Facebook
TwitterAs of May 2, 2023, the coronavirus disease (COVID-19) had been confirmed in almost every country and territory around the world. There had been roughly 687 million cases and 6.86 million deaths.
Vaccine approval in the United States The United States has recorded more coronavirus infections and deaths than any other country in the world. The regulatory agency in the country authorized three COVID-19 vaccines for emergency use. Both the Pfizer-BioNTech and Moderna vaccines were approved in December 2020, while the Johnson & Johnson vaccine was approved in February 2021. As of April 26, 2023, the number of COVID-19 vaccine doses administered in the U.S. had reached 675 million.
The difference between vaccines and antivirals Medications can help with the symptoms of viruses, but it is the role of the immune system to take care of them over time. However, the use of vaccines and antivirals can help the immune system in doing its job. The most tried and tested vaccine method is to inject an inactive or weakened form of a virus, encouraging the immune system to produce protective antibodies. The immune system keeps the virus in its memory, and if the real one appears, the body will recognize it and attack it more efficiently. Antivirals are designed to help target viruses, limiting their ability to reproduce and spread to other cells. They are used by patients who are already infected by a virus and can make the infection less severe.
Facebook
TwitterAs of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.
COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.
Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Overview
The COVID-19 Patient Recovery Dataset is a synthetic collection of anonymized records for around 70,000 COVID-19 patients. It aims to assist with classification tasks in machine learning and epidemiological research. The dataset includes detailed clinical and demographic information, such as symptoms, existing health issues, vaccination status, COVID-19 variants, treatment details, and outcomes related to recovery or mortality. This dataset is great for predicting patient recovery (recovered), mortality (death), disease severity (severity), or the need for intensive care (icu_admission) using algorithms like Logistic Regression, Random Forest, XGBoost, or Neural Networks. It also allows for exploratory data analysis (EDA), statistical modeling, and time-series studies to find patterns in COVID-19 outcomes.
The data is synthetic and reflects realistic trends found in public health data, based on sources like WHO reports. It ensures privacy and follows ethical guidelines. Dates are provided in Excel serial format, meaning 44447 corresponds to September 8, 2021, and can be converted to standard dates using Python’s datetime or Excel. With 70,000 records and 28 columns, this dataset serves as a valuable resource for data scientists, researchers, and students interested in health-related machine learning or pandemic trends.
Data Source and Collection
Source: Synthetic data based on public health patterns from sources like the World Health Organization (WHO). It includes placeholder URLs.
Collection Period: Simulated from early 2020 to mid-2022, covering the Alpha, Delta, and Omicron waves.
Number of Records: 70,000.
File Format: CSV, which works with Pandas, R, Excel, and more.
Data Quality Notes:
About 5% of the values are missing in fields like symptoms_2, symptoms_3, treatment_given_2, and date.
There are rare inconsistencies, such as between recovery/death flags and dates, which may need some preprocessing.
Unique, anonymized patient IDs.
| Column Name | Data Type |
|---|---|
| patient_id | String |
| country | String |
| region/state | String |
| date_reported | Integer |
| age | Integer |
| gender | String |
| comorbidities | String |
| symptoms_1 | String |
| symptoms_2 | String |
| symptoms_3 | String |
| severity | String |
| hospitalized | Integer |
| icu_admission | Integer |
| ventilator_support | Integer |
| vaccination_status | String |
| variant | String |
| treatment_given_1 | String |
| treatment_given_2 | String |
| days_to_recovery | Integer |
| recovered | Integer |
| death | Integer |
| date_of_recovery | Integer |
| date_of_death | Integer |
| tests_conducted | Integer |
| test_type | String |
| hospital_name | String |
| doctor_assigned | String |
| source_url | String |
Key Column Details
patient_id: Unique identifier (e.g., P000001).
country: Reporting country (e.g., India, USA, Brazil, Germany, China, Pakistan, South Africa, UK).
region/state: Sub-national region (e.g., Sindh, California, São Paulo, Beijing).
date_reported, date_of_recovery, date_of_death: Excel serial dates (convert using datetime(1899,12,30) + timedelta(days=value)).
age: Patient age (1–100 years).
gender: Male or Female.
comorbidities: Pre-existing conditions (e.g., Diabetes, Hypertension, Cancer, Heart Disease, Asthma, None).
symptoms_1, symptoms_2, symptoms_3: Reported symptoms (e.g., Cough, Fever, Fatigue, Loss of Smell, Sore Throat, or empty).
severity: Case severity (Mild, Moderate, Severe, Critical).
hospitalized, icu_admission, ventilator_support: Binary (1 = Yes, 0 = No).
vaccination_status: None, Partial, Full, or Booster.
variant: COVID-19 variant (Omicron, Delta, Alpha).
treatment_given_1, treatment_given_2: Treatments administered (e.g., Antibiotics, Remdesivir, Oxygen, Steroids, Paracetamol, or empty).
days_to_recovery: Days from report to recovery (5–30, or empty if not recovered).
recovered, death: Binary outcomes (1 = Yes, 0 = No; generally mutually exclusive).
tests_conducted: Number of tests (1–5).
test_type: PCR or Antigen.
hospital_name: Fictional hospital (e.g., Aga Khan, Mayo Clinic, NHS Trust).
doctor_assigned: Fictional doctor name (e.g., Dr. Smith, Dr. Müller).
source_url: Placeholder.
Summary Statistics
Total Patients: 70,000.
Age: Mean ~50 years, Min 1, Max 100, evenly distributed.
Gender: ~50% Male, ~50% Female.
Top Countries: USA (20%), India (18%), Brazil (15%), China (12%), Germany (10%).
Comorbidities: Diabetes (25%), Hypertension (20%), Cancer (15%), Heart Disease (15%), Asthma (10%), None (15%).
Severity: Mild (60%), Moderate (25%), Severe (10%), Critical (5%).
Recovery Rate: ~60% recovered (recovered=1), ~30% deceased (death=1), ~10% unresolved (both 0).
Vaccination: None (40%), Full (30%), Partial (15%), Booster (15%).
Variants: Omicron (50%), Delt...
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides a unique resource for researchers and data scientists interested in the global dynamics of the COVID-19 pandemic. It focuses on the impact of different SARS-CoV-2 variants and mutations on the duration of local epidemics. By combining variant information with epidemiological data, this dataset allows for a comprehensive analysis of factors influencing the trajectory of the pandemic.
Data Source: The data combines information from the Johns Hopkins University COVID-19 dataset (confirmed_cases.csv and deaths_cases.csv) and the covariants.org dataset (variants.csv). The dataset you see here is the combination of two datasets from Johns Hopkins University and covariants.org.
This dataset is designed for a diverse set of analytical questions. Here are some ideas to inspire the Kaggle community:
Facebook
TwitterBased on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Facebook
TwitterValidate discussions in the media about the effect of temperature on coronavirus.
Data from www.worldometers.info & https://www.accuweather.com/ Banner Photo by CDC on Unsplash
Kindly provide feedback
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is created as a part of covid-19 global forecasting challenge. It contains parameters for the SIR model for different locations worldwide. But the main value of the dataset is estimated transmission period (average period between single infected individual infects next susceptible in pure susceptible population) per week per location.
The model is defined as ODE system as follows:
https://wikimedia.org/api/rest_v1/media/math/render/svg/29728a7d4bebe8197dca7d873d81b9dce954522e" alt="SIR ODE equations">
In order to reflect the transmission rate changes caused by spread constraining measures (social distancing, etc.) the Beta parameter is modelled separately as spline model (spline node estimate for every week). See paramsWeekly.csv which holds the Beta parameter values for every week as well as estimated R0 values (derived from Beta and Gamma paramters) for every week.
The models are fitted on John Hopkins University data (time series) using several runs of Nelder-Mead simplex optimization method (best run is taken) starting at different initial locations and RMSE as a loss.
What parameters are fitted (estimated) per country/province: * the day when the infection emerged in the country * the initial infected count on the first day of the infection * beta (separate value for every week) - an average number of contacts (sufficient to spread the disease) per day each infected individual has * gamma - fixed fraction of the infected group that will recover during any given day * R0 - Equals beta/gamma
How to read the figures. * points are real observed data provided by Johns Hopkins University * curves are model prediction
The dataset contains 3 data portions:
Always do visual check of the model fit (Figures directory) for quality control before start to use the corresponding parameter values in your analysis, as the dataset is obtained by automatic fitting procedure without manual quality control.
Thanks a lot Kaggle for organizing data sharing and challenges that make the world better.
Also many thanks to John Hopkins University for their hard work of gathering COVID-19 statistics worldwide.
You can try to find correlation between model parameters (e.g. gamma - patient recovery rate) and other properties of the modelled locations worldwide (e.g. weather, population density, level of medical care, etc.)
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
I combined several data sources to gain an integrated dataset involving country-level COVID-19 confirmed, recovered and fatalities cases which can be used to build some epidemic models such as SIR, SIR with mortality. Adding information regarding population which can be used for calculating incidence rate and prevalence rate. One of my applications based on this dataset is published at https://dylansp.shinyapps.io/COVID19_Visualization_Analysis_Tool/.
My approach is to retrieve cumulative confirmed cases, fatalities and recovered cases since 2020-01-22 onwards from the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE) COVID-19 dataset, merged with country code as well as population of each country. For the purpose of building epidemic models, I calculated information regarding daily new confirmed cases, recovered cases, and fatalities, together with remaining confirmed cases which equal to cumulative confirmed cases - cumulative recovered cases - cumulative fatalities. I haven't yet to find creditable data sources regarding probable cases of various countries yet. I'll add them once I found them.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.
Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.
2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC
This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.
The data is available from 22 Jan, 2020.
Here’s a polished version suitable for a professional Kaggle dataset description:
This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.
This is the primary dataset and contains aggregated COVID-19 statistics by location and date.
This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.
This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.
Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.
✅ Use covid_19_data.csv for up-to-date aggregated global trends.
✅ Use the line list datasets for detailed, individual-level case analysis.
If you are interested in knowing country level data, please refer to the following Kaggle datasets:
India - https://www.kaggle.com/sudalairajkumar/covid19-in-india
South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset
Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy
Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil
USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa
Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland
Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases
Johns Hopkins University for making the data available for educational and academic research purposes
MoBS lab - https://www.mobs-lab.org/2019ncov.html
World Health Organization (WHO): https://www.who.int/
DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.
BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/
National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm
Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html
Macau Government: https://www.ssm.gov.mo/portal/
Taiwan CDC: https://sites.google....
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectivesThe widespread impact of the COVID-19 pandemic on health systems, economies, and societies globally requires comprehensive data to guide effective recovery efforts. Online surveys have become crucial for rapid and extensive data collection. The Pandemic Response Survey (PRS), utilizing the Facebook Active User Base (FAUB), assessed the pandemic’s population-level impacts across 21 countries, gathering information on healthcare, vaccine confidence, trust, and economic and educational indicators.MethodsConducted from March to May 2023, the PRS, translated into 15 languages, used the FAUB for gender-stratified random sampling of adults 18 years and older. The survey collected responses from 621,000 individuals, achieving a completion rate of 43%. Non-response and inverse propensity score weights were applied to calibrate the data to known demographic totals, enhancing the survey’s generalizability.ResultsThe PRS findings reveal disparities in life satisfaction, food security, delayed healthcare, vaccine confidence, and trust across countries. Life satisfaction was reported as high by 70%–80% of respondents in Egypt, Nigeria, Colombia, and Mexico, while only 20%–30% of respondents in Indonesia, Turkiye, and Viet Nam reported the same. Approximately 50% of respondents in Nigeria, South Africa, and Colombia experienced food insecurity, in contrast to less than 10% in Italy, Japan, and Germany. In Germany, 44% of respondents expressed high vaccine confidence compared to 10.6% in South Africa. Over half of respondents in Indonesia (52.4%) reported that their child was up to date on routine immunisations.ConclusionThe PRS demonstrates the effectiveness of online surveys in capturing actionable data during a global health crisis. The findings underscore the importance of targeted interventions and policy decisions to address the multifaceted challenges of pandemic recovery. Collaborative efforts in data collection and knowledge sharing between nations with shared profiles may foster more effective strategies.
Facebook
TwitterSince the spread of the coronavirus (COVID-19) in Italy started in February 2020, the number of cases has increased daily. However, the vast majority of people who contracted the virus have recovered. As of January 8, 2025, the number of individuals who recovered from coronavirus in Italy reached over 26.5 million. Conversely, the number of deaths also kept increasing, reaching over 198.6 thousand. When looking at the regional level, the region with the highest number of recoveries was Lombardy. The region, however, registered the highest number of coronavirus cases in the country. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Throughout history, the human race has often faced pandemics with substantial numbers of fatalities. As the COVID-19 pandemic has now affected the whole planet, even countries with moderate to strong healthcare support and expenditure have struggled to contain disease transmission and casualties. Countries affected by COVID-19 have different demographics, socioeconomic, and lifestyle health indicators. In this context, it is important to find out to what extent these parametric variations are modulating disease outcomes. To answer this, this study selected demographic, socioeconomic, and health indicators e.g., population density, percentage of the urban population, median age, health expenditure per capita, obesity, diabetes prevalence, alcohol intake, tobacco use, case fatality of non-communicable diseases (NCDs) as independent variables. Countries were grouped according to these variables and influence on dependent variables e.g., COVID-19 positive tests, case fatality, and case recovery rates were statistically analyzed. The results suggested that countries with variable median age had a significantly different outcome on positive test rate (P < 0.01). Both the median age (P = 0.0397) and health expenditure per capita (P = 0.0041) showed a positive relation with case recovery. An increasing number of tests per 100 K of the population showed a positive and negative relationship with the number of positives per 100 K population (P = 0.0001) and the percentage of positive tests (P < 0.0001), respectively. Alcohol intake per capita in liter (P = 0.0046), diabetes prevalence (P = 0.0389), and NCDs mortalities (P = 0.0477) also showed a statistical relation to the case fatality rate. Further analysis revealed that countries with high healthcare expenditure along with high median age and increased urban population showed more case fatality but also had a better recovery rate. Investment in the health sector alone is insufficient in controlling the severity of the pandemic. Intelligent and sustainable healthcare both in urban and rural settings and healthy lifestyle acquired immunity may reduce disease transmission and comorbidity induced fatalities, respectively.
Facebook
TwitterAs of April 13, 2024, South Korea had the highest number of coronavirus recoveries among the selected economies in the Asia-Pacific region, with about 34.5 million recoveries. Australia had the second highest number of coronavirus recoveries among the economies with available data in the Asia-Pacific region, with over 11.8 million recoveries as of April 13, 2024.
Facebook
TwitterExplore global COVID-19 data with interactive charts and visualisations. Compare countries, analyse daily trends, and understand mortality and recovery rates. Beginner-friendly, visually appealing, and perfect for learning data analysis with Python and Plot.
Facebook
TwitterCOVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
A word on the flaws of numbers like this
People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This 6MB download is a zip file containing 5 pdf documents and 2 xlsx spreadsheets. Presentation on COVID-19 and the potential impacts on employment
May 2020Waka Kotahi wants to better understand the potential implications of the COVID-19 downturn on the land transport system, particularly the potential impacts on regional economies and communities.
To do this, in May 2020 Waka Kotahi commissioned Martin Jenkins and Infometrics to consider the potential impacts of COVID-19 on New Zealand’s economy and demographics, as these are two key drivers of transport demand. In addition to providing a scan of national and international COVID-19 trends, the research involved modelling the economic impacts of three of the Treasury’s COVID-19 scenarios, to a regional scale, to help us understand where the impacts might be greatest.
Waka Kotahi studied this modelling by comparing the percentage difference in employment forecasts from the Treasury’s three COVID-19 scenarios compared to the business as usual scenario.
The source tables from the modelling (Tables 1-40), and the percentage difference in employment forecasts (Tables 41-43), are available as spreadsheets.
Arataki - potential impacts of COVID-19 Final Report
Employment modelling - interactive dashboard
The modelling produced employment forecasts for each region and district over three time periods – 2021, 2025 and 2031. In May 2020, the forecasts for 2021 carried greater certainty as they reflected the impacts of current events, such as border restrictions, reduction in international visitors and students etc. The 2025 and 2031 forecasts were less certain because of the potential for significant shifts in the socio-economic situation over the intervening years. While these later forecasts were useful in helping to understand the relative scale and duration of potential COVID-19 related impacts around the country, they needed to be treated with care recognising the higher levels of uncertainty.
The May 2020 research suggested that the ‘slow recovery scenario’ (Treasury’s scenario 5) was the most likely due to continuing high levels of uncertainty regarding global efforts to manage the pandemic (and the duration and scale of the resulting economic downturn).
The updates to Arataki V2 were framed around the ‘Slower Recovery Scenario’, as that scenario remained the most closely aligned with the unfolding impacts of COVID-19 in New Zealand and globally at that time.
Find out more about Arataki, our 10-year plan for the land transport system
May 2021The May 2021 update to employment modelling used to inform Arataki Version 2 is now available. Employment modelling dashboard - updated 2021Arataki used the May 2020 information to compare how various regions and industries might be impacted by COVID-19. Almost a year later, it is clear that New Zealand fared better than forecast in May 2020.Waka Kotahi therefore commissioned an update to the projections through a high-level review of:the original projections for 2020/21 against performancethe implications of the most recent global (eg International monetary fund world economic Outlook) and national economic forecasts (eg Treasury half year economic and fiscal update)The treasury updated its scenarios in its December half year fiscal and economic update (HYEFU) and these new scenarios have been used for the revised projections.Considerable uncertainty remains about the potential scale and duration of the COVID-19 downturn, for example with regards to the duration of border restrictions, update of immunisation programmes. The updated analysis provides us with additional information regarding which sectors and parts of the country are likely to be most impacted. We continue to monitor the situation and keep up to date with other cross-Government scenario development and COVID-19 related work. The updated modelling has produced employment forecasts for each region and district over three time periods - 2022, 2025, 2031.The 2022 forecasts carry greater certainty as they reflect the impacts of current events. The 2025 and 2031 forecasts are less certain because of the potential for significant shifts over that time.
Data reuse caveats: as per license.
Additionally, please read / use this data in conjunction with the Infometrics and Martin Jenkins reports, to understand the uncertainties and assumptions involved in modelling the potential impacts of COVID-19.
COVID-19’s effect on industry and regional economic outcomes for NZ Transport Agency [PDF 620 KB]
Data quality statement: while the modelling undertaken is high quality, it represents two point-in-time analyses undertaken during a period of considerable uncertainty. This uncertainty comes from several factors relating to the COVID-19 pandemic, including:
a lack of clarity about the size of the global downturn and how quickly the international economy might recover differing views about the ability of the New Zealand economy to bounce back from the significant job losses that are occurring and how much of a structural change in the economy is required the possibility of a further wave of COVID-19 cases within New Zealand that might require a return to Alert Levels 3 or 4.
While high levels of uncertainty remain around the scale of impacts from the pandemic, particularly in coming years, the modelling is useful in indicating the direction of travel and the relative scale of impacts in different parts of the country.
Data quality caveats: as noted above, there is considerable uncertainty about the potential scale and duration of the COVID-19 downturn. Please treat the specific results of the modelling carefully, particularly in the forecasts to later years (2025, 2031), given the potential for significant shifts in New Zealand's socio-economic situation before then.
As such, please use the modelling results as a guide to the potential scale of the impacts of the downturn in different locations, rather than as a precise assessment of impacts over the coming decade.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The monthly excess mortality indicator is based on the exceptional data collection on weekly deaths that Eurostat and the National Statistical Institutes set up, in April 2020, in order to support the policy and research efforts related to the COVID-19 pandemic. With that data collection, Eurostat's target was to provide quickly statistics assessing the changing situation of the total number of deaths on a weekly basis, from early 2020 onwards.
The National Statistical Institutes transmit available data on total weekly deaths, classified by sex, 5-year age groups and NUTS3 regions (NUTS2021) over the last 20 years, on a voluntary basis. The resulting online tables, and complementary metadata, are available in the folder Weekly deaths - special data collection (demomwk).
Starting in 2025, the weekly deaths data collected on a quarterly basis. The database updated on the 16th of June 2025 (1st quarter), on the 16 th of September 2025 (2nd quarter), and next update will be in mid-December 2025 (3rd quarter), and mid-February 2026 (4th quarter).
In December 2020, Eurostat released the European Recovery Statistical Dashboard containing also indicators tracking economic and social developments, including health. In this context, “excess mortality” offers elements for monitoring and further analysing direct and indirect effects of the COVID-19 pandemic.
The monthly excess mortality indicator draws attention to the magnitude of the crisis by providing a comprehensive comparison of additional deaths amongst the European countries and allowing for further analysis of its causes. The number of deaths from all causes is compared with the expected number of deaths during a certain period in the past (baseline period, 2016-2019).
The reasons that excess mortality may vary according to different phenomena are that the indicator is comparing the total number of deaths from all causes with the expected number of deaths during a certain period in the past (baseline). While a substantial increase largely coincides with a COVID-19 outbreak in each country, the indicator does not make a distinction between causes of death. Similarly, it does not take into account changes over time and differences between countries in terms of the size and age/sex structure of the population Statistics on excess deaths provide information about the burden of mortality potentially related to the COVID-19 pandemic, thereby covering not only deaths that are directly attributed to the virus but also those indirectly related to or even due to another reason. For example, In July 2022, several countries recorded unusually high numbers of excess deaths compared to the same month of 2020 and 2021, a situation probably connected not only to COVID-19 but also to the heatwaves that affected parts of Europe during the reference period.
In addition to confirmed deaths, excess mortality captures COVID-19 deaths that were not correctly diagnosed and reported, as well as deaths from other causes that may be attributed to the overall crisis. It also accounts for the partial absence of deaths from other causes like accidents that did not occur due, for example, to the limitations in commuting or travel during the lockdown periods.
Facebook
TwitterAmong COVID-19 patients in the United States from February 12 to March 16, 2020, estimated case-fatality rates were highest for adults aged 85 years and older. Younger people appeared to have milder symptoms, and there were no deaths reported among persons aged 19 years and under.
Tracking the virus in the United States The outbreak of a previously unknown viral pneumonia was first reported in China toward the end of December 2019. The first U.S. case of COVID-19 was recorded in mid-January 2020, confirmed in a patient who had returned to the United States from China. The virus quickly started to spread, and the first community-acquired case was confirmed one month later in California. Overall, there had been approximately 4.5 million coronavirus cases in the country by the start of August 2020.
U.S. health care system stretched California, Florida, and Texas are among the states with the most coronavirus cases. Even the best-resourced hospitals in the United States have struggled to cope with the crisis, and certain areas of the country were dealt further blows by new waves of infections in July 2020. Attention is rightly focused on fighting the pandemic, but as health workers are redirected to care for COVID-19 patients, the United States must not lose sight of other important health care issues.
Facebook
TwitterThis dataset is daily time series data of all the COVID 19 confirmed, recovered and death cases across different nations in the world. It consists of columns:
Date <- From 22/01/2020 to the current date Country/Region <- Countries affected by Covid-19 Province/State <- Specific states in the Country Lat <- Latitude of the Country Long <- Longitude of the Country Confirmed <- Total Number of Confirmed Cases per day Recovered <- Total Number of Recovery Cases per day Deaths <- Total Number of Death Cases per day
Original Data Source <- https://raw.githubusercontent.com/datasets/covid-19/master/data/time-series-19-covid-combined.csv
Facebook
TwitterAs of May 2, 2023, the coronavirus disease (COVID-19) had been confirmed in almost every country and territory around the world. There had been roughly 687 million cases and 6.86 million deaths.
Vaccine approval in the United States The United States has recorded more coronavirus infections and deaths than any other country in the world. The regulatory agency in the country authorized three COVID-19 vaccines for emergency use. Both the Pfizer-BioNTech and Moderna vaccines were approved in December 2020, while the Johnson & Johnson vaccine was approved in February 2021. As of April 26, 2023, the number of COVID-19 vaccine doses administered in the U.S. had reached 675 million.
The difference between vaccines and antivirals Medications can help with the symptoms of viruses, but it is the role of the immune system to take care of them over time. However, the use of vaccines and antivirals can help the immune system in doing its job. The most tried and tested vaccine method is to inject an inactive or weakened form of a virus, encouraging the immune system to produce protective antibodies. The immune system keeps the virus in its memory, and if the real one appears, the body will recognize it and attack it more efficiently. Antivirals are designed to help target viruses, limiting their ability to reproduce and spread to other cells. They are used by patients who are already infected by a virus and can make the infection less severe.