Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
hospitalization
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5505749%2F2b83271d61e47e2523e10dc9c28e545c%2F600x200.jpg?generation=1599042483103679&alt=media" alt="">
Daily global COVID-19 data for all countries, provided by Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE). If you want to use the update version of the data, you can use our daily updated data with the help of api key by entering it via Altadata.
In this data product, you may find the latest and historical global daily data on the COVID-19 pandemic for all countries.
The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). The outbreak was first identified in December 2019 in Wuhan, China. The World Health Organization declared the outbreak a Public Health Emergency of International Concern on 30 January 2020 and a pandemic on 11 March. As of 12 August 2020, more than 20.2 million cases of COVID‑19 have been reported in more than 188 countries and territories, resulting in more than 741,000 deaths; more than 12.5 million people have recovered.
The Johns Hopkins Coronavirus Resource Center is a continuously updated source of COVID-19 data and expert guidance. They aggregate and analyze the best data available on COVID-19 - including cases, as well as testing, contact tracing and vaccine efforts - to help the public, policymakers and healthcare professionals worldwide respond to the pandemic.
JHU Coronavirus COVID-19 Global Cases, by country
PHS is updating the Coronavirus Global Cases dataset weekly, Monday, Wednesday and Friday from Cloud Marketplace.
This data comes from the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). This database was created in response to the Coronavirus public health emergency to track reported cases in real-time. The data include the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries, aggregated at the appropriate province or state. It was developed to enable researchers, public health authorities and the general public to track the outbreak as it unfolds. Additional information is available in the blog post.
Visual Dashboard (desktop): https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Included Data Sources are:
%3C!-- --%3E
**Terms of Use: **
This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.
**U.S. county-level characteristics relevant to COVID-19 **
Chin, Kahn, Krieger, Buckee, Balsari and Kiang (forthcoming) show that counties differ significantly in biological, demographic and socioeconomic factors that are associated with COVID-19 vulnerability. A range of publicly available county-specific data identifying these key factors, guided by international experiences and consideration of epidemiological parameters of importance, have been combined by the authors and are available for use:
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A coronavirus dataset with 104 countries constructed from different reliable sources, where each row represents a country, and the columns represent geographic, climate, healthcare, economic, and demographic factors that may contribute to accelerate/slow the spread of the COVID-19. The assumptions for the different factors are as follows:
The last column represents the number of daily tests performed and the total number of cases and deaths reported each day.
https://raw.githubusercontent.com/SamBelkacem/COVID19-Algeria-and-World-Dataset/master/Images/Data%20description.png">
https://raw.githubusercontent.com/SamBelkacem/COVID19-Algeria-and-World-Dataset/master/Images/Countries%20by%20geographic%20coordinates.png">
https://raw.githubusercontent.com/SamBelkacem/COVID19-Algeria-and-World-Dataset/master/Images/Statistical%20description%20of%20the%20data.png">
https://raw.githubusercontent.com/SamBelkacem/COVID19-Algeria-and-World-Dataset/master/Images/Data%20distribution.png">
The dataset is available in an encoded CSV form on GitHub.
The Python Jupyter Notebook to read and visualize the data is available on nbviewer.
The dataset is updated every month with the latest numbers of COVID-19 cases, deaths, and tests. The last update was on March 01, 2021.
The dataset is constructed from different reliable sources, where each row represents a country, and the columns represent geographic, climate, healthcare, economic, and demographic factors that may contribute to accelerate/slow the spread of the coronavirus. Note that we selected only the main factors for which we found data and that other factors can be used. All data were retrieved from the reliable Our World in Data website, except for data on:
If you want to use the dataset please cite the following arXiv paper, more details about the data construction are provided in it.
@article{belkacem_covid-19_2020,
title = {COVID-19 data analysis and forecasting: Algeria and the world},
shorttitle = {COVID-19 data analysis and forecasting},
journal = {arXiv preprint arXiv:2007.09755},
author = {Belkacem, Sami},
year = {2020}
}
If you have any question or suggestion, please contact me at this email address: s.belkacem@usthb.dz
Coronavirus COVID-19 cummulative cases and deaths by province for China and aggregated by country for the rest of the World.
It includes cases reported and deaths reported per country and worldwide for COVID-19.
The data source comes from the World Health Organization.
I will update as much as possible, but you may find the CSV file at: https://covid.ourworldindata.org/data/full_data.csv
There's a story behind every dataset and here's your opportunity to share yours.
The datasets contain a selection of various data on COVID-19 from January 1st 2020 to June 28th 2021
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Amidst the COVID-19 outbreak, the world is facing great crisis in every way. The value and things we built as a human race are going through tremendous challenges. It is a very small effort to bring curated data set on Novel Corona Virus to accelerate the forecasting and analytical experiments to cope up with this critical situation. It will help to visualize the country level out break and to keep track on regularly added new incidents.
This Dataset contains country wise public domain time series information on COVID-19 outbreak. The Data is sorted alphabetically on Country name and Date of Observation.
The data set contains the following columns:
ObservationDate: The date on which the incidents are observed
country: Country of the Outbreak
Confirmed: Number of confirmed cases till observation date
Deaths: Number of death cases till observation date
Recovered: Number of recovered cases till observation date
New Confirmed: Number of new confirmed cases on observation date
New Deaths: Number of New death cases on observation date
New Recovered: Number of New recovered cases on observation date
latitude: Latitude of the affected country
longitude: Longitude of the affected country
This data set is a cleaner version of the https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset data set with added geo location information and regularly added incident counts. I would like to thank this great effort by SRK.
Johns Hopkins University MoBS lab - https://www.mobs-lab.org/2019ncov.html World Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19 Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Worldwide data on covid-19 cases and the stats related to the pandemic
The CSV file containing the statistics of all the countries regarding the Newly reported cases and cumulated cases.
https://www.kaggle.com/bhuveshkumar/choropleth-map-using-plotly
Originally sourced from https://ourworldindata.org/coronavirus-source-data
Synced daily
The data sources have been updated to use JHU data:
From OWID:
> On 30 November 2020, we changed our source for confirmed cases and deaths to the COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. Our previous source for confirmed cases and deaths, the European Centre for Disease Prevention and Control (ECDC), had announced in November 2020 that it would switch from a daily to a weekly reporting schedule from December. Our World in Data therefore had to transition away from the ECDC as a source to continue to provide daily updates of confirmed cases and deaths. The data last sourced from the ECDC remains available as an archive in the ecdc folder. The format (variable names and types) of our complete COVID-19 dataset remains the same.
The Marshall Project, the nonprofit investigative newsroom dedicated to the U.S. criminal justice system, has partnered with The Associated Press to compile data on the prevalence of COVID-19 infection in prisons across the country. The Associated Press is sharing this data as the most comprehensive current national source of COVID-19 outbreaks in state and federal prisons.
Lawyers, criminal justice reform advocates and families of the incarcerated have worried about what was happening in prisons across the nation as coronavirus began to take hold in the communities outside. Data collected by The Marshall Project and AP shows that hundreds of thousands of prisoners, workers, correctional officers and staff have caught the illness as prisons became the center of some of the country’s largest outbreaks. And thousands of people — most of them incarcerated — have died.
In December, as COVID-19 cases spiked across the U.S., the news organizations also shared cumulative rates of infection among prison populations, to better gauge the total effects of the pandemic on prison populations. The analysis found that by mid-December, one in five state and federal prisoners in the United States had tested positive for the coronavirus -- a rate more than four times higher than the general population.
This data, which is updated weekly, is an effort to track how those people have been affected and where the crisis has hit the hardest.
The data tracks the number of COVID-19 tests administered to people incarcerated in all state and federal prisons, as well as the staff in those facilities. It is collected on a weekly basis by Marshall Project and AP reporters who contact each prison agency directly and verify published figures with officials.
Each week, the reporters ask every prison agency for the total number of coronavirus tests administered to its staff members and prisoners, the cumulative number who tested positive among staff and prisoners, and the numbers of deaths for each group.
The time series data is aggregated to the system level; there is one record for each prison agency on each date of collection. Not all departments could provide data for the exact date requested, and the data indicates the date for the figures.
To estimate the rate of infection among prisoners, we collected population data for each prison system before the pandemic, roughly in mid-March, in April, June, July, August, September and October. Beginning the week of July 28, we updated all prisoner population numbers, reflecting the number of incarcerated adults in state or federal prisons. Prior to that, population figures may have included additional populations, such as prisoners housed in other facilities, which were not captured in our COVID-19 data. In states with unified prison and jail systems, we include both detainees awaiting trial and sentenced prisoners.
To estimate the rate of infection among prison employees, we collected staffing numbers for each system. Where current data was not publicly available, we acquired other numbers through our reporting, including calling agencies or from state budget documents. In six states, we were unable to find recent staffing figures: Alaska, Hawaii, Kentucky, Maryland, Montana, Utah.
To calculate the cumulative COVID-19 impact on prisoner and prison worker populations, we aggregated prisoner and staff COVID case and death data up through Dec. 15. Because population snapshots do not account for movement in and out of prisons since March, and because many systems have significantly slowed the number of new people being sent to prison, it’s difficult to estimate the total number of people who have been held in a state system since March. To be conservative, we calculated our rates of infection using the largest prisoner population snapshots we had during this time period.
As with all COVID-19 data, our understanding of the spread and impact of the virus is limited by the availability of testing. Epidemiology and public health experts say that aside from a few states that have recently begun aggressively testing in prisons, it is likely that there are more cases of COVID-19 circulating undetected in facilities. Sixteen prison systems, including the Federal Bureau of Prisons, would not release information about how many prisoners they are testing.
Corrections departments in Indiana, Kansas, Montana, North Dakota and Wisconsin report coronavirus testing and case data for juvenile facilities; West Virginia reports figures for juvenile facilities and jails. For consistency of comparison with other state prison systems, we removed those facilities from our data that had been included prior to July 28. For these states we have also removed staff data. Similarly, Pennsylvania’s coronavirus data includes testing and cases for those who have been released on parole. We removed these tests and cases for prisoners from the data prior to July 28. The staff cases remain.
There are four tables in this data:
covid_prison_cases.csv
contains weekly time series data on tests, infections and deaths in prisons. The first dates in the table are on March 26. Any questions that a prison agency could not or would not answer are left blank.
prison_populations.csv
contains snapshots of the population of people incarcerated in each of these prison systems for whom data on COVID testing and cases are available. This varies by state and may not always be the entire number of people incarcerated in each system. In some states, it may include other populations, such as those on parole or held in state-run jails. This data is primarily for use in calculating rates of testing and infection, and we would not recommend using these numbers to compare the change in how many people are being held in each prison system.
staff_populations.csv
contains a one-time, recent snapshot of the headcount of workers for each prison agency, collected as close to April 15 as possible.
covid_prison_rates.csv
contains the rates of cases and deaths for prisoners. There is one row for every state and federal prison system and an additional row with the National
totals.
The Associated Press and The Marshall Project have created several queries to help you use this data:
Get your state's prison COVID data: Provides each week's data from just your state and calculates a cases-per-100000-prisoners rate, a deaths-per-100000-prisoners rate, a cases-per-100000-workers rate and a deaths-per-100000-workers rate here
Rank all systems' most recent data by cases per 100,000 prisoners here
Find what percentage of your state's total cases and deaths -- as reported by Johns Hopkins University -- occurred within the prison system here
In stories, attribute this data to: “According to an analysis of state prison cases by The Marshall Project, a nonprofit investigative newsroom dedicated to the U.S. criminal justice system, and The Associated Press.”
Many reporters and editors at The Marshall Project and The Associated Press contributed to this data, including: Katie Park, Tom Meagher, Weihua Li, Gabe Isman, Cary Aspinwall, Keri Blakinger, Jake Bleiberg, Andrew R. Calderón, Maurice Chammah, Andrew DeMillo, Eli Hager, Jamiles Lartey, Claudia Lauer, Nicole Lewis, Humera Lodhi, Colleen Long, Joseph Neff, Michelle Pitcher, Alysia Santo, Beth Schwartzapfel, Damini Sharma, Colleen Slevin, Christie Thompson, Abbie VanSickle, Adria Watson, Andrew Welsh-Huggins.
If you have questions about the data, please email The Marshall Project at info+covidtracker@themarshallproject.org or file a Github issue.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Public health and social measures (PHSMs) are measures or actions by individuals, institutions, communities, local and national governments and international bodies to slow or stop the spread of an infectious disease, such as COVID-19.
Since the start of the COVID-19 pandemic, a number of organizations have begun tracking implementation of PHSMs around the world, using different data collection methods, database designs and classification schemes. A unique collaboration between WHO, the London School of Hygiene and Tropical Medicine, ACAPS, University of Oxford, Global Public Health Intelligence Network, US Centers for Disease Control and Prevention and the Complexity Science Hub Vienna has brought these datasets together, using a common taxonomy and structure, into a single, open-content dataset for public use.
The World Bank has launched a quick-deploying high-frequency phone-monitoring survey of households to generate near real-time insights on the socio-economic impact of COVID-19 on households which hence to be used to support evidence-based response to the crisis. At a moment when all conventional modes of data collection have had to be suspended, a phone-based rapid data collection/tracking tool can generate large payoffs by helping identify affected populations across the vast archipelago as the contagion spreads, identify with a high degree of granularity the mechanisms of socio-economic impact, identify gaps in public policy response as the Government responds, generating insight that could be useful in scaling up or redirecting resources as necessary as the affected population copes and eventually regains economic footing.
Household-level; Individual-level: household primary breadwinners, respondent, student, primary caregivers, and under-5 years old kids
The sampling frame of the Indonesia high-frequency phone-based monitoring of socio-economic impacts of COVID-19 on households was the list of households enumerated in three recent World Bank surveys, namely Urban Survey (US), Rural Poverty Survey (RPS), and Digital Economy Household Survey (DEHS). The US was conducted in 2018 with 3,527 sampled households living in the urban areas of 10 cities and 2 districts in 6 provinces. The RPS was conducted in 2019 with the sample size of 2,404 households living in rural areas of 12 districts in 6 provinces. The DEHS was conducted in 2020 with 3,107 sampled households, of which 2,079 households lived in urban areas and 1,028 households lived in rural areas in 26 districts and 31 cities within 27 provinces. Overall, the sampled households drawn from the three surveys across 40 districts and 35 cities in 27 provinces (out of 34 provinces). For the final sampling frame, six survey areas of the DEHS which were overlapped with the survey areas in the UPS were dropped from the sampling frame. This was done in order to avoid potential bias later on when calculating the weights (detailed below). The UPS was chosen to be kept since it had much larger samples (2,016 households) than that of the DEHS (265 households). Three stages of sampling strategies were applied. For the first stage, districts (as primary sampling unit (PSU)) were selected based on probability proportional to size (PPS) systematic sampling in each stratum, with the probability of selection was proportional to the estimated number of households based on the National Household Survey of Socio-economic (SUSENAS) 2019 data. Prior to the selection, districts were sorted by provincial code.
In the second stage, villages (as secondary sampling unit (SSU)) were selected systematically in each district, with probability of selection was proportional to the estimated number of households based on the Village Potential Census (PODES) 2018 data. Prior to the selection, villages were sorted by sub-district code. In the third stage, the number of households was selected systematically in each selected village. Prior to the selection, all households were sorted by implicit stratification, that is gender and education level of the head of households. If the primary selected households could not be contacted or refused to participate in the survey, these households were replaced by households from the same area where the non-response households were located and with the same gender and level of education of households’ head, in order to maintain the same distribution and representativeness of sampled households as in the initial design.
In the Round 8 survey where we focused on early nutrition knowledge and early child development, we introduced an additional respondent who is the primary caregiver of under 5 years old in the household. We prioritized the mother as the target of caregiver respondents. In households with multiple caregivers, one is randomly selected. Furthermore, only the under 5 children who were taken care of by the selected respondent will be listed in the early child development module.
Computer Assisted Telephone Interview [cati]
The questionnaire in English is provided for download under the Documentation section.
The HiFy survey was initially designed as a 5-round panel survey. By end of the fifth round, it is expected that the survey can maintain around 3,000 panel households. Based on the experience of phone-based, panel survey conducted previously in other study in Indonesia, the response rates were expected to be around 60 percent to 80 percent. However, learned from other similar surveys globally, response rates of phone-based survey, moreover phone-based panel survey, are generally below 50 percent. Meanwhile, in the case of the HiFy, information on some of households’ phone numbers was from about 2 years prior the survey with a potential risk that the targeted respondents might not be contactable through that provided numbers (already inactive or the targeted respondents had changed their phone numbers). With these considerations, the estimated response rate of the first survey was set at 60 percent, while the response rates of the following rounds were expected to be 80 percent. Having these assumptions and target, the first round of the survey was expected to target 5,100 households, with 8,500 households in the lists. The actual sample of households in the first round was 4,338 households or 85 percent of the 5,100 target households. However, the response rates in the following rounds are higher than expected, making the sampled households successfully interviewed in Round 2 were 4,119 (95% of Round 1 samples), and in Rounds 3, 4, 5, 6, 7, and 8 were 4,067 (94%), 3,953 (91%), 3,686 (85%), 3,471 (80%), 3,435 (79%), 3,383 (78%) respectively. The number of balanced panel households up to Rounds 3, 4, 5, 6, 7, and 8 are 3,981 (92%), 3,794 (87%), 3,601 (83%), 3,320 (77%), 3,116 (72%), and 2,856 (66%) respectively.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dump provides access to the metadata records of publications, research data, software and projects that may be relevant to the Corona Virus Disease (COVID-19) fight. The dump contains records of the OpenAIRE COVID-19 Gateway, identified via full-text mining and inference techniques applied to the OpenAIRE Research Graph. The Graph is one of the largest Open Access collections of metadata records and links between publications, datasets, software, projects, funders, and organizations, aggregating 12,000+ scientific data sources world-wide, among which the Covid-19 data sources Zenodo COVID-19 Community, WHO (World Health Organization), BIP! FInder for COVID-19, Protein Data Bank, Dimensions, scienceOpen, and RSNA. The dump consists of a tar archive containing gzip files with one json per line. Each json is compliant to the schema available at https://doi.org/10.5281/zenodo.4723499.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
'Our World in Data' is compiling COVID-19 testing data over time for many countries around the world. They are adding further data in the coming days as more details become available for other countries. In some cases figures refer to the number of tests, in other cases to the number of individuals who have been tested. Refer to documentation provided here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Widely available data on confirmed cases only becomes meaningful when it can be interpreted in light of how much a country is testing. This is why Our World in Data built the global database on COVID-19 testing [1]. The additional smoothing and per capita rates make different countries (somewhat) comparable.
Our World in Data also had a good overview of global cause of death two years ago [2] I shared that data as well for additional comparisons.
[1] Max Roser, Hannah Ritchie, Esteban Ortiz-Ospina and Joe Hasell (2020) - "Coronavirus Pandemic (COVID-19)". Published online at OurWorldInData.org. https://ourworldindata.org/coronavirus
[2] Hannah Ritchie (2018) - "Causes of Death". Published online at OurWorldInData.org. https://ourworldindata.org/causes-of-death
The dataset contains COVID-19 statistics for the top countries currently affected by the virus. The data was scraped from two popular sites maintaining daily updates on the spread of COVID-19 - https://www.worldometers.info/ and https://en.wikipedia.org/wiki/COVID-19_pandemic
There are two kinds of csv files. One type of files are country wise daily statistics on COVID-19 spread. The data for the following countries is available:-
For each of these countries, the dataset contains the following columns:-
The second type of file is the overall statistics which contains statistics for all the countries affected in the world. This dataset contains the following columns:-
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The Response2covid19 dataset tracks governments’ responses to COVID-19 all around the world. The dataset is at the country-level and tracks 20 measures – 13 public health measures and 7 economic measures – taken by 228 governments. The tracking of the measures allows creating an index of the rigidity of public health measures and an index of economic response to the pandemic. To access the dataset on this site, an OPEN ICPSR account is needed. The coding of public health measures is based on cross-country information reported by the Assessment Capacities Project (ACAPS), the International Institute for Democracy and Electoral Assistance (IDEA) for elections and the United Nations Educational Scientific and Cultural Organization (UNESCO) for schools closures. For economic measures, the information comes from the IMF and the International Growth Centre.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
hospitalization