100+ datasets found
  1. d

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +2more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

  2. Distribution of U.S. COVID-19 cases as of June 2023, by race/ethnicity

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Distribution of U.S. COVID-19 cases as of June 2023, by race/ethnicity [Dataset]. https://www.statista.com/statistics/1122384/coronavirus-covid19-cases-by-ethnicity-us/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of June 14, 2023, around 24 percent of COVID-19 cases in the U.S. were among people of Hispanic or Latino origin, and 12 percent of cases were among non-Hispanic Blacks. Hispanics or Latinos account for around 18 percent of the U.S. population while non-Hispanic Blacks make up 12.5 percent. This statistic shows the distribution of coronavirus (COVID-19) cases in the United States as of June 14, 2023, by race/ethnicity.

  3. u

    EVENS

    • datacatalogue.ukdataservice.ac.uk
    Updated Mar 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Manchester, Cathie Marsh Institute for Social Research (CMIST), UK Data Service (2024). EVENS [Dataset]. http://doi.org/10.5255/UKDA-SN-9249-1
    Explore at:
    Dataset updated
    Mar 25, 2024
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    University of Manchester, Cathie Marsh Institute for Social Research (CMIST), UK Data Service
    Time period covered
    Feb 1, 2021 - Aug 14, 2021
    Area covered
    United Kingdom
    Description

    The Evidence for Equality National Survey (EVENS) is a national survey that documents the experiences and attitudes of ethnic and religious minorities in Britain. EVENS was developed by the Centre on the Dynamics of Ethnicity (CoDE) in response to the disproportionate impacts of COVID-19 and is the largest and most comprehensive survey of the lives of ethnic and religious minorities in Britain for more than 25 years. EVENS used pioneering, robust survey methods to collect data in 2021 from 14,200 participants of whom 9,700 identify as from an ethnic or religious minority. The EVENS main dataset, which is available from the UK Data Service under SN 9116, covers a large number of topics including racism and discrimination, education, employment, housing and community, health, ethnic and religious identity, and social and political participation.

    The EVENS Teaching Dataset provides a selection of variables in an accessible form to support the use of EVENS in teaching across a range of subjects and levels of study. The dataset includes demographic data and variables to support the analysis of:

    • racism and belonging
    • health and well-being during COVID-19
    • political attitudes and trust.

  4. d

    COVID-19 Cases by Race and Ethnicity Dashboard

    • catalog.data.gov
    • data.kingcounty.gov
    Updated Feb 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.kingcounty.gov (2024). COVID-19 Cases by Race and Ethnicity Dashboard [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-by-race-and-ethnicity-dashboard
    Explore at:
    Dataset updated
    Feb 2, 2024
    Dataset provided by
    data.kingcounty.gov
    Description

    Updated weekly on Mondays The dashboard below shows the impacts of COVID-19 on communities of color compared to whites in King County, Washington.

  5. f

    Data_Sheet_1_Community voices on factors influencing COVID-19 concerns and...

    • figshare.com
    pdf
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tara Kenworthy; Sherelle L. Harmon; Agenia Delouche; Nahel Abugattas; Hannah Zwiebel; Jonathan Martinez; Katheryn C. Sauvigné; C. Mindy Nelson; Viviana E. Horigian; Lisa Gwynn; Elizabeth R. Pulgaron (2023). Data_Sheet_1_Community voices on factors influencing COVID-19 concerns and health decisions among racial and ethnic minorities in the school setting.PDF [Dataset]. http://doi.org/10.3389/fpubh.2022.1002209.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    Frontiers
    Authors
    Tara Kenworthy; Sherelle L. Harmon; Agenia Delouche; Nahel Abugattas; Hannah Zwiebel; Jonathan Martinez; Katheryn C. Sauvigné; C. Mindy Nelson; Viviana E. Horigian; Lisa Gwynn; Elizabeth R. Pulgaron
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Racial and ethnic minority communities have been disproportionately affected by COVID-19, but the uptake of COVID-19 mitigation strategies like vaccination and testing have been slower in these populations. With the continued spread of COVID-19 while in-person learning is a priority, school-aged youth and their caregivers must make health-related decisions daily to ensure health at school. It is critical to understand factors associated with COVID-related health decisions such as vaccination, testing, and other health behaviors (e.g., wearing masks, hand washing). Community-engaged campaigns are necessary to overcome barriers to these health behaviors and promote health equity. The aim of this study was to examine COVID-19-related concerns and influences on health decisions in middle and high schools serving primarily racial and ethnic minority, low-income families. Seven focus groups were conducted with school staff, parents, and students (aged 16 years and older). Qualitative data were analyzed using a general inductive approach. Factors related to COVID-19 concerns and health decisions centered on (1) vaccine hesitancy, (2) testing hesitancy, (3) developmental stage (i.e., ability to engage in health behaviors based on developmental factors like age), (4) cultural and family traditions and beliefs, (5) compatibility of policies and places with recommended health behaviors, (6) reliability of information, and (7) perceived risk. We explore sub-themes in further detail. It is important to understand the community's level of concern and identify factors that influence COVID-19 medical decision making to better address disparities in COVID-19 testing and vaccination uptake.

  6. O

    COVID-19 cases by race/ethnicity

    • data.sccgov.org
    csv, xlsx, xml
    Updated Dec 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public Health Department (2024). COVID-19 cases by race/ethnicity [Dataset]. https://data.sccgov.org/COVID-19/COVID-19-cases-by-race-ethnicity/ccm2-45w3
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Dec 14, 2024
    Dataset authored and provided by
    Public Health Department
    Description

    *** The County of Santa Clara Public Health Department discontinued updates to the COVID-19 data tables effective June 30, 2025. The COVID-19 data tables will be removed from the Open Data Portal on December 30, 2025. For current information on COVID-19 in Santa Clara County, please visit the Respiratory Virus Dashboard [sccphd.org/respiratoryvirusdata]. For any questions, please contact phinternet@phd.sccgov.org ***

    The dataset provides information about the demographics and characteristics of COVID-19 cases by racial/ethnic groups among Santa Clara County residents. Source: California Reportable Disease Information Exchange. Data notes: The Other category for the race/ethnicity graph includes American Indian/Alaska Native and people who identify as multi-racial.

    This table is updated every Thursday.

  7. Table_3_Knowledge, perceived risk, and attitudes towards COVID-19 protective...

    • frontiersin.figshare.com
    docx
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erica Jane Cook; Elizabeth Elliott; Louisa Donald; Alfredo Gaitan; Gurch Randhawa; Sally Cartwright; Muhammad Waqar; Chimeme Egbutah; Ifunanya Nduka; Andy Guppy; Nasreen Ali (2023). Table_3_Knowledge, perceived risk, and attitudes towards COVID-19 protective measures amongst ethnic minorities in the UK: A cross-sectional study.DOCX [Dataset]. http://doi.org/10.3389/fpubh.2022.1060694.s003
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Erica Jane Cook; Elizabeth Elliott; Louisa Donald; Alfredo Gaitan; Gurch Randhawa; Sally Cartwright; Muhammad Waqar; Chimeme Egbutah; Ifunanya Nduka; Andy Guppy; Nasreen Ali
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    BackgroundMinority ethnic groups are at increased risk of COVID-19 related mortality or morbidity yet continue to have a disproportionally lower uptake of the vaccine. The importance of adherence to prevention and control measures to keep vulnerable populations and their families safe therefore remains crucial. This research sought to examine the knowledge, perceived risk, and attitudes toward COVID-19 among an ethnically diverse community.MethodsA cross-sectional self-administered questionnaire was implemented to survey ethnic minority participants purposefully recruited from Luton, an ethnically diverse town in the southeast of England. The questionnaire was structured to assess participants knowledge, perceived risk, attitudes toward protective measures as well as the sources of information about COVID-19. The questionnaire was administered online via Qualtrics with the link shared through social media platforms such as Facebook, Twitter, and WhatsApp. Questionnaires were also printed into brochures and disseminated via community researchers and community links to individuals alongside religious, community and outreach organisations. Data were analysed using appropriate statistical techniques, with the significance threshold for all analyses assumed at p = 0.05.Findings1,058 participants (634; 60% females) with a median age of 38 (IQR, 22) completed the survey. National TV and social networks were the most frequently accessed sources of COVID-19 related information; however, healthcare professionals, whilst not widely accessed, were viewed as the most trusted. Knowledge of transmission routes and perceived susceptibility were significant predictors of attitudes toward health-protective practises.Conclusion/recommendationImproving the local information provision, including using tailored communication strategies that draw on trusted sources, including healthcare professionals, could facilitate understanding of risk and promote adherence to health-protective actions.

  8. COVID-19 Cases and Deaths by Race

    • kaggle.com
    zip
    Updated Jul 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul Mooney (2020). COVID-19 Cases and Deaths by Race [Dataset]. https://www.kaggle.com/datasets/paultimothymooney/covid19-cases-and-deaths-by-race
    Explore at:
    zip(4762 bytes)Available download formats
    Dataset updated
    Jul 22, 2020
    Authors
    Paul Mooney
    Description

    Context

    COVID-19 Cases and Deaths by Race

    Content

    Columns:

    State Data Source Total positive cases in state Total deaths in state Percentage of Black people represented in total cases Percentage of Black people represented in total deaths Percentage of total population that identify as Black (census) Updated Notes

    Acknowledgements

    Data shared under an open data policy at Data for Black Lives (d4bl.org)

    Banner Photo by Vince Fleming on Unsplash

  9. COVID-19 Weekly Cases and Deaths by Age, Race/Ethnicity, and Sex - ARCHIVED

    • healthdata.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Dec 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2022). COVID-19 Weekly Cases and Deaths by Age, Race/Ethnicity, and Sex - ARCHIVED [Dataset]. https://healthdata.gov/CDC/COVID-19-Weekly-Cases-and-Deaths-by-Age-Race-Ethni/gpce-gn87
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Dec 24, 2022
    Dataset provided by
    data.cdc.gov
    Description

    Note: Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.

    This table summarizes COVID-19 case and death data submitted to CDC as case reports for the line-level dataset. Case and death counts are stratified according to sex, age, and race and ethnicity at regional and national levels. Data for US territories are included in case and death counts, but not population counts. Weekly cumulative counts with five or fewer cases or deaths are not reported to protect confidentiality of patients. Records with unknown or missing sex, age, or race and ethnicity and of multiple, non-Hispanic race and ethnicity are included in case and death totals. COVID-19 case and death data are provisional and are subject to change. Visualization of COVID-19 case and death rate trends by demographic variables may be viewed on COVID Data Tracker (https://covid.cdc.gov/covid-data-tracker/#demographicsovertime).

  10. Model estimates of deaths involving the coronavirus (COVID-19) by ethnic...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Oct 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2020). Model estimates of deaths involving the coronavirus (COVID-19) by ethnic group for people in private households, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/modelestimatesofdeathsinvolvingthecoronaviruscovid19byethnicgroupforpeopleinprivatehouseholdsengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 16, 2020
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Model estimates of deaths involving the coronavirus (COVID-19) by ethnic group for people in private households in England.

  11. ARCHIVED: COVID-19 Testing by Race/Ethnicity Over Time

    • healthdata.gov
    • data.sfgov.org
    • +1more
    csv, xlsx, xml
    Updated Apr 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). ARCHIVED: COVID-19 Testing by Race/Ethnicity Over Time [Dataset]. https://healthdata.gov/dataset/ARCHIVED-COVID-19-Testing-by-Race-Ethnicity-Over-T/ntmc-mxb8
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    data.sfgov.org
    Description

    A. SUMMARY This dataset includes San Francisco COVID-19 tests by race/ethnicity and by date. This dataset represents the daily count of tests collected, and the breakdown of test results (positive, negative, or indeterminate). Tests in this dataset include all those collected from persons who listed San Francisco as their home address at the time of testing. It also includes tests that were collected by San Francisco providers for persons who were missing a locating address. This dataset does not include tests for residents listing a locating address outside of San Francisco, even if they were tested in San Francisco.

    The data were de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected). If a person tested multiple times on the same date, only one test is included from that date. When there are multiple tests on the same date, a positive result, if one exists, will always be selected as the record for the person. If a PCR and antigen test are taken on the same day, the PCR test will supersede. If a person tests multiple times on the same day and the results are all the same (e.g. all negative or all positive) then the first test done is selected as the record for the person.

    The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco.

    When a person gets tested for COVID-19, they may be asked to report information about themselves. One piece of information that might be requested is a person's race and ethnicity. These data are often incomplete in the laboratory and provider reports of the test results sent to the health department. The data can be missing or incomplete for several possible reasons:

    • The person was not asked about their race and ethnicity.
    • The person was asked, but refused to answer.
    • The person answered, but the testing provider did not include the person's answers in the reports.
    • The testing provider reported the person's answers in a format that could not be used by the health department.
    

    For any of these reasons, a person's race/ethnicity will be recorded in the dataset as “Unknown.”

    B. NOTE ON RACE/ETHNICITY The different values for Race/Ethnicity in this dataset are "Asian;" "Black or African American;" "Hispanic or Latino/a, all races;" "American Indian or Alaska Native;" "Native Hawaiian or Other Pacific Islander;" "White;" "Multi-racial;" "Other;" and “Unknown."

    The Race/Ethnicity categorization increases data clarity by emulating the methodology used by the U.S. Census in the American Community Survey. Specifically, persons who identify as "Asian," "Black or African American," "American Indian or Alaska Native," "Native Hawaiian or Other Pacific Islander," "White," "Multi-racial," or "Other" do NOT include any person who identified as Hispanic/Latino at any time in their testing reports that either (1) identified them as SF residents or (2) as someone who tested without a locating address by an SF provider. All persons across all races who identify as Hispanic/Latino are recorded as “"Hispanic or Latino/a, all races." This categorization increases data accuracy by correcting the way “Other” persons were counted. Previously, when a person reported “Other” for Race/Ethnicity, they would be recorded “Unknown.” Under the new categorization, they are counted as “Other” and are distinct from “Unknown.”

    If a person records their race/ethnicity as “Asian,” “Black or African American,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” “White,” or “Other” for their first COVID-19 test, then this data will not change—even if a different race/ethnicity is reported for this person for any future COVID-19 test. There are two exceptions to this rule. The first exception is if a person’s race/ethnicity value i

  12. VDH-COVID-19-PublicUseDataset-Cases_By-Race-Ethnicity - RETIRED Dataset

    • data.virginia.gov
    • opendata.winchesterva.gov
    csv
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia Department of Health (2025). VDH-COVID-19-PublicUseDataset-Cases_By-Race-Ethnicity - RETIRED Dataset [Dataset]. https://data.virginia.gov/dataset/vdh-covid-19-publicusedataset-cases-by-race-ethnicity
    Explore at:
    csv(177191)Available download formats
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Virginia Department of Healthhttps://www.vdh.virginia.gov/
    Description

    As of 09/24/24, this dataset is being retired and will no longer be updated.

    This dataset includes the cumulative (total) number of COVID-19 cases, hospitalizations, and deaths for each health district in Virginia by report date and by race and ethnicity. This dataset was first published on June 15, 2020. The data set increases in size daily and as a result, the dataset may take longer to update; however, it is expected to be available by 12:00 noon. When you download the data set, the dates will be sorted in ascending order, meaning that the earliest date will be at the top. To see data for the most recent date, please scroll down to the bottom of the data set. The Virginia Department of Health’s Thomas Jefferson Health District (TJHD) will be renamed to Blue Ridge Health District (BRHD), effective January 2021. More information about this change can be found here: https://www.vdh.virginia.gov/blue-ridge/name-change/

  13. Visible minorities discriminated against since the COVID-19 pandemic in...

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Visible minorities discriminated against since the COVID-19 pandemic in Canada 2020 [Dataset]. https://www.statista.com/statistics/1314792/visible-minorities-discriminated-covid-19-canada-ethnicity/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    Canada
    Description

    Since the beginning of the COVID-19 pandemic, almost *** out of five people of a Chinese background reported having experienced discrimination in Canada. They were the most commonly discriminated against visible minority group, followed by people of Filipino origin (**** percent) and Black people (**** percent). In comparison, about ** percent of people who did not belong to a visible minority group said they had experienced discrimination since the beginning of the pandemic.

  14. Counts of deaths involving the coronavirus (COVID-19) and all deaths by...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Oct 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2020). Counts of deaths involving the coronavirus (COVID-19) and all deaths by ethnic group, Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/countsofdeathsinvolvingthecoronaviruscovid19andalldeathsbyethnicgroupwales
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 16, 2020
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Counts of coronavirus (COVID-19) related deaths by ethnic group in Wales.

  15. d

    COVID-19 - Vaccinations by Region, Age, and Race-Ethnicity - Historical

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Dec 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2023). COVID-19 - Vaccinations by Region, Age, and Race-Ethnicity - Historical [Dataset]. https://catalog.data.gov/dataset/covid-19-vaccinations-by-region-age-and-race-ethnicity
    Explore at:
    Dataset updated
    Dec 16, 2023
    Dataset provided by
    data.cityofchicago.org
    Description

    NOTE: This dataset has been retired and marked as historical-only. The recommended dataset to use in its place is https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccination-Coverage-Region-HCEZ-/5sc6-ey97. COVID-19 vaccinations administered to Chicago residents by Healthy Chicago Equity Zones (HCEZ) based on the reported address, race-ethnicity, and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE). Healthy Chicago Equity Zones is an initiative of the Chicago Department of Public Health to organize and support hyperlocal, community-led efforts that promote health and racial equity. Chicago is divided into six HCEZs. Combinations of Chicago’s 77 community areas make up each HCEZ, based on geography. For more information about HCEZs including which community areas are in each zone see: https://data.cityofchicago.org/Health-Human-Services/Healthy-Chicago-Equity-Zones/nk2j-663f Vaccination Status Definitions: ·People with at least one vaccine dose: Number of people who have received at least one dose of any COVID-19 vaccine, including the single-dose Johnson & Johnson COVID-19 vaccine. ·People with a completed vaccine series: Number of people who have completed a primary COVID-19 vaccine series. Requirements vary depending on age and type of primary vaccine series received. ·People with a bivalent dose: Number of people who received a bivalent (updated) dose of vaccine. Updated, bivalent doses became available in Fall 2022 and were created with the original strain of COVID-19 and newer Omicron variant strains. Weekly cumulative totals by vaccination status are shown for each combination of race-ethnicity and age group within an HCEZ. Note that each HCEZ has a row where HCEZ is “Citywide” and each HCEZ has a row where age is "All" so care should be taken when summing rows. Vaccinations are counted based on the date on which they were administered. Weekly cumulative totals are reported from the week ending Saturday, December 19, 2020 onward (after December 15, when vaccines were first administered in Chicago) through the Saturday prior to the dataset being updated. Population counts are from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-year estimates. Coverage percentages are calculated based on the cumulative number of people in each population subgroup (age group by race-ethnicity within an HCEZ) who have each vaccination status as of the date, divided by the estimated number of people in that subgroup. Actual counts may exceed population estimates and lead to >100% coverage, especially in small race-ethnicity subgroups of each age group within an HCEZ. All coverage percentages are capped at 99%. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. CDPH uses the most complete data available to estimate COVID-19 vaccination coverage among Chicagoans, but there are several limitations that impact its estimates. Data reported in I-CARE only includes doses administered in Illinois and some doses administered outside of Illinois reported historically by Illinois providers. Doses administered by the federal Bureau of Prisons and Department of Defense are also not currently reported in I-CARE. The Veterans Health Administration began reporting doses in I-CARE beginning September 2022. Due to people receiving vaccinations that are not recorded in I-CARE that can be linked to their record, such as someone receiving a vaccine dose in another state, the number of people with a completed series or a booster dose is underesti

  16. Provisional COVID-19 Deaths: Distribution of Deaths by Race and Hispanic...

    • data.virginia.gov
    • healthdata.gov
    • +3more
    csv, json, rdf, xsl
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 Deaths: Distribution of Deaths by Race and Hispanic Origin [Dataset]. https://data.virginia.gov/dataset/provisional-covid-19-deaths-distribution-of-deaths-by-race-and-hispanic-origin
    Explore at:
    rdf, xsl, csv, jsonAvailable download formats
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.

    This data file contains the following indicators that can be used to illustrate potential differences in the burden of deaths due to COVID-19 according to race and ethnicity: count of COVID-19 deaths, distribution of COVID-19 deaths, unweighted distribution of population, and weighted distribution of population.

  17. COVID-19 Cases and Deaths by Race/Ethnicity

    • kaggle.com
    zip
    Updated Jul 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mukharbek Organokov (2020). COVID-19 Cases and Deaths by Race/Ethnicity [Dataset]. https://www.kaggle.com/muhakabartay/covid19-cases-and-deaths-by-raceethnicity
    Explore at:
    zip(54595 bytes)Available download formats
    Dataset updated
    Jul 10, 2020
    Authors
    Mukharbek Organokov
    License

    https://www.usa.gov/government-works/https://www.usa.gov/government-works/

    Description

    Context

    COVID-19 Cases and Deaths by Race/Ethnicity

    Content

    COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.

    The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.

    The age-adjusted rates are directly standardized using the 2018 ASRH Connecticut population estimate denominators (available here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Annual-State--County-Population-with-Demographics).

    Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age-adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.

    This dataset will be updated on a daily basis. Data are subject to future revision as reporting changes.

    Starting in July 2020, this dataset will be updated every weekday.

    Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.

    A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differs from the timestamp in DPH's daily PDF reports.

    Acknowledgements

    Thanks to catalog.data.gov.

  18. Data_Sheet_1_The economic impact of the COVID-19 pandemic on ethnic...

    • frontiersin.figshare.com
    docx
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arkadiusz Wiśniowski; Ruth Allen; Andrea Aparicio-Castro; Wendy Olsen; Maydul Islam (2023). Data_Sheet_1_The economic impact of the COVID-19 pandemic on ethnic minorities in Manchester: lessons from the early stage of the pandemic.docx [Dataset]. http://doi.org/10.3389/fsoc.2023.1139258.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Arkadiusz Wiśniowski; Ruth Allen; Andrea Aparicio-Castro; Wendy Olsen; Maydul Islam
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Manchester
    Description

    This review summarizes the economic impacts of the pandemic on ethnic minorities, focusing on the city of Manchester. It utilizes multiple reporting sources to explore various dimensions of the economic shock in the UK, linking this to studies of pre-COVID-19 economic and ethnic composition in Manchester and in the combined authority area of Greater Manchester. We then make inferences about the pandemic's short-term impact specific to the city region. Greater Manchester has seen some of the highest rates of COVID-19 and as a result faced particularly stringent “lockdown” regulations. Manchester is the sixth most deprived Local Authority in England, according to 2019 English Indices of Multiple Deprivation. As a consequence, many neighborhoods in the city were always going to be less resilient to the economic shock caused by the pandemic compared with other, less-deprived, areas. Particular challenges for Manchester include the high rates of poor health, low-paid work, low qualifications, poor housing conditions and overcrowding. Ethnic minority groups also faced disparities long before the onset of the pandemic. Within the UK, ethnic minorities were found to be most disadvantaged in terms of employment and housing–particularly in large urban areas containing traditional settlement areas for ethnic minorities. Further, all Black, Asian, and Minority ethnic (BAME) groups in Greater Manchester were less likely to be employed pre-pandemic compared with White people. For example, people of Pakistani and Bangladeshi ethnic backgrounds, especially women, have the lowest levels of employment in Greater Manchester. Finally, unprecedented cuts to public spending as a result of austerity have also disproportionately affected women of an ethnic minority background alongside disabled people, the young and those with no or low-level qualifications. This environment has created and sustained a multiplicative disadvantage for Manchester's ethnic minority residents through the course of the COVID-19 pandemic.

  19. Covid 19 Race Gender Poverty Risk (U.S County)

    • kaggle.com
    zip
    Updated Sep 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lauríndo García (2020). Covid 19 Race Gender Poverty Risk (U.S County) [Dataset]. https://www.kaggle.com/laurindogarcia/covid-19-race-gender-poverty-risk-us-county
    Explore at:
    zip(751820 bytes)Available download formats
    Dataset updated
    Sep 26, 2020
    Authors
    Lauríndo García
    Area covered
    United States
    Description

    Context

    The intention of this dataset was to encourage deeper exploration into the relationship between race/ethnicity, gender, poverty and severe health conditions and Covid 19 morbidity and mortality. Public health experts have long reported about the health disparities that exist for people who live in poverty and minorities populations. These reports also find that minorities who live in poverty are often doubly disadvantaged.

    Content

    What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.

    Acknowledgements

    Data is drawn from: 1. USA Facts/U.S CDC, 2. SAIPE/U.S Census, 3. Population Estimates/U.S Census, 4. Policy Map/NY Times/2017 SMART-BRFSS, U.S CDC Links to sources are in the file description below.

    Special thanks to: 1. My instructors Andrew Worsely, Lydia Peabody, the team at General Assembly and my peers in GA Data Science June-August 2020. 2. Julian Hatwell

    Inspiration

    Questions to be answered? 1. What correlation exists between Covid 19 morbidity and mortality and poverty, race or gender, if any? 2. What can be observed about incidence of Covid 19 morbidity and mortality in U.S. counties where people living in poverty are the majority or counties where minority populations are the majority? 3. Capacity of U.S. county health systems and coverage of preventive health measures are not accounted for in this model, what features could be added to address these limitations? 4. In which countries outside the U.S. can this type of analysis be replicated? 5. How else can this dataset be improved?

  20. Provisional COVID-19 Deaths by Race and Hispanic Origin, and Age

    • datalumos.org
    delimited
    Updated Nov 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Health and Human Services. Centers for Disease Control and Prevention (2025). Provisional COVID-19 Deaths by Race and Hispanic Origin, and Age [Dataset]. http://doi.org/10.3886/E240282V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Nov 13, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    United States Department of Health and Human Services. Centers for Disease Control and Prevention
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2020 - Sep 23, 2023
    Description

    Dataset on deaths involving COVID-19, pneumonia, and influenza reported to NCHS by race, age, and jurisdiction of occurrence.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity

COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

Explore at:
Dataset updated
Aug 12, 2023
Dataset provided by
data.ct.gov
Description

Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

Search
Clear search
Close search
Google apps
Main menu