100+ datasets found
  1. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +2more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. Data from: CovidPubGraph: A FAIR Knowledge Graph of COVID-19 Publications

    • zenodo.org
    bin
    Updated May 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Svetlana Pestryakova; Stefan Heindorf; Stefan Heindorf; Mohamed Ahmed Sherif; Muhammad Saleem; Diego Moussallem; Daniel Vollmers; Axel-Cyrille Ngonga Ngomo; Axel-Cyrille Ngonga Ngomo; Svetlana Pestryakova; Mohamed Ahmed Sherif; Muhammad Saleem; Diego Moussallem; Daniel Vollmers (2021). CovidPubGraph: A FAIR Knowledge Graph of COVID-19 Publications [Dataset]. http://doi.org/10.5281/zenodo.4650261
    Explore at:
    binAvailable download formats
    Dataset updated
    May 26, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Svetlana Pestryakova; Stefan Heindorf; Stefan Heindorf; Mohamed Ahmed Sherif; Muhammad Saleem; Diego Moussallem; Daniel Vollmers; Axel-Cyrille Ngonga Ngomo; Axel-Cyrille Ngonga Ngomo; Svetlana Pestryakova; Mohamed Ahmed Sherif; Muhammad Saleem; Diego Moussallem; Daniel Vollmers
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The rapid generation of large amounts of information about the novel coronavirus SARS-CoV-2 and the disease COVID-19 makes it increasingly difficult to gain a comprehensive overview of current insights related to the disease. This holds especially for scientific research, where a growing number of publications provide insights that might support the development of a cure or better vaccines as well as the repurposing of medication. With this work, we aim to support the rapid access to a comprehensive data source on COVID-19 targeted especially at researchers. Our dataset, COVIDPUBGRAPH, an RDF knowledge graph of scientific publications, abides by the Linked Data and FAIR principles. The base dataset for the extraction isCORD-19, a dataset of COVID-19-related publications, which is updated regularly. Consequently, COVIDPUBGRAPH is updated once in two weeks. Our generation pipeline applies named entity recognition, entity linking and link discovery approaches to the original data. The current version of the resulting dataset contains 202,770,925 triples and is linked to 9 other datasets by over 1 million links. In our use case studies, we demonstrate the usefulness of our knowledge graph for different applications. COVIDPUBGRAPH can be accessed as an RDF dump, a SPARQL endpoint, and via an HTML endpoint. All data we generated is available under the Creative Commons Attribution 4.0 International license. The software developed for the extraction is available under the GPL 3.0 license.

  3. o

    KG-COVID-19 graph containing all current sources EXCEPT ChEMBL antivirals

    • explore.openaire.eu
    Updated Sep 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Justin Reese (2020). KG-COVID-19 graph containing all current sources EXCEPT ChEMBL antivirals [Dataset]. http://doi.org/10.5281/zenodo.4047143
    Explore at:
    Dataset updated
    Sep 23, 2020
    Authors
    Justin Reese
    Description

    KG-COVID-19 graph containing all sources EXCEPT ChEMBL antivirals The follow commit was used to produce this KG on Sep 18, 2020 commit 9fd270e1b141487ee422d138cd74add87118f669 (HEAD -> no_chembl_merge, origin/master, origin/HEAD, fix_internal_tabs_scibite_data) Merge: bf8a47a b545edc Author: Justin Reese justaddcoffee+github@gmail.com Date: Thu Sep 17 12:29:17 2020 -0700

  4. Cumulative cases of COVID-19 in the U.S. from Jan. 20, 2020 - Nov. 11, 2022,...

    • statista.com
    Updated Nov 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Cumulative cases of COVID-19 in the U.S. from Jan. 20, 2020 - Nov. 11, 2022, by week [Dataset]. https://www.statista.com/statistics/1103185/cumulative-coronavirus-covid19-cases-number-us-by-day/
    Explore at:
    Dataset updated
    Nov 17, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 20, 2020 - Nov 11, 2022
    Area covered
    United States
    Description

    As of November 11, 2022, almost 96.8 million confirmed cases of COVID-19 had been reported by the World Health Organization (WHO) for the United States. The pandemic has impacted all 50 states, with vast numbers of cases recorded in California, Texas, and Florida.

    The coronavirus in the U.S. The coronavirus hit the United States in mid-March 2020, and cases started to soar at an alarming rate. The country has performed a high number of COVID-19 tests, which is a necessary step to manage the outbreak, but new coronavirus cases in the U.S. have spiked several times since the pandemic began, most notably at the end of 2022. However, restrictions in many states have been eased as new cases have declined.

    The origin of the coronavirus In December 2019, officials in Wuhan, China, were the first to report cases of pneumonia with an unknown cause. A new human coronavirus – SARS-CoV-2 – has since been discovered, and COVID-19 is the infectious disease it causes. All available evidence to date suggests that COVID-19 is a zoonotic disease, which means it can spread from animals to humans. The WHO says transmission is likely to have happened through an animal that is handled by humans. Researchers do not support the theory that the virus was developed in a laboratory.

  5. E

    LG-covid19-HOTP: Literature Graph of Scholarly Articles Relevant to COVID-19...

    • live.european-language-grid.eu
    csv
    Updated Apr 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). LG-covid19-HOTP: Literature Graph of Scholarly Articles Relevant to COVID-19 Study [Dataset]. https://live.european-language-grid.eu/catalogue/corpus/7827
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 17, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Parallel to the dataset CORD-19 of scholarly articles, we provide the literature graph LG-covid19-HOTP composed of not only articles (graph nodes) that are relevant to the study of coronavirus, but also in and out citation links (directed graph edges) to base navigation and search among the articles. The article records are related and connected, not isolated. The graph has been updated weekly since March 26, 2020. The current graph includes 42,279 hot-off-the-press (HOTP) articles since January 2020. It contains 485,097 articles and 4,259,944 links. The link-to-node ratio is remarkably higher than some other existing literature graphs. In addition to the dataset we provide more functionalities at lg-covid-19-hotp.cs.duke.edu such as new articles, weekly meta-data analysis in terms of publication growth over time, ranking by citation, and statistical near-neighbor embedding maps by similarity in co-citation, and similarity in co-reference. Since April 11, we have enabled a novel functionality - self-navigated surf-search over the maps. At the site we also take courtesy input of COVID-19 articles that are missing from the current collection.

  6. t

    Telegram graph data of covid-19 related channels - Vdataset - LDM

    • service.tib.eu
    Updated May 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Telegram graph data of covid-19 related channels - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/goe-doi-10-25625-h5juzg
    Explore at:
    Dataset updated
    May 16, 2025
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Telegram graph data of COVID-19 related channels Dataset of 128.148 Telegram channels/groups connected by 320.194.154 forwarded messages. Only vertices and edges are present with a limited amount of metadata. No message content is included. We include one files for the graph "graph.gt.gz" which includes the weighted directed graph. The weights can be found as edge properties. The file are in the gt format.

  7. COVID-19 Trends in Each Country

    • coronavirus-response-israel-systematics.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +2more
    Updated Mar 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    COVID-19 Trends in Each Country [Dataset]. https://coronavirus-response-israel-systematics.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  8. COVID-19 deaths reported in the U.S. as of June 14, 2023, by age

    • statista.com
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    COVID-19 deaths reported in the U.S. as of June 14, 2023, by age [Dataset]. https://www.statista.com/statistics/1191568/reported-deaths-from-covid-by-age-us/
    Explore at:
    Dataset updated
    Jun 21, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2020 - Jun 14, 2023
    Area covered
    United States
    Description

    Between the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.

  9. M

    Knowledge Graph of COVID-19 Literature

    • catalog.midasnetwork.us
    json
    Updated Jul 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MIDAS Coordination Center (2023). Knowledge Graph of COVID-19 Literature [Dataset]. https://catalog.midasnetwork.us/collection/130
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 6, 2023
    Dataset authored and provided by
    MIDAS Coordination Center
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Variables measured
    disease, COVID-19, pathogen, Homo sapiens, data service, host organism, clinical trial, infectious disease, sequence collection, Severe acute respiratory syndrome coronavirus 2
    Dataset funded by
    National Institute of General Medical Sciences
    Description

    IBM is providing free access to its COVID-19 Knowledge Graph integrating COVID-19 data from various sources: CORD-19 (https://www.semanticscholar.org/cord19) for literature, Clinicaltrials.gov (https://clinicaltrials.gov/) and WHO ICTRP (https://www.who.int/ictrp/search) for trials, DrugBank (https://www.drugbank.ca/) and GenBank (https://www.ncbi.nlm.nih.gov/genbank) for database data. Prepared search reports at the Reports Page are available on open access. However, to access the COVID-19 Knowledge Graph, it is necessary to request access.

  10. Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED

    • data.cdc.gov
    • data.virginia.gov
    application/rdfxml +5
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED [Dataset]. https://data.cdc.gov/Case-Surveillance/Weekly-United-States-COVID-19-Cases-and-Deaths-by-/pwn4-m3yp
    Explore at:
    csv, application/rdfxml, xml, tsv, json, application/rssxmlAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.

    Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:

    • A CDC data team reviews and validates the information obtained from jurisdictions’ state and local websites via an overnight data review process.
    • If more than one official county data source exists, CDC uses a comprehensive data selection process comparing each official county data source, and takes the highest case and death counts respectively, unless otherwise specified by the state.
    • CDC compiles these data and posts the finalized information on COVID Data Tracker.
    • County level data is aggregated to obtain state and territory specific totals.
    This process is collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provide the most up-to-date numbers on cases and deaths by report date. CDC may retrospectively update counts to correct data quality issues.

    Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:

    • Source: The current Weekly-Updated Version is based on county-level aggregate count data, while the Archived Version is based on State-level aggregate count data.
    • Confirmed/Probable Cases/Death breakdown:  While the probable cases and deaths are included in the total case and total death counts in both versions (if applicable), they were reported separately from the confirmed cases and deaths by jurisdiction in the Archived Version.  In the current Weekly-Updated Version, the counts by jurisdiction are not reported by confirmed or probable status (See Confirmed and Probable Counts section for more detail).
    • Time Series Frequency: The current Weekly-Updated Version contains weekly time series data (i.e., one record per week per jurisdiction), while the Archived Version contains daily time series data (i.e., one record per day per jurisdiction).
    • Update Frequency: The current Weekly-Updated Version is updated weekly, while the Archived Version was updated twice daily up to October 20, 2022.
    Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.

    Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:

    Council of State and Territorial Epidemiologists (ymaws.com).

    Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (total case counts) as the present dataset; however, NCHS Death Counts are based on death certificates that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Data from each of these pages are considered provisional (not complete and pending verification) and are therefore subject to change. Counts from previous weeks are continually revised as more records are received and processed.

    Number of Jurisdictions Reporting There are currently 60 public health jurisdictions reporting cases of COVID-19. This includes the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. New York State’s reported case and death counts do not include New York City’s counts as they separately report nationally notifiable conditions to CDC.

    CDC COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths, available by state and by county. These and other data on COVID-19 are available from multiple public locations, such as:

    https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html

    https://www.cdc.gov/covid-data-tracker/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/php/open-america/surveillance-data-analytics.html

    Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.

    Archived Data Notes:

    November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 3, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 10, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Per the request of the jurisdiction, cases and deaths among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case and death counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases and deaths. 

    November 17, 2022: Two new columns, weekly historic cases and weekly historic deaths, were added to this dataset on November 17, 2022. These columns reflect case and death counts that were reported that week but were historical in nature and not reflective of the current burden within the jurisdiction. These historical cases and deaths are not included in the new weekly case and new weekly death columns; however, they are reflected in the cumulative totals provided for each jurisdiction. These data are used to account for artificial increases in case and death totals due to batched reporting of historical data.

    December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the data released on December 1, 2022.

    January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case and death data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case and death metrics will appear higher than expected in the January 5, 2023, weekly release.

    January 12, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0. As a result, case and death metrics will appear lower than expected in the January 12, 2023, weekly release.

    January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case and death data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release.

    January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties (Livingston and Washtenaw) were higher than expected in the January 19, 2023 weekly release.

    January 26, 2023: Due to a backlog of historic COVID-19 cases being reported this week, aggregate case and death counts in Charlotte County and Sarasota County, Florida, will appear higher than expected in the January 26, 2023 weekly release.

    January 26, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0 in the weekly release posted on January 26, 2023.

    February 2, 2023: As of the data collection deadline, CDC observed an abnormally large increase in aggregate COVID-19 cases and deaths reported for Washington State. In response, totals for new cases and new deaths released on February 2, 2023, have been displayed as zero at the state level until the issue is addressed with state officials. CDC is working with state officials to address the issue.

    February 2, 2023: Due to a decrease reported in cumulative case counts by Wyoming, case rates will be reported as 0 in the February 2, 2023, weekly release. CDC is working with state officials to verify the data submitted.

    February 16, 2023: Due to data processing delays, Utah’s aggregate case and death data will be reported as 0 in the weekly release posted on February 16, 2023. As a result, case and death metrics will appear lower than expected and should be interpreted with caution.

    February 16, 2023: Due to a reporting cadence change, Maine’s

  11. COVID-19 cases worldwide as of May 2, 2023, by country or territory

    • statista.com
    • ai-chatbox.pro
    Updated Aug 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 cases worldwide as of May 2, 2023, by country or territory [Dataset]. https://www.statista.com/statistics/1043366/novel-coronavirus-2019ncov-cases-worldwide-by-country/
    Explore at:
    Dataset updated
    Aug 29, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.

    COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.

    Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.

  12. Number of COVID-19 deaths in the United States from 2020 to 2022, by year

    • statista.com
    Updated Jun 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of COVID-19 deaths in the United States from 2020 to 2022, by year [Dataset]. https://www.statista.com/statistics/1382334/number-covid-deaths-us-by-year/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2020, there were around ******* deaths in the United States caused by COVID-19, compared to ******* COVID-19 deaths in 2021. This statistic shows the total number of deaths due to COVID-19 in the United States in 2020, 2021, and 2022.

  13. a

    COVID-19 PC Surveillance Dashboard

    • hub.arcgis.com
    • data.amerigeoss.org
    Updated Mar 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    San Bernardino County Department of Public Health (2020). COVID-19 PC Surveillance Dashboard [Dataset]. https://hub.arcgis.com/datasets/44bb35c804c44c8281da6d82ee602dff
    Explore at:
    Dataset updated
    Mar 12, 2020
    Dataset authored and provided by
    San Bernardino County Department of Public Health
    Description

    This dashboard provides a visual of the Coronavirus Disease 2019 (COVID-19) surveillance in San Bernardino County.The legend items for both graphs (i.e., Positives, Negatives, Total) can be turned on/off by clicking on the legend item. Use the scrollbar on the top of each graph to zoom in/out of the graph items. Selecting certain dates on either graph will also dynamically change the data to the right of the dashboard.

  14. COVID-19-Research

    • kaggle.com
    Updated Apr 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    huifei (2020). COVID-19-Research [Dataset]. https://www.kaggle.com/huifei/covid-19-research/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 6, 2020
    Dataset provided by
    Kaggle
    Authors
    huifei
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Context

    There's a story behind every dataset and here's your opportunity to share yours. There are four knowledge graphs related to SARS-COV-2 virus. 1. virusnetwork.taxonomy, taxonomy of most viruses, data from NCBI and some other databases. 2. virusnetwork.sars-cov-2, fundamental information about SARS-COV-2, data from NCBI and some other databases. 3. virusnetwork.drug, anti-virus drug related KG, data from drugbank and some other databases. 4. phylogeny of COVID-19, data from nextstrain database.

    Content

    Please read schema definitions in files extracted from schema.zip . Readme document is written in chinese now. We plan to provide an English version in the future.

    Acknowledgements

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4820882%2F45a57ce93a1f5cc261b31a559659849a%2F2016-06-01-060520.78739420120321225402110b1332312087121.jpg?generation=1586158900288797&alt=media%20=60x20" alt="Zhejiang University"> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4820882%2F070bb42977f3b7f2dfcb376731274695%2F2020-03-10-125137.958002HWPOSRBGVertical-300ppi.jpg?generation=1586158939864852&alt=media%20=60x20" alt="Huawei Cloud"> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4820882%2Fd6bf353000ff7391ad3bf3ccd5449e54%2F2016-06-01-062020.396032c1s.png?generation=1586158864797139&alt=media%20=220x50" alt="OpenKG">

    The dataset was published originally in OpenKG.cn ( http://openkg.cn/dataset/covid-19-research ). If you want to contact with maintainers, please follow this link and obtain their emails.

  15. BioPropaPhenKG Towards Monkeypox and COVID-19 Case Tracing and Analysing

    • zenodo.org
    bin, xml
    Updated Apr 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabriel H. A. Medeiros; Gabriel H. A. Medeiros (2024). BioPropaPhenKG Towards Monkeypox and COVID-19 Case Tracing and Analysing [Dataset]. http://doi.org/10.5281/zenodo.10987743
    Explore at:
    xml, binAvailable download formats
    Dataset updated
    Apr 17, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gabriel H. A. Medeiros; Gabriel H. A. Medeiros
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains:

    • The BioPropaPhen ontology created from PropaPhen, being specialized with UMLS and World Knowledge Graph ontologies;
    • A neo4j 4.4.3 dump file of the BioPropaPhenKG knowledge graph with WHO ground truth data about COVID-19 and Monkeypox, and enhanced presence edges between UMLS entities to World KG entities for evaluating the Description-Detection-Prediction Framework

    The datasets used for enhancing the KG are:

    PhenomenonDatasetPeriodDocumentsSourceLink
    COVID-19AylienNov-20198Online Newsttps://aylien.com/resources/datasets/coronavirus-dataset
    COVID-19CORD-19Dec-2019720Medical Articleshttps://allenai.org/data/cord-19
    COVID-19RedditCOVIDFeb-20204,980Social Mediahttps://paperswithcode.com/dataset/the-reddit-covid-dataset
    MonkeypoxMined from BBCMay-202227Online News
    MonkeypoxMined from PubmedJune-202236Medical Articles
    MonkeypoxMonkeyPox2022May-202233,826Social Mediahttps://doi.org/10.3390/idr14060087
  16. Number of U.S. COVID-19 cases from Jan. 20, 2020 - Nov. 11, 2022, by week

    • statista.com
    Updated Nov 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Number of U.S. COVID-19 cases from Jan. 20, 2020 - Nov. 11, 2022, by week [Dataset]. https://www.statista.com/statistics/1102816/coronavirus-covid19-cases-number-us-americans-by-day/
    Explore at:
    Dataset updated
    Nov 17, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 20, 2020 - Nov 11, 2022
    Area covered
    United States
    Description

    Around 282 thousand new cases of COVID-19 were reported in the United States during the week ending November 11, 2022. Between January 20, 2020 and November 11, 2022 there had been around 96.8 million confirmed cases of COVID-19 with over one million deaths in the U.S. as reported by the World Health Organization.

    How did the coronavirus outbreak start? Pneumonia cases with an unknown cause were first reported in the Hubei province of China at the end of December 2019. Patients described symptoms including a fever and difficulty breathing, and early reports suggested no evidence of human-to-human transmission. We now know that a novel coronavirus named SARS-CoV-2 is causing the disease COVID-19. The virus has been characterized as a pandemic and continues to spread from person to person – there have been around 642 million cases worldwide as of November 17, 2022.

    The importance of isolation and quarantine In an effort to contain the early spread of the virus, China tightened travel restrictions and enforced isolation measures in the hardest-hit areas. The World Health Organization endorsed this strategy, and countries around the world implemented similar quarantine measures. Staying at home can limit the spread of the virus, and this applies to individuals who are only showing mild symptoms or none at all. Asymptomatic carriers of the virus – those that are experiencing no symptoms – may transmit the virus to people who are at a higher risk of getting very sick.

  17. m

    COVID-19 reporting

    • mass.gov
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Executive Office of Health and Human Services (2023). COVID-19 reporting [Dataset]. https://www.mass.gov/info-details/covid-19-reporting
    Explore at:
    Dataset updated
    Dec 4, 2023
    Dataset provided by
    Department of Public Health
    Executive Office of Health and Human Services
    Area covered
    Massachusetts
    Description

    The COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.

  18. Dataset & Code related to article 'Bilateral Adaptive Graph Convolutional...

    • zenodo.org
    • explore.openaire.eu
    zip
    Updated Sep 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yanda Meng; Yanda Meng; Joshua Bridge; Siyu Ren; Cliff Addison; Manhui Wang; Cristin Merritt; Stu Franks; Maria Mackey; Steve Messenger; Renrong Sun; Yitian Zhao; Yalin Zheng; Yalin Zheng; Joshua Bridge; Siyu Ren; Cliff Addison; Manhui Wang; Cristin Merritt; Stu Franks; Maria Mackey; Steve Messenger; Renrong Sun; Yitian Zhao (2023). Dataset & Code related to article 'Bilateral Adaptive Graph Convolutional Network on CT based COVID-19 Diagnosis with Uncertainty-Aware Consensus-Assisted Multiple Instance Learning' [Dataset]. http://doi.org/10.5281/zenodo.7074750
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 5, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Yanda Meng; Yanda Meng; Joshua Bridge; Siyu Ren; Cliff Addison; Manhui Wang; Cristin Merritt; Stu Franks; Maria Mackey; Steve Messenger; Renrong Sun; Yitian Zhao; Yalin Zheng; Yalin Zheng; Joshua Bridge; Siyu Ren; Cliff Addison; Manhui Wang; Cristin Merritt; Stu Franks; Maria Mackey; Steve Messenger; Renrong Sun; Yitian Zhao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This record contains the 7768 lung masks manual annotations, implementation code, and pre-trained models related to the article 'Bilateral Adaptive Graph Convolutional Network on CT based COVID-19 Diagnosis with Uncertainty-Aware Consensus-Assisted Multiple Instance Learning'

    Also we include the visualised, selected top D reliable CT slices for all COVID-19 patients in the test dataset for better understanding.

    For the detailed usage of the data and code, please refer to https://github.com/smallmax00/BAGCN-Covid19

  19. COVID-19 death rates in the United States as of March 10, 2023, by state

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 death rates in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109011/coronavirus-covid19-death-rates-us-by-state/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.

  20. f

    Table 1_Longitudinal alterations in morphological brain networks and...

    • frontiersin.figshare.com
    docx
    Updated Apr 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ying Liu; Bei Peng; Haixia Qin; Kaixuan Zhou; Shihuan Lin; Yinqi Lai; Lingyan Liang; Gaoxiong Duan; Xiaocheng Li; Xiaoyan Zhou; Yichen Wei; Qingping Zhang; Jinli Huang; Yan Zhang; Jiazhu Huang; Ruijing Sun; Sijing Tuo; Yuxin Chen; Demao Deng (2025). Table 1_Longitudinal alterations in morphological brain networks and cognitive function in common-type COVID-19: a 3-month follow-up study.docx [Dataset]. http://doi.org/10.3389/fneur.2025.1549195.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Apr 15, 2025
    Dataset provided by
    Frontiers
    Authors
    Ying Liu; Bei Peng; Haixia Qin; Kaixuan Zhou; Shihuan Lin; Yinqi Lai; Lingyan Liang; Gaoxiong Duan; Xiaocheng Li; Xiaoyan Zhou; Yichen Wei; Qingping Zhang; Jinli Huang; Yan Zhang; Jiazhu Huang; Ruijing Sun; Sijing Tuo; Yuxin Chen; Demao Deng
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    PurposeTo investigate the morphological network and cognitive function of patients with common-type coronavirus disease 2019 (COVID-19) during the acute phase, and examine dynamic changes at 3-month follow-up.MethodsAt baseline, high-resolution T1-weighted imaging was conducted in 35 patients with COVID-19 and 40 healthy controls; 22 patients were reassessed at 3 months. All patients underwent cognitive assessments. Individual morphological brain networks were constructed using grey matter volume similarity, and topological properties were analyzed using graph theory. We used an independent sample t-test at baseline and a paired sample t-test to compare the 3-month follow-up with the acute phase, with false discovery rate corrections (p 

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data

Coronavirus (Covid-19) Data in the United States

Explore at:
csvAvailable download formats
Dataset provided by
New York Times
License

https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu