95 datasets found
  1. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  2. COVID-19 cases and deaths among hardest hit countries worldwide as of Nov....

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, COVID-19 cases and deaths among hardest hit countries worldwide as of Nov. 14, 2022 [Dataset]. https://www.statista.com/statistics/1105264/coronavirus-covid-19-cases-most-affected-countries-worldwide/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    As of November 14, 2022, the United States had recorded almost 98 million cases of COVID-19. The country had also reported a total number of over one million deaths from the disease.

    COVID-19 testing remains important The cumulative number of coronavirus cases worldwide reached almost 633 million towards the beginning of November 2022. Demand for test kits has at times exceeded production levels, but many countries continue to test citizens to more effectively control rises in cases. The U.S. has performed the most tests worldwide, followed by India and the United Kingdom.

    The silent spread of the coronavirus Widespread testing will also help to detect people who might be asymptomatic – showing few or no symptoms of the illness. These carriers are unwittingly transmitting the virus to others, and the threat of silent transmission is one reason why mass lockdowns have been imposed around the world. However, as asymptomatic carriers produce no symptoms, they may have developed some natural immunity to the illness. Viruses are not as easily spread in communities with high rates of immunity, which helps to protect more vulnerable groups of people. When an infection rate is less than one, a community has achieved herd immunity.

  3. T

    CORONAVIRUS DEATHS by Country in EUROPE

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country in EUROPE [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths?continent=europe
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Mar 27, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Europe
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  4. Incidence of coronavirus (COVID-19) deaths in Europe 2023, by country

    • statista.com
    Updated Jan 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Incidence of coronavirus (COVID-19) deaths in Europe 2023, by country [Dataset]. https://www.statista.com/statistics/1111779/coronavirus-death-rate-europe-by-country/
    Explore at:
    Dataset updated
    Jan 16, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 13, 2023
    Area covered
    Europe
    Description

    As of January 13, 2023, Bulgaria had the highest rate of COVID-19 deaths among its population in Europe at 548.6 deaths per 100,000 population. Hungary had recorded 496.4 deaths from COVID-19 per 100,000. Furthermore, Russia had the highest number of confirmed COVID-19 deaths in Europe, at over 394 thousand.

    Number of cases in Europe During the same period, across the whole of Europe, there have been over 270 million confirmed cases of COVID-19. France has been Europe's worst affected country with around 38.3 million cases, this translates to an incidence rate of approximately 58,945 cases per 100,000 population. Germany and Italy had approximately 37.6 million and 25.3 million cases respectively.

    Current situation In March 2023, the rate of cases in Austria over the last seven days was 224 per 100,000 which was the highest in Europe. Luxembourg and Slovenia both followed with seven day rates of infections at 122 and 108 respectively.

  5. COVID-19 cases worldwide as of May 2, 2023, by country or territory

    • statista.com
    • avatarcrewapp.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, COVID-19 cases worldwide as of May 2, 2023, by country or territory [Dataset]. https://www.statista.com/statistics/1043366/novel-coronavirus-2019ncov-cases-worldwide-by-country/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.

    COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.

    Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.

  6. Number of coronavirus (COVID-19) cases in Europe 2024, by country

    • statista.com
    Updated Nov 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of coronavirus (COVID-19) cases in Europe 2024, by country [Dataset]. https://www.statista.com/statistics/1104837/coronavirus-cases-europe-by-country/
    Explore at:
    Dataset updated
    Nov 24, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 24, 2024
    Area covered
    Europe
    Description

    As of November 24, 2024 there were over 274 million confirmed cases of coronavirus (COVID-19) across the whole of Europe since the first confirmed cases in France in January 2020. France has been the worst affected country in Europe with 39,028,437 confirmed cases, followed by Germany with 38,437,756 cases. Italy and the UK have approximately 26.8 million and 25 million cases respectively. For further information about the coronavirus pandemic, please visit our dedicated Facts and Figures page.

  7. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  8. COVID-19 deaths worldwide as of May 2, 2023, by country and territory

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). COVID-19 deaths worldwide as of May 2, 2023, by country and territory [Dataset]. https://www.statista.com/statistics/1093256/novel-coronavirus-2019ncov-deaths-worldwide-by-country/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2, 2023
    Area covered
    Worldwide
    Description

    As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had spread to almost every country in the world, and more than 6.86 million people had died after contracting the respiratory virus. Over 1.16 million of these deaths occurred in the United States.

    Waves of infections Almost every country and territory worldwide have been affected by the COVID-19 disease. At the end of 2021 the virus was once again circulating at very high rates, even in countries with relatively high vaccination rates such as the United States and Germany. As rates of new infections increased, some countries in Europe, like Germany and Austria, tightened restrictions once again, specifically targeting those who were not yet vaccinated. However, by spring 2022, rates of new infections had decreased in many countries and restrictions were once again lifted.

    What are the symptoms of the virus? It can take up to 14 days for symptoms of the illness to start being noticed. The most commonly reported symptoms are a fever and a dry cough, leading to shortness of breath. The early symptoms are similar to other common viruses such as the common cold and flu. These illnesses spread more during cold months, but there is no conclusive evidence to suggest that temperature impacts the spread of the SARS-CoV-2 virus. Medical advice should be sought if you are experiencing any of these symptoms.

  9. g

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • github.com
    • systems.jhu.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  10. Coronavirus Disease 2019 (COVID-19) - Epidemiology Analysis and Forecast -...

    • store.globaldata.com
    Updated Nov 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GlobalData UK Ltd. (2020). Coronavirus Disease 2019 (COVID-19) - Epidemiology Analysis and Forecast - November 2020 [Dataset]. https://store.globaldata.com/report/coronavirus-disease-2019-covid-19-epidemiology-analysis-and-forecast-november-2020/
    Explore at:
    Dataset updated
    Nov 30, 2020
    Dataset provided by
    GlobalDatahttps://www.globaldata.com/
    Authors
    GlobalData UK Ltd.
    License

    https://www.globaldata.com/privacy-policy/https://www.globaldata.com/privacy-policy/

    Time period covered
    2020 - 2024
    Area covered
    Global
    Description

    Current Epidemiology Situation and Forecast
    To date, the greatest numbers of cases and deaths have occurred in the US, India, and Brazil
    The global case fatality rate (%) has continued to decline
    Increasing uncertainty of infection rates renders forecasting difficult in the worst-hit countries Read More

  11. Coronavirus (COVID-19) cases per 100,000 in Europe 2023, by country

    • statista.com
    Updated Jan 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Coronavirus (COVID-19) cases per 100,000 in Europe 2023, by country [Dataset]. https://www.statista.com/statistics/1110187/coronavirus-incidence-europe-by-country/
    Explore at:
    Dataset updated
    Jan 16, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 13, 2023
    Area covered
    Europe
    Description

    As of January 13, 2023, there had been over 270 million confirmed cases of COVID-19 across the whole of Europe since the first confirmed case in January, 2020. Cyprus has the highest incidence of COVID-19 cases among its population in Europe at 71,853 per 100,000 people, followed by a rate of 64,449 in Austria. Slovenia has recorded the third highest rate of cases in Europe at 62,834 cases per 100,000. With almost 38.3 million confirmed cases, France has been the worst affected country in Europe, which translates into a rate of 58,945 cases per 100,000 population.

    Current infection rate in Europe San Marino had the highest rate of cases per 100,000 in the past week at 336, as of January 16, 2023. Cyprus and Slovenia had seven day rates of infections at 278 and 181 respectively.

    Coronavirus deaths in Europe There have been 2,169,191 recorded COVID-19 deaths in Europe since the beginning of the pandemic. Russia has the highest number of deaths recorded in a European country at over 394 thousand. Bulgaria has the highest death rate from the virus in Europe with approximately 549 deaths per 100,000 as of January 13, followed by Hungary with 496 deaths per 100,000. For further information about the coronavirus pandemic, please visit our dedicated Facts and Figures page.

  12. Online Learning Data

    • kaggle.com
    zip
    Updated Feb 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shweta Kumari (2024). Online Learning Data [Dataset]. https://www.kaggle.com/datasets/shwetakk/online-learning-data/discussion
    Explore at:
    zip(4752 bytes)Available download formats
    Dataset updated
    Feb 18, 2024
    Authors
    Shweta Kumari
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset has been taken from IEEE. The global surge in COVID-19 cases resulted in several schools, colleges, and universities closing in 2020 in almost all parts of the world and switching to online or remote learning, which has impacted student learning in different ways. The dataset consists of the web behavior related to online learning that originated from different countries of the world on a monthly basis from 2004-2021. At this point, the dataset consists of the web behavior data related to online learning for the 20 countries which were worst affected by COVID-19 at the time of development of this dataset. Future work on this dataset would involve incorporating more countries into the study and expanding the dataset.

  13. H

    Replication Data for "Does Issue Framing Shape Support for Covid-19 Lockdown...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Jun 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Miguel Carreras; Sofia Vera; Giancarlo Visconti (2023). Replication Data for "Does Issue Framing Shape Support for Covid-19 Lockdown Measures? Evidence from a Survey Experiment in Peru" [Dataset]. http://doi.org/10.7910/DVN/TPTA2P
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Miguel Carreras; Sofia Vera; Giancarlo Visconti
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Peru
    Description

    Two issue frames quickly emerged in policy and media communications about Covid-19 lockdown measures. Initially, a public health frame advocated for strong quarantine policies to slow the spread of the virus. As the economic costs associated with quarantine measures became clear, an economic frame pushed for an end to (or a relaxation of) these measures to alleviate the economic damage associated with lockdowns. We do not know much about how these competing communication frames affected lockdown support, especially in poor and middle-income countries. To explore this question, we embedded a framing experiment in a nationally representative telephone survey in May 2020 in Peru, one of the world's hardest-hit countries by the coronavirus pandemic. The vignette experiment reveals that the economic frame produces a decrease in public support for quarantine measures in Peru. In contrast, respondents exposed to a health frame do not increase their approval of the same measures.

  14. f

    The five countries reporting the most Covid-19 deaths worldwide.

    • plos.figshare.com
    • figshare.com
    xls
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mireille Razafindrakoto; François Roubaud; Marta Reis Castilho; Valeria Pero; João Saboia (2024). The five countries reporting the most Covid-19 deaths worldwide. [Dataset]. http://doi.org/10.1371/journal.pone.0288894.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Apr 18, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Mireille Razafindrakoto; François Roubaud; Marta Reis Castilho; Valeria Pero; João Saboia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The five countries reporting the most Covid-19 deaths worldwide.

  15. Data_Sheet_1_Liberia health system's journey to long-term recovery and...

    • frontiersin.figshare.com
    pdf
    Updated Jun 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Louis Ako-Egbe; Redda Seifeldin; Sohel Saikat; Sanford C. Wesseh; Moses Brown Bolongei; Ballah Jusu Ngormbu; Roseline George; Charles Ocan; Clement Lugala Peter Lasuba (2023). Data_Sheet_1_Liberia health system's journey to long-term recovery and resilience post-Ebola: a case study of an exemplary multi-year collaboration.PDF [Dataset]. http://doi.org/10.3389/fpubh.2023.1137865.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 19, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Louis Ako-Egbe; Redda Seifeldin; Sohel Saikat; Sanford C. Wesseh; Moses Brown Bolongei; Ballah Jusu Ngormbu; Roseline George; Charles Ocan; Clement Lugala Peter Lasuba
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Liberia
    Description

    This article is part of the Research Topic ‘Health Systems Recovery in the Context of COVID-19 and Protracted Conflict'Liberia is one of the three countries worst hit by the 2014–2016 West Africa Ebola Virus disease (EVD) outbreak, during which it recorded over 10,000 cases, including health workers. Estimates suggest that the non-EVD morbidity and mortality resulting from the collapse of the health system exceeded the direct impact of EVD. Lessons from the outbreak were clear, not only for Liberia but also for the regional and global communities: that building health system resilience through an integrated approach is an investment in population health and wellbeing, as well as economic security and national development. It is therefore no surprise that Liberia made recovery and resilience a national priority from the time the outbreak waned in 2015. The recovery agenda provided the platform for stakeholders to work toward the restoration of the pre-outbreak baseline of health system functions while aiming to build a higher level of resilience, informed by lessons from the Ebola crises. Based on the co-authors' experiences of on-the-ground country-support work, this study sought to provide an overview of the Liberia Health Service Resilience project (2018–2023) funded by KOICA, and propose a set of recommendations for national authorities and donors, derived from the authors' perceptions of best practices and key challenges associated with the project. We used both quantitative and qualitative approaches to generate the data represented in this study by reviewing published and unpublished technical and operational documents, and datasets derived through situational and needs assessments and routine monitoring and evaluation activities. This project has contributed to the implementation of the Liberia Investment Plan for Building a Resilient Health System and the successful response to the COVID-19 outbreak in Liberia. Although limited in scope, the Health Service Resilience project has demonstrated that health system resilience could be operationalized by applying a catchment and integrated approach and encouraging multi-sectoral collaboration, partnership, local ownership, and promoting the Primary Health Care approach. Principles applied in this pilot could guide the operationalization of health system resilience efforts in other resource-limited settings similar to Liberia and beyond.

  16. People affected by COVID-19 pandemic in G7 countries 2021, by country

    • statista.com
    Updated Jun 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). People affected by COVID-19 pandemic in G7 countries 2021, by country [Dataset]. https://www.statista.com/statistics/1254993/people-affected-by-covid-19-pandemic-in-g7-countries-by-country/
    Explore at:
    Dataset updated
    Jun 15, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 8, 2021 - Apr 20, 2021
    Area covered
    Worldwide
    Description

    The COVID-19 pandemic, and the measures taken by governments around the world to contain it, had a huge impact on individuals' lives. According to a survey conducted in April 2021 in countries belonging to the G7 group, many citizens experienced negative feelings and difficult situations in the previous year. By looking at the results, it seems that Italians had the worst time. The number of Italians sharing the negative experiences listed here, in fact, was consistently higher than the average across the seven countries.

  17. f

    Data_Sheet_1_Assessing pandemic preparedness, response, and lessons learned...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Nov 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Morales, Alejandra Velásquez; Florez, Martha Vives; Hoyos, Ana María Ortiz; Touchton, Michael; Grueso, Juliana Mejía; Velasco, Nubia; Carrasquilla, Gabriel; Restrepo, Silvia Restrepo; Laajaj, Rachid; Varela, Andrea Ramírez; Gaviria, Ana María Vesga; Miranda, J. Jaime; Duarte, Esteban Orlando Vanegas (2023). Data_Sheet_1_Assessing pandemic preparedness, response, and lessons learned from the COVID-19 pandemic in four south American countries: agenda for the future.docx [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001050684
    Explore at:
    Dataset updated
    Nov 29, 2023
    Authors
    Morales, Alejandra Velásquez; Florez, Martha Vives; Hoyos, Ana María Ortiz; Touchton, Michael; Grueso, Juliana Mejía; Velasco, Nubia; Carrasquilla, Gabriel; Restrepo, Silvia Restrepo; Laajaj, Rachid; Varela, Andrea Ramírez; Gaviria, Ana María Vesga; Miranda, J. Jaime; Duarte, Esteban Orlando Vanegas
    Area covered
    South America
    Description

    IntroductionThe COVID-19 pandemic emerged in a context that lacked adequate prevention, preparedness, and response (PPR) activities, and global, regional, and national leadership. South American countries were among world’s hardest hit by the pandemic, accounting for 10.1% of total cases and 20.1% of global deaths.MethodsThis study explores how pandemic PPR were affected by political, socioeconomic, and health system contexts as well as how PPR may have shaped pandemic outcomes in Argentina, Brazil, Colombia, and Peru. We then identify lessons learned and advance an agenda for improving PPR capacity at regional and national levels. We do this through a mixed-methods sequential explanatory study in four South American countries based on structured interviews and focus groups with elite policy makers.ResultsThe results of our study demonstrate that structural and contextual barriers limited PPR activities at political, social, and economic levels in each country, as well as through the structure of the health care system. Respondents believe that top-level government officials had insufficient political will for prioritizing pandemic PPR and post-COVID-19 recovery programs within their countries’ health agendas.DiscussionWe recommend a regional COVID-19 task force, post-pandemic recovery, social and economic protection for vulnerable groups, improved primary health care and surveillance systems, risk communication strategies, and community engagement to place pandemic PPR on Argentina, Brazil, Colombia, and Peru and other South American countries’ national public health agendas.

  18. COVID 19 Dataset - INDIA

    • kaggle.com
    zip
    Updated May 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ambili (2020). COVID 19 Dataset - INDIA [Dataset]. https://www.kaggle.com/ambilidn/covid19-dataset-india
    Explore at:
    zip(109621 bytes)Available download formats
    Dataset updated
    May 2, 2020
    Authors
    Ambili
    Area covered
    India
    Description

    Context

    This is a Covid 19 data set for India. The data set is updated frequently and is analysed using tableau. Click on the link to visit the tableau story. Click each of the caption in the story to unveil its content.

    https://public.tableau.com/profile/ambili.nair#!/vizhome/COVID19Indiastory/Indiastory?publish=yes

    The first Covid 19 case in India was reported on 30th January 2020 in South Indian state of Kerala on a medical student who was pursuing the studies at Wuhan University, China. Two more students were found to be infected in Kerala in the consecutive days. The Kerala government was successful in containing the disease with its proactive measures back then. The second outbreak of Covid 19 in India started in the first week of March from various parts of India in various people who visited the foreign countries and in some of the tourists from different countries.

    The tableau story consists of the following data analysis : 1. State-wise number of infected and number of death count in India map. Hover the mouse on each state in the India map to know the count. 2. Click on the next caption to know the state-wise number of confirmed, active, recovered and deceased cases in the form of bar chart. 3. The next caption takes you to the bar chart which shows the number of cases getting confirmed in India each day starting from January 30, 2020. 4. Next caption takes us to an analysis of the Mortality rate and the Recovery rate (in percentage) of each of the Indian state. We get an idea how hard each of the state is hit by the pandemic. 5. Next caption gives a detailed analysis of the state Kerala which has the mortality rate of 0.806% and the recovery rate of 74.4% as of now. Hover the mouse to know the count in each district. Don't forget to have a look at the line graph of 'number of active cases' in Kerala. It looks almost flattened ! As everyday we hear the increasing number of cases and deaths across the country, this graph may make you feel better...! 6. Finally the caption takes you to the statistics from the topmost district of Kerala - Kasaragod. The total number of cases reported is 179 at Kasaragod. The active number of cases is just 12 as of now... !!! Have a look at the statistics from Kasaragod and the story of 'Kasaragod model' as some of the national media in India call it !!!

    Content

    This data set consists of the following data: 1. state-wise statistics - Confirmed, Active, Recovered, Deceased cases 2. day-wise count of infected and deceased from various states 3. Statistics from Kerala - day-wise count of confirmed, Active, Recovered, Deceased cases 4. Statistics from Kasaragod district, Kerala - day-wise count of confirmed, Active, Recovered, Deceased cases 5. Count of confirmed cases from various districts of India

    Acknowledgements

    Ministry of Health and Family Welfare - India covid19india.org Wikipedia page - Covid 19 Pandemic India Govt. of Kerala dashboard - official Kerala Covid 19 statistics

    Inspiration

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

  19. f

    Data_Sheet_1_Perceived Stress, Knowledge, and Preventive Behaviors in Indian...

    • frontiersin.figshare.com
    pdf
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ankita Sinharoy; Shekhar Pal; Jishu Das; Pritish Mondal (2023). Data_Sheet_1_Perceived Stress, Knowledge, and Preventive Behaviors in Indian versus US-based Participants During COVID-19: A Survey Study.PDF [Dataset]. http://doi.org/10.3389/fpubh.2021.687864.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers
    Authors
    Ankita Sinharoy; Shekhar Pal; Jishu Das; Pritish Mondal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Rationale: India and the USA, the worst affected countries by COVID-19, experienced very different pandemic courses. By 2020, COVID-19 cases had steadily declined in India, whereas the fight continued in the US. The people of India and the USA perhaps perceived threats very differently, influenced by their knowledge, available healthcare facilities, and social security. We conducted an online survey study to compare COVID-related perceptions between Indian participants (IND-P) and US-based participants (US-P).Methods: COVID-related perceptions such as stress, knowledge, and preventive behaviors were measured with specific questionnaires, and normalized scores were computed. T-tests were used to compare the perception scores, while the Kruskal-Wallis-H (KWH) tests were used to compare socioeconomic distributions between participants from two countries. Generalized linear model (GLM) adjusted for sociodemographic confounders estimated the association between the country of residence and COVID-perception.Results: The IND-P (N = 242) were younger and male-dominated compared with the US-P (N = 531) (age: KWH = 97.37, p < 0.0001, gender: KWH = 140.38, p < 0.0001). Positive attitudes toward preventive guidelines were associated with higher perceived risk and stress (r = 0.35, p < 0.001, and r = 0.21, p < 0.001, respectively) but not with the knowledge (r = −0.05, p = 0.14). Compared with the US-P, the IND-P had lower knowledge (5.19 ± 1.95 vs. 7.82 ± 1.35; t-test: p < 0.0001), higher stress (7.01 ± 1.51 vs. 6.07 ± 1.61; t-test: p < 0.0001), and better adherence to preventive guidelines (8.84 ± 1.30 vs. 8.34 ± 2.09; t-test: p = 0.0006). GLM demonstrated a significant association between the country and COVID-perception scores.Conclusion: The IND-P experienced higher stress and perceived threat during COVID-19 than the US-P, perhaps due to a lack of faith in the healthcare system and insecurity. Despite lower knowledge, the IND-P had better acceptance of preventive guidelines than the US-P.

  20. #IndiaNeedsOxygen Tweets

    • kaggle.com
    zip
    Updated Nov 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kash (2021). #IndiaNeedsOxygen Tweets [Dataset]. https://www.kaggle.com/kaushiksuresh147/indianeedsoxygen-tweets
    Explore at:
    zip(4441094 bytes)Available download formats
    Dataset updated
    Nov 14, 2021
    Authors
    Kash
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    India marks one COVID-19 death every 5 minutes

    https://ichef.bbci.co.uk/news/976/cpsprodpb/11C98/production/_118165827_gettyimages-1232465340.jpg" alt="">

    Content

    People across India scrambled for life-saving oxygen supplies on Friday and patients lay dying outside hospitals as the capital recorded the equivalent of one death from COVID-19 every five minutes.

    For the second day running, the country’s overnight infection total was higher than ever recorded anywhere in the world since the pandemic began last year, at 332,730.

    India’s second wave has hit with such ferocity that hospitals are running out of oxygen, beds, and anti-viral drugs. Many patients have been turned away because there was no space for them, doctors in Delhi said.

    https://s.yimg.com/ny/api/res/1.2/XhVWo4SOloJoXaQLrxxUIQ--/YXBwaWQ9aGlnaGxhbmRlcjt3PTk2MA--/https://s.yimg.com/os/creatr-uploaded-images/2021-04/8aa568f0-a3e0-11eb-8ff6-6b9a188e374a" alt="">

    Mass cremations have been taking place as the crematoriums have run out of space. Ambulance sirens sounded throughout the day in the deserted streets of the capital, one of India’s worst-hit cities, where a lockdown is in place to try and stem the transmission of the virus. source

    Dataset

    The dataset consists of the tweets made with the #IndiaWantsOxygen hashtag covering the tweets from the past week. The dataset totally consists of 25,440 tweets and will be updated on a daily basis.

    The description of the features is given below | No |Columns | Descriptions | | -- | -- | -- | | 1 | user_name | The name of the user, as they’ve defined it. | | 2 | user_location | The user-defined location for this account’s profile. | | 3 | user_description | The user-defined UTF-8 string describing their account. | | 4 | user_created | Time and date, when the account was created. | | 5 | user_followers | The number of followers an account currently has. | | 6 | user_friends | The number of friends an account currently has. | | 7 | user_favourites | The number of favorites an account currently has | | 8 | user_verified | When true, indicates that the user has a verified account | | 9 | date | UTC time and date when the Tweet was created | | 10 | text | The actual UTF-8 text of the Tweet | | 11 | hashtags | All the other hashtags posted in the tweet along with #IndiaWantsOxygen | | 12 | source | Utility used to post the Tweet, Tweets from the Twitter website have a source value - web | | 13 | is_retweet | Indicates whether this Tweet has been Retweeted by the authenticating user. |

    Acknowledgements

    https://globalnews.ca/news/7785122/india-covid-19-hospitals-record/ Image courtesy: BBC and Reuters

    Inspiration

    The past few days have been really depressing after seeing these incidents. These tweets are the voice of the indians requesting help and people all over the globe asking their own countries to support India by providing oxygen tanks.

    And I strongly believe that this is not just some data, but the pure emotions of people and their call for help. And I hope we as data scientists could contribute on this front by providing valuable information and insights.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
Organization logo

COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

Explore at:
163 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 13, 2022
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

The difficulties of death figures

This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

Where are these numbers coming from?

The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

Search
Clear search
Close search
Google apps
Main menu