100+ datasets found
  1. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +3more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. w

    Enterprise Survey Follow-up on Covid-19 2021, Round 2 - Latvia

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Enterprise Survey Follow-up on Covid-19 2021, Round 2 - Latvia [Dataset]. https://microdata.worldbank.org/index.php/catalog/4270
    Explore at:
    Dataset updated
    Oct 20, 2023
    Dataset authored and provided by
    Enterprise Analysis Team - DEC Global Indicators Group.
    Time period covered
    2021
    Area covered
    Latvia
    Description

    Abstract

    As part of the efforts of the World Bank Group to understand the impact of COVID-19 on the private sector, the Enterprise Analysis unit is conducting follow-up surveys on recently completed Enterprise Surveys (ES) in several countries. These short surveys follow the baseline ES and are designed to provide quick information on the impact and adjustments that COVID-19 has brought about in the private sector.

    Geographic coverage

    Latvia

    Analysis unit

    Firms

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The follow-up surveys re-contact all establishments sampled in the standard ES using stratified random sampling. The total sample target was 359. Sample Frame Source : Completed interviews in the Latvia 2019 ES. For more information on sampling methodology, see https://www.enterprisesurveys.org/content/dam/enterprisesurveys/documents/methodology/Sampling_Note.pdf

    Mode of data collection

    Computer Assisted Telephone Interviews (CATI)

    Research instrument

    The questionnaire contains the following modules: - Control information and introduction - Sales - Production - Labor - Finance - Policies - Expectations - Information on permanently closed establishments - Interview protocol

    Response rate

    89.9%

  3. COVID-19 cases in Latin America 2020-2021, by country

    • statista.com
    Updated Mar 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 cases in Latin America 2020-2021, by country [Dataset]. https://www.statista.com/statistics/1105932/latin-america-covid-19-cases-country/
    Explore at:
    Dataset updated
    Mar 20, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2020 - Aug 19, 2021
    Area covered
    Latin America, LAC
    Description

    Brazil is the country with the largest number of coronavirus (COVID-19) cases in Latin America. As of February 26, 2020 only one infection had been reported in Brazil. By August 19, 2021, the figure had exceeded 20 million. São Paulo is the state with the largest number of patients in the South American country.

  4. d

    Weekly United States COVID-19 Racial Data By State, April 12, 2020 to March...

    • datadryad.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated May 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The COVID Tracking Project and the Boston University Center for Antiracist Research (2022). Weekly United States COVID-19 Racial Data By State, April 12, 2020 to March 7, 2021 [Dataset]. http://doi.org/10.7272/Q6TT4P68
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 18, 2022
    Dataset provided by
    Dryad
    Authors
    The COVID Tracking Project and the Boston University Center for Antiracist Research
    Time period covered
    2022
    Area covered
    United States
    Description

    Dataset includes README file that describes all datapoints.

  5. w

    Enterprise Survey Follow-up on Covid-19 2021, Round 2 - Portugal

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    Updated Oct 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Enterprise Analysis Team - DEC Global Indicators Group. (2023). Enterprise Survey Follow-up on Covid-19 2021, Round 2 - Portugal [Dataset]. https://microdata.worldbank.org/index.php/catalog/6093
    Explore at:
    Dataset updated
    Oct 20, 2023
    Dataset authored and provided by
    Enterprise Analysis Team - DEC Global Indicators Group.
    Time period covered
    2021
    Area covered
    Portugal
    Description

    Abstract

    As part of the efforts of the World Bank Group to understand the impact of COVID-19 on the private sector, the Enterprise Analysis unit is conducting follow-up surveys on recently completed Enterprise Surveys (ES) in several countries. These short surveys follow the baseline ES and are designed to provide quick information on the impact and adjustments that COVID-19 has brought about in the private sector.

    Geographic coverage

    Portugal

    Analysis unit

    Firms

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The follow-up surveys re-contact all establishments sampled in the standard ES using stratified random sampling. The total sample target was 1062. Sample Frame Source : Completed interviews in the Portugal 2019 ES. For more information on sampling methodology, see https://www.enterprisesurveys.org/content/dam/enterprisesurveys/documents/methodology/Sampling_Note.pdf

    Mode of data collection

    Computer Assisted Telephone Interviews (CATI)

    Research instrument

    The survey was implemented in Portugues. The questionnaire is available for download.

  6. Coronavirus (COVID-19) death rates in New York as of April 19, 2021, by...

    • statista.com
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus (COVID-19) death rates in New York as of April 19, 2021, by county [Dataset]. https://www.statista.com/statistics/1109417/coronavirus-covid19-death-rates-new-york-by-county/
    Explore at:
    Dataset updated
    May 4, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    New York
    Description

    As of April 19, 2021, there had been around 27 deaths due to COVID-19 in New York City per 10,000 population. New York has been one of the U.S. states most impacted by the COVID-19 pandemic, with New York accounting for the most deaths of any state in the U.S. This statistic shows the death rates for coronavirus (COVID-19) in New York State as of April 19, 2021, by county.

  7. d

    COVID-19 Cases in CT Schools (Statewide), 2021-2022 School Year - Archive

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases in CT Schools (Statewide), 2021-2022 School Year - Archive [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-in-ct-schools-statewide-2021-2022-school-year
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Area covered
    Connecticut
    Description

    This dataset provides the number of weekly COVID-19 cases for staff and students in CT public and private PK-12 schools during the 2021-2022 school year. The following metrics are included: Number of student cases - total Number of student cases - fully vaccinated June 30, 2022 is the last report for the 2021 – 2022 academic school year. Number of student cases - not vaccinated Number of student cases - no vaccine information Number of staff cases - total Number of staff cases - fully vaccinated Number of staff cases - not vaccinated Number of staff cases - no vaccine information Data for the 2020-2021 school year is available here: https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-in-CT-Schools-Statewide-2020-2021-S/ehua-hw73

  8. Housing policies during COVID-19 in the U.S. 2021, by state

    • statista.com
    Updated Jun 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Housing policies during COVID-19 in the U.S. 2021, by state [Dataset]. https://www.statista.com/statistics/1111306/policy-housing-states-covid19-usa/
    Explore at:
    Dataset updated
    Jun 14, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 11, 2021
    Area covered
    United States
    Description

    Many U.S. states have introduced strategies to ensure safe, decent, and stable housing during the COVID-19 pandemic. To better understand the steps states have taken to prevent homelessness, a special policy scorecard for each state was developed. Washington D.C. had the highest score among the states, which amounted to 4.63. On the contrary, Maryland, Georgia, Arkansas, Alaska, Wisconsin, and Ohio received zero points, which indicated that they had introduced no housing policy measures in response to the pandemic, or the protections they brought in have expired.

  9. f

    November 2021 Covid-19 Twitter Streaming Dataset

    • figshare.com
    application/gzip
    Updated Dec 10, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Media Lab (2021). November 2021 Covid-19 Twitter Streaming Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.17161001.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Dec 10, 2021
    Dataset provided by
    figshare
    Authors
    Social Media Lab
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The file contains Tweet IDs* for COVID-19 related tweets collected in November, 2021 from Twitter's COVID-19 Streaming Endpoint via a custom script developed by the Social Media Lab (https://socialmedialab.ca/).Visit our interactive dashboard at https://stream.covid19misinfo.org/ for a preview and some general stats about this COVID-19 Twitter streaming dataset.For more info about Twitter's COVID-19 Streaming Endpoint, visit https://developer.twitter.com/en/docs/labs/covid19-stream/overviewNote: In accordance with Twitter API Terms, the dataset only includes Tweet IDs (as opposed to the actual tweets and associated metadata). To recollect tweets contained in this dataset, you can use programs such as Hydrator (https://github.com/DocNow/hydrator/) or the Python library Twarc (https://github.com/DocNow/twarc/).

  10. COVID-19 Community Mobility Reports

    • google.com
    • google.com.tr
    • +5more
    csv, pdf
    Updated Oct 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google (2022). COVID-19 Community Mobility Reports [Dataset]. https://www.google.com/covid19/mobility/
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Oct 17, 2022
    Dataset authored and provided by
    Googlehttp://google.com/
    Description

    As global communities responded to COVID-19, we heard from public health officials that the same type of aggregated, anonymized insights we use in products such as Google Maps would be helpful as they made critical decisions to combat COVID-19. These Community Mobility Reports aimed to provide insights into what changed in response to policies aimed at combating COVID-19. The reports charted movement trends over time by geography, across different categories of places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential.

  11. COVID-19 Vaccination Survey, July 2021 - China

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Dec 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    COVID-19 Vaccination Survey, July 2021 - China [Dataset]. https://microdata.worldbank.org/index.php/catalog/5190
    Explore at:
    Dataset updated
    Dec 2, 2022
    Dataset provided by
    United Nations High Commissioner for Refugeeshttp://www.unhcr.org/
    Authors
    UNHCR
    Time period covered
    2021
    Area covered
    China
    Description

    Abstract

    The COVID-19 Vaccination Survey in China was conducted in July 2021 to understand refugees' accessibility and willingness to receive a COVID-19 vaccination in China. UNHCR stresses that no one can be left behind in the global effort against COVID-19 and is monitoring the inclusion of refugees and asylum seekers in vaccination plans around the world. At the time, Chinese government policy did not provide free vaccines for foreigners without social security. The survey results however show that this policy was implemented with some flexibility, because among the few that were vaccinated already, more than half received a free COVID-19 vaccine. Some refugees reported difficulties or lack of information about vaccine registration or identity documents to book an appointment. Results further show that even though most are willing to get vaccinated, anti-vaccine sentiments are driven by fear of side effects.

    Geographic coverage

    The survey covers 24 provinces with most respondents residing in the province of Guangdong.

    Analysis unit

    Households

    Universe

    The survey was distributed to all 1017 refugees and asylum seekers.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    No sampling was implemented.

    Mode of data collection

    Self-administered questionnaire: Web-based

    Response rate

    Out of 1017 distributed surveys, UNHCR received 455 answers (45%). Of those, 30 respondents did not provide consent to participate in the survey.

  12. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Mar 25, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  13. Socioeconomic Impact of COVID-19, 2021 - Mexico

    • microdata.worldbank.org
    • microdata.unhcr.org
    • +1more
    Updated Dec 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNHCR (2022). Socioeconomic Impact of COVID-19, 2021 - Mexico [Dataset]. https://microdata.worldbank.org/index.php/catalog/5307
    Explore at:
    Dataset updated
    Dec 15, 2022
    Dataset provided by
    United Nations High Commissioner for Refugeeshttp://www.unhcr.org/
    Authors
    UNHCR
    Time period covered
    2021
    Area covered
    Mexico
    Description

    Abstract

    The COVID-19 pandemic is first and foremost a health shock, but the secondary economic shock is equally formidable. Access to timely, policy-relevant information on the awareness of, responses to and impacts of the health situation and related restrictions are critical to effectively design, target and evaluate programme and policy interventions. This research project investigates the main socioeconomic impacts of the pandemic on UNHCR people of concern (PoC) – and nationals where possible – in terms of access to information, services and livelihoods opportunities. Three geographic regions were taken into consideration: Southern Mexico, Mexico City and the Northern and Central Industrial Corridor. Two rounds of data collection took place for this survey, with the purpose of following up with the respondents.

    Geographic coverage

    Southern Mexico, Mexico City, Northern and Central Mexico

    Analysis unit

    Household

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The ProGres database served as the sampling frame due to the unavailability of other reliable sources. Likewise, the sample was stratified by location and population groups based on country of origin helping to account for the different economic realities from one part of the country to another, as well as differences between nationalities. Following discussion with the UNHCR country team and regional bureau, three geographic regions were presented for consideration : a) Southern Mexico; b) Mexico City; and c) the Northern and Central Industrial Corridor. Additionally, partners expressed interest in the Venezuelan community as a separate group, primarily residing in Mexico City, Monterrey and Cancun. The population of the four groups represents 67% of the active registered refugees in Mexico. Out of the 35,140 refugee households in the four regions, 26,688 families have at least one phone number representing an overall high rate of phone penetration. Across regions of interest, Hondurans make up the single largest group of PoC in Southern Mexico (38%), and the Northern and Central Industrial Corridor (43%), whereas Venezuelans make up over half of the PoC population in Mexico City (52%). Based on the above, a sampling strategy based on four separate strata was proposed in order to adequately represent the regions and sub-groups of interest: 1. Southern Mexico – Honduran and El Salvadoran PoC population 2. Mexico City – Honduran, El Salvadoran and Cuban PoC population 3. Northern and Central Industrial Corridor – Hondurans and El Salvadoran PoC population 4. Venezuelan Population – Mexico City, Monterey (Nuevo Leon) and Cancun (Quintana Roo) A comparable sub-sample of the national population in the same locations PoC were sampled was also generated using random digit dialing (RDD). This was made possible through the inclusion of location-based area codes in the list of phone numbers, however selected participants were also asked about their current location as a first filter to proceed with the phone survey to ensure a comparable national sub-sample.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    Questionnaire contained the following sections: consent, knowledge, behaviour, access, employment, income, food security, concerns, resilience, networks, demographics

  14. Coronavirus (COVID-19) Infection Survey, UK: 23 July 2021

    • gov.uk
    • s3.amazonaws.com
    Updated Jul 23, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Coronavirus (COVID-19) Infection Survey, UK: 23 July 2021 [Dataset]. https://www.gov.uk/government/statistics/coronavirus-covid-19-infection-survey-uk-23-july-2021
    Explore at:
    Dataset updated
    Jul 23, 2021
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Office for National Statistics
    Area covered
    United Kingdom
    Description

    Official statistics are produced impartially and free from political influence.

  15. Understanding Society: COVID-19 Study, 2020-2021

    • beta.ukdataservice.ac.uk
    Updated 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute For Social University Of Essex (2021). Understanding Society: COVID-19 Study, 2020-2021 [Dataset]. http://doi.org/10.5255/ukda-sn-8644-11
    Explore at:
    Dataset updated
    2021
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    Institute For Social University Of Essex
    Description

    Understanding Society, (UK Household Longitudinal Study), which began in 2009, is conducted by the Institute for Social and Economic Research (ISER) at the University of Essex and the survey research organisations Verian Group (formerly Kantar Public) and NatCen. It builds on and incorporates, the British Household Panel Survey (BHPS), which began in 1991.

    Understanding Society (UK Household Longitudinal Study), which began in 2009, is conducted by the Institute for Social and Economic Research (ISER) at the University of Essex and the survey research organisations Kantar Public and NatCen. It builds on and incorporates, the British Household Panel Survey (BHPS), which began in 1991.

    The Understanding Society COVID-19 Study, 2020-2021 is a regular survey of households in the UK. The aim of the study is to enable research on the socio-economic and health consequences of the COVID-19 pandemic, in the short and long term. The surveys started in April 2020 and took place monthly until July 2020. From September 2020 they took place every other month until March 2021 and the final wave was fielded in September 2021. They complement the annual interviews of the Understanding Society study. The data can be linked to data on the same individuals from previous waves of the annual interviews (SN 6614) using the personal identifier pidp. However, the most recent pre-pandemic (2019) annual interviews for all respondents who have taken part in the COVID-19 Study are included as part of this data release. Please refer to the User Guide for further information on linking in this way and for geographical information options.

    Latest edition information

    For the eleventh edition (December 2021), revised April, May, June, July, September, November 2020, January 2021 and March 2021 data files for the adult survey have been deposited. These files have been amended to address issues identified during ongoing quality assurance activities. All documentation has been updated to explain the revisions, and users are advised to consult the documentation for details. In addition new data from the September 2021 web survey have been deposited.

  16. United States COVID-19 County Level of Community Transmission Historical...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Oct 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2022). United States COVID-19 County Level of Community Transmission Historical Changes [Dataset]. https://catalog.data.gov/dataset/united-states-covid-19-county-level-of-community-transmission-historical-changes
    Explore at:
    Dataset updated
    Oct 19, 2022
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Announcement Beginning October 20, 2022, CDC will report and publish aggregate case and death data from jurisdictional and state partners on a weekly basis rather than daily. As a result, community transmission levels data reported on data.cdc.gov will be updated weekly on Thursdays, typically by 8 PM ET, instead of daily. This public use dataset has 7 data elements reflecting historical data for community transmission levels for all available counties. This dataset contains historical data for the county level of community transmission and includes updated data submitted by states and jurisdictions. Each day, the dataset is appended to contain the most recent day's data. This dataset includes data from January 1, 2021. Transmission level is set to low, moderate, substantial, or high using the calculation rules below. Currently, CDC provides the public with two versions of COVID-19 county-level community transmission level data: this dataset with the levels for each county from January 1, 2021 (Historical Changes dataset) and a dataset with the levels as originally posted (Originally Posted dataset), updated daily with the most recent day’s data. Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making. CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2 Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00). Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests resulted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00). If the two metrics suggest different transmission levels, the higher level is selected. If one metric is missing, the other metric is used for the indicator. Transmission categories include: Low Transmission Threshold: Counties with fewer than 10 total cases per 100,000 population in the past 7 days, and a NAAT percent test positivity in the past 7 days below 5%; Moderate Transmission Threshold: Counties with 10-49 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 5.0-7.99%; Substantial Transmission Threshold: Counties with 50-99 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 8.0-9.99%; High Transmission Threshold: Counties with 100

  17. O

    COVID-19 Cases in CT Schools (By School), 2021-2022 School Year - Archive

    • data.ct.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated Sep 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 Cases in CT Schools (By School), 2021-2022 School Year - Archive [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-in-CT-Schools-By-School-2021-2022-S/8xd9-2eym
    Explore at:
    application/rdfxml, application/rssxml, xml, json, csv, tsvAvailable download formats
    Dataset updated
    Sep 22, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Connecticut
    Description

    This dataset provides the number of weekly COVID-19 cases for staff and students in CT PK-12 schools by school during the 2021-2022 school year.

    Data for the 2020-2021 school year is available here: https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-in-CT-Schools-By-School-2020-2021-S/u8jq-fxc2

    June 30, 2022 is the last report for the 2021 – 2022 academic school year.

  18. COVID-19 Outbreak Data

    • data.chhs.ca.gov
    • data.ca.gov
    • +1more
    csv, zip
    Updated Mar 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Outbreak Data [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-outbreak-data
    Explore at:
    zip, csv(62495), csv(323571)Available download formats
    Dataset updated
    Mar 7, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains numbers of COVID-19 outbreaks and associated cases, categorized by setting, reported to CDPH since January 1, 2021.

    AB 685 (Chapter 84, Statutes of 2020) and the Cal/OSHA COVID-19 Emergency Temporary Standards (Title 8, Subchapter 7, Sections 3205-3205.4) required non-healthcare employers in California to report workplace COVID-19 outbreaks to their local health department (LHD) between January 1, 2021 – December 31, 2022. Beginning January 1, 2023, non-healthcare employer reporting of COVID-19 outbreaks to local health departments is voluntary, unless a local order is in place. More recent data collected without mandated reporting may therefore be less representative of all outbreaks that have occurred, compared to earlier data collected during mandated reporting. Licensed health facilities continue to be mandated to report outbreaks to LHDs.

    LHDs report confirmed outbreaks to the California Department of Public Health (CDPH) via the California Reportable Disease Information Exchange (CalREDIE), the California Connected (CalCONNECT) system, or other established processes. Data are compiled and categorized by setting by CDPH. Settings are categorized by U.S. Census industry codes. Total outbreaks and cases are included for individual industries as well as for broader industrial sectors.

    The first dataset includes numbers of outbreaks in each setting by month of onset, for outbreaks reported to CDPH since January 1, 2021. This dataset includes some outbreaks with onset prior to January 1 that were reported to CDPH after January 1; these outbreaks are denoted with month of onset “Before Jan 2021.” The second dataset includes cumulative numbers of COVID-19 outbreaks with onset after January 1, 2021, categorized by setting. Due to reporting delays, the reported numbers may not reflect all outbreaks that have occurred as of the reporting date; additional outbreaks may have occurred that have not yet been reported to CDPH.

    While many of these settings are workplaces, cases may have occurred among workers, other community members who visited the setting, or both. Accordingly, these data do not distinguish between outbreaks involving only workers, outbreaks involving only residents or patrons, or outbreaks involving both.

    Several additional data limitations should be kept in mind:

    • Outbreaks are classified as “Insufficient information” for outbreaks where not enough information was available for CDPH to assign an industry code.

    • Some sectors, particularly congregate residential settings, may have increased testing and therefore increased likelihood of outbreak recognition and reporting. As a result, in congregate residential settings, the number of outbreak-associated cases may be more accurate.

    • However, in most settings, outbreak and case counts are likely underestimates. For most cases, it is not possible to identify the source of exposure, as many cases have multiple possible exposures.

    • Because some settings have been at times been closed or open with capacity restrictions, numbers of outbreak reports in those settings do not reflect COVID-19 transmission risk.

    • The number of outbreaks in different settings will depend on the number of different workplaces in each setting. More outbreaks would be expected in settings with many workplaces compared to settings with few workplaces.

  19. a

    Florida COVID19 06022021 Case Line Data

    • covid19-usflibrary.hub.arcgis.com
    • hub.arcgis.com
    Updated Jun 3, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of South Florida GIS (2021). Florida COVID19 06022021 Case Line Data [Dataset]. https://covid19-usflibrary.hub.arcgis.com/datasets/florida-covid19-06022021-case-line-data
    Explore at:
    Dataset updated
    Jun 3, 2021
    Dataset authored and provided by
    University of South Florida GIS
    Area covered
    Florida
    Description

    Florida COVID-19 Case Line data, exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu. Starting on 4/6/2021, the Florida Department of Health (FDOH) changed the way they provide COVID-19 caseline data. Beginning with this date the caseline data is being archived as two separate files, one for 2020 and one for 2021. The 2021 file will only include data from 1/1/2021 onward. In addition, FDOH has added two Object ID fields to their dataset. These caseline data are being preserved as they are provided by the FDOH, with a daily archive captured by the USF Libraries DHHC.Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2021. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/. https://doi.org/10.5038/USF-COVID-19-GISLive FDOH Data Source: https://www.arcgis.com/home/item.html?id=7a0c74a551904761812dc6b8bd620ee1 or Direct Download at: https://open-fdoh.hub.arcgis.com/datasets/7a0c74a551904761812dc6b8bd620ee1_0.

    Archives for this data layer begin on 5/11/2020. Archived data was exported directly from the live FDOH layer into the archive by the University of South Florida Libraries - Digital Heritage and Humanities Collection.For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from the Florida Department of Health. This data table represents all laboratory-confirmed cases of COVID-19 in Florida tabulated from the previous day's totals by the Florida Department of Health. Persons Under Investigation/Surveillance (PUI):Essentially, PUIs are any person who has been or is waiting to be tested. This includes: persons who are considered high-risk for COVID-19 due to recent travel, contact with a known case, exhibiting symptoms of COVID-19 as determined by a healthcare professional, or some combination thereof. PUI’s also include people who meet laboratory testing criteria based on symptoms and exposure, as well as confirmed cases with positive test results. PUIs include any person who is or was being tested, including those with negative and pending results.All PUIs fit into one of three residency types:1. Florida residents tested in Florida2. Non-Florida residents tested in Florida 3. Florida residents tested outside of Florida Florida Residents Tested Elsewhere: The total number of Florida residents with positive COVID-19 test results who were tested outsideof Florida, and were not exposed/infectious in Florida. Non-Florida Residents Tested in Florida: The total number of people with positive COVID-19 test results who were tested, exposed, and/or infectious while in Florida, but are legal residents of another state.Table Guide for Records of Confirmed Positive Cases of COVID-19"County": The Florida county where the individual with COVID-19's case has been processed. "Jurisdiction" of the case:"FL resident" -- a resident of Florida"Non-FL resident" -- someone who resides outside of Florida "Travel_Related": Whether or not the positive case of COVID-19 is designated as related to recent travel by the individual. "No" -- Case designated as not being a risk related to recent travel"Unknown" -- Case designated where a travel-related designation has not yet been made."Yes" -- Case is designated as travel-related for a person who recently traveled overseas or to an area with community"Origin": Where the person likely contracted the virus before arriving / returning to Florida."EDvisit": Whether or not an individual who tested positive for coronavirus visited and was admitted to an Emergency Department related to health conditions surrounding COVID-19."No" -- Individual was not admitted to an emergency department relating to health conditions surrounding the contraction of COVID-19"Unknown" -- It is unknown whether the individual was admitted to an emergency department relating to health conditions surrounding the contraction of COVID-19"Yes" -- Individual was admitted to an emergency department relating to health conditions surrounding the contraction of COVID-19“Hospitalized”: Whether or not a patient who receives a positive laboratory confirmed test for COVID-19 receives inpatient care at a hospital at any time during illness. These people may no longer be hospitalized. This information does not indicate that a COVID-19 positive person is currently hospitalized, only that they have been hospitalized for health conditions relating to COVID-19 at some point during their illness. "No" -- Individual was not admitted for inpatient care at a hospital at any time during illness "Unknown" -- It is unknown whether the individual was admitted for inpatient care at a hospital at any time during illness "Yes" -- Individual was admitted for inpatient care at a hospital at some point during the illness "Died": Whether or not the individual who tested positive for COVID-19 died as a result of health complications from the viral infection. "NA" -- Not applicable / resident has not died "Yes" -- Individual died of a health complication resulting from COVID-19 "Contact": Whether the person contracted COVID-19 from contact with current or previously confirmedcases."No" -- Case with no known contact with current or previously confirmed cases"Yes" -- Case with known contact with current or previously confirmed cases"Unknown" -- Case where contact with current or previous confirmedcases is not known or under investigation"Case_": The date the positive laboratory result was received in the Department of Health’s database system and became a “confirmed case.” This is not the date a person contracted the virus, became symptomatic, or was treated. Florida does not create a case or count suspected/probable cases in the case counts without a confirmed-positive lab result. "EventDate": When the individual reported likely first experiencing symptoms related to COVID-19. "ChartDate": Also the date the positive laboratory result for an individual was received in the Department ofHealth’s database system and became a recorded, “confirmed case” of COVID-19 in the state. Data definitions updated by the FDOH on 5/13/2020.

  20. d

    COVID-19 Daily Testing - By Person - Historical

    • catalog.data.gov
    • data.cityofchicago.org
    • +3more
    Updated Jan 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). COVID-19 Daily Testing - By Person - Historical [Dataset]. https://catalog.data.gov/dataset/covid-19-daily-testing-by-person
    Explore at:
    Dataset updated
    Jan 12, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    This dataset is historical only and ends at 5/7/2021. For more information, please see http://dev.cityofchicago.org/open%20data/data%20portal/2021/05/04/covid-19-testing-by-person.html. The recommended alternative dataset for similar data beyond that date is https://data.cityofchicago.org/Health-Human-Services/COVID-19-Daily-Testing-By-Test/gkdw-2tgv. This is the source data for some of the metrics available at https://www.chicago.gov/city/en/sites/covid-19/home/latest-data.html. For all datasets related to COVID-19, see https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=covid-19. This dataset contains counts of people tested for COVID-19 and their results. This dataset differs from https://data.cityofchicago.org/d/gkdw-2tgv in that each person is in this dataset only once, even if tested multiple times. In the other dataset, each test is counted, even if multiple tests are performed on the same person, although a person should not appear in that dataset more than once on the same day unless he/she had both a positive and not-positive test. Only Chicago residents are included based on the home address as provided by the medical provider. Molecular (PCR) and antigen tests are included, and only one test is counted for each individual. Tests are counted on the day the specimen was collected. A small number of tests collected prior to 3/1/2020 are not included in the table. Not-positive lab results include negative results, invalid results, and tests not performed due to improper collection. Chicago Department of Public Health (CDPH) does not receive all not-positive results. Demographic data are more complete for those who test positive; care should be taken when calculating percentage positivity among demographic groups. All data are provisional and subject to change. Information is updated as additional details are received. Data Source: Illinois National Electronic Disease Surveillance System

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data

Coronavirus (Covid-19) Data in the United States

Explore at:
csvAvailable download formats
Dataset provided by
New York Times
License

https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu