropriation from the Cambridge City Council.

This dataset indicates the presence of the COVID-19 virus (measured as viral RNA particles from the novel coronavirus per ml) in municipal wastewater. The Cambridge site data here were collected as a 24-hour composite sample, which is taken weekly. The MWRA site data ere were collected as a 24-hour composite sample, which is taken daily. MWRA and Cambridge data are listed here in a single table.

An interactive graph of this data is available here: https://cityofcambridge.shinyapps.io/COVID19/?tab=wastewater

All areas within the City of Cambridge are captured across four separate catchment areas (or sewersheds) as indicated on the map viewable here: https://cityofcambridge.shinyapps.io/COVID19/_w_484790f7/BioBot_Sites.png. The North and West Cambridge sample also includes nearly all of Belmont and very small areas of Arlington and Somerville (light yellow). The remaining collection sites are entirely -- or almost entirely -- drawn from Cambridge households and workplaces.

Data are corrected for wastewater flow rate, which adjusts for population in general. Data listed are expected to reflect the burden of COVID-19 infections within each of the four sewersheds. A lag of approximately 4-7 days will occur before new transmissions captured in wastewater data would result in a positive PCR test for COVID-19, the most common testing method used. While this wastewater surveillance tool can provide an early indication of major changes in transmission within the community, it remains an emerging technology. In assessing community transmission, wastewater surveillance data should only be considered in conjunction with other clinical measures, such as current infection rates and test positivity.

Each location is selected because it reflects input from a distinct catchment area (or sewershed) as identified on the color-coded map. Viral data collected from small catchment areas like these four Cambridge sites are more variable than data collected from central collection points (e.g., the MWRA facility on Deer Island) where wastewater from dozens of communities are joined and mixed. Data from each catchment area will be impacted by daily activity among individuals living in that area (e.g., working from home vs. traveling to work) and by daytime activities that are not from residences (businesses, schools, etc.) As such, the Regional MWRA data provides a more stable measure of regional viral counts. COVID wastewater data for Boston North and Boston South regions is available at https://www.mwra.com/biobot/biobotdata.htm

Search
Clear search
Close search
Google apps
Main menu