Facebook
TwitterNote: This COVID-19 data set is no longer being updated as of December 1, 2023. Access current COVID-19 data on the CDPH respiratory virus dashboard (https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/Respiratory-Viruses/RespiratoryDashboard.aspx) or in open data format (https://data.chhs.ca.gov/dataset/respiratory-virus-dashboard-metrics).
As of August 17, 2023, data is being updated each Friday.
For death data after December 31, 2022, California uses Provisional Deaths from the Center for Disease Control and Prevention’s National Center for Health Statistics (NCHS) National Vital Statistics System (NVSS). Prior to January 1, 2023, death data was sourced from the COVID-19 registry. The change in data source occurred in July 2023 and was applied retroactively to all 2023 data to provide a consistent source of death data for the year of 2023.
As of May 11, 2023, data on cases, deaths, and testing is being updated each Thursday. Metrics by report date have been removed, but previous versions of files with report date metrics are archived below.
All metrics include people in state and federal prisons, US Immigration and Customs Enforcement facilities, US Marshal detention facilities, and Department of State Hospitals facilities. Members of California's tribal communities are also included.
The "Total Tests" and "Positive Tests" columns show totals based on the collection date. There is a lag between when a specimen is collected and when it is reported in this dataset. As a result, the most recent dates on the table will temporarily show NONE in the "Total Tests" and "Positive Tests" columns. This should not be interpreted as no tests being conducted on these dates. Instead, these values will be updated with the number of tests conducted as data is received.
Facebook
Twitterhttps://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterNote: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken out by age group. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes. Starting in July 2020, this dataset will be updated every weekday. Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020. A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports. Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
NOTE: This dataset has been retired and marked as historical-only.
Only Chicago residents are included based on the home ZIP Code as provided by the medical provider. If a ZIP was missing or was not valid, it is displayed as "Unknown".
Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the week the test specimen was collected. For privacy reasons, until a ZIP Code reaches five cumulative cases, both the weekly and cumulative case counts will be blank. Therefore, summing the “Cases - Weekly” column is not a reliable way to determine case totals. Deaths are those that have occurred among cases based on the week of death.
For tests, each test is counted once, based on the week the test specimen was collected. Tests performed prior to 3/1/2020 are not included. Test counts include multiple tests for the same person (a change made on 10/29/2020). PCR and antigen tests reported to Chicago Department of Public Health (CDPH) through electronic lab reporting are included. Electronic lab reporting has taken time to onboard and testing availability has shifted over time, so these counts are likely an underestimate of community infection.
The “Percent Tested Positive” columns are calculated by dividing the number of positive tests by the number of total tests . Because of the data limitations for the Tests columns, such as persons being tested multiple times as a requirement for employment, these percentages may vary in either direction from the actual disease prevalence in the ZIP Code.
Facebook
Twitterhttps://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
This dataset reports the daily reported number of deaths involving COVID-19 by fatality type.
Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool
Data includes:
The method used to count COVID-19 deaths has changed, effective December 1, 2022. Prior to December 1 2022, deaths were counted based on the date the death was updated in the public health unit’s system. Going forward, deaths are counted on the date they occurred.
On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023.
CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags.
As of December 1, 2022, data are based on the date on which the death occurred. This reporting method differs from the prior method which is based on net change in COVID-19 deaths reported day over day.
Data are based on net change in COVID-19 deaths for which COVID-19 caused the death reported day over day. Deaths are not reported by the date on which death happened as reporting may include deaths that happened on previous dates.
Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts.
Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different.
Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the number of deaths involving COVID-19 reported.
"_Cause of death unknown_" is the category of death for COVID-19 positive individuals with cause of death still under investigation, or for which the public health unit was unable to determine cause of death. The category may change later when the cause of death is confirmed either as “COVID-19 as the underlying cause of death”, “COVID-19 contributed but not underlying cause,” or “COVID-19 unrelated”.
"_Cause of death missing_" is the category of death for COVID-19 positive individuals with the cause of death missing in CCM.
Rates for the most recent days are subject to reporting lags
All data reflects totals from 8 p.m. the previous day.
This dataset is subject to change.
Facebook
TwitterNotice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Daily updates of Covid-19 Global Excess Deaths from the Economist's GitHub repository: https://github.com/TheEconomist/covid-19-the-economist-global-excess-deaths-model
Interpreting estimates
Estimating excess deaths for every country every day since the pandemic began is a complex and difficult task. Rather than being overly confident in a single number, limited data means that we can often only give a very very wide range of plausible values. Focusing on central estimates in such cases would be misleading: unless ranges are very narrow, the 95% range should be reported when possible. The ranges assume that the conditions for bootstrap confidence intervals are met. Please see our tracker page and methodology for more information.
New variants
The Omicron variant, first detected in southern Africa in November 2021, appears to have characteristics that are different to earlier versions of sars-cov-2. Where this variant is now dominant, this change makes estimates uncertain beyond the ranges indicated. Other new variants may do the same. As more data is incorporated from places where new variants are dominant, predictions improve.
Non-reporting countries
Turkmenistan and the Democratic People's Republic of Korea have not reported any covid-19 figures since the start of the pandemic. They also have not published all-cause mortality data. Exports of estimates for the Democratic People's Republic of Korea have been temporarily disabled as it now issues contradictory data: reporting a significant outbreak through its state media, but zero confirmed covid-19 cases/deaths to the WHO.
Acknowledgements
A special thanks to all our sources and to those who have made the data to create these estimates available. We list all our sources in our methodology. Within script 1, the source for each variable is also given as the data is loaded, with the exception of our sources for excess deaths data, which we detail in on our free-to-read excess deaths tracker as well as on GitHub. The gradient booster implementation used to fit the models is aGTBoost, detailed here.
Calculating excess deaths for the entire world over multiple years is both complex and imprecise. We welcome any suggestions on how to improve the model, be it data, algorithm, or logic. If you have one, please open an issue.
The Economist would also like to acknowledge the many people who have helped us refine the model so far, be it through discussions, facilitating data access, or offering coding assistance. A special thanks to Ariel Karlinsky, Philip Schellekens, Oliver Watson, Lukas Appelhans, Berent Å. S. Lunde, Gideon Wakefield, Johannes Hunger, Carol D'Souza, Yun Wei, Mehran Hosseini, Samantha Dolan, Mollie Van Gordon, Rahul Arora, Austin Teda Atmaja, Dirk Eddelbuettel and Tom Wenseleers.
All coding and data collection to construct these models (and make them update dynamically) was done by Sondre Ulvund Solstad. Should you have any questions about them after reading the methodology, please open an issue or contact him at sondresolstad@economist.com.
Suggested citation The Economist and Solstad, S. (corresponding author), 2021. The pandemic’s true death toll. [online] The Economist. Available at: https://www.economist.com/graphic-detail/coronavirus-excess-deaths-estimates [Accessed ---]. First published in the article "Counting the dead", The Economist, issue 20, 2021.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected with COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people, and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness. During the entire course of the pandemic, one of the main problems that healthcare providers have faced is the shortage of medical resources and a proper plan to efficiently distribute them. In these tough times, being able to predict what kind of resource an individual might require at the time of being tested positive or even before that will be of immense help to the authorities as they would be able to procure and arrange for the resources necessary to save the life of that patient.
The main goal of this project is to build a machine learning model that, given a Covid-19 patient's current symptom, status, and medical history, will predict whether the patient is in high risk or not.
The dataset was provided by the Mexican government (link). This dataset contains an enormous number of anonymized patient-related information including pre-conditions. The raw dataset consists of 21 unique features and 1,048,576 unique patients. In the Boolean features, 1 means "yes" and 2 means "no". values as 97 and 99 are missing data.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The number of deaths registered in England and Wales due to and involving coronavirus (COVID-19). Breakdowns include age, sex, region, local authority, Middle-layer Super Output Area (MSOA), indices of deprivation and place of death. Includes age-specific and age-standardised mortality rates.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.
The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.
The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.
Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf
Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics
Data are subject to future revision as reporting changes.
Starting in July 2020, this dataset will be updated every weekday.
Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.
A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.
Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
Facebook
TwitterRead the associated blogpost for a detailed description of how this dataset was prepared; plus extra code for producing animated maps.
The 2019 Novel Coronavirus (COVID-19) continues to spread in countries around the world. This dataset provides daily updated number of reported cases & deaths in Germany on the federal state (Bundesland) and county (Landkreis/Stadtkreis) level. In April 2021 I added a dataset on vaccination progress. In addition, I provide geospatial shape files and general state-level population demographics to aid the analysis.
The dataset consists of thre main csv files: covid_de.csv, demgraphics_de.csv, and covid_de_vaccines.csv. The geospatial shapes are included in the de_state.* files. See the column descriptions below for more detailed information.
covid_de.csv: COVID-19 cases and deaths which will be updated daily. The original data are being collected by Germany's Robert Koch Institute and can be download through the National Platform for Geographic Data (the latter site also hosts an interactive dashboard). I reshaped and translated the data (using R tidyverse tools) to make it better accessible. This blogpost explains how I prepared the data, and describes how to produces animated maps.
demographics_de.csv: General Demographic Data about Germany on the federal state level. Those have been downloaded from Germany's Federal Office for Statistics (Statistisches Bundesamt) through their Open Data platform GENESIS. The data reflect the (most recent available) estimates on 2018-12-31. You can find the corresponding table here.
covid_de_vaccines.csv: In April 2021 I added this file that contains the Covid-19 vaccination progress for Germany as a whole. It details daily doses, broken down cumulatively by manufacturer, as well as the cumulative number of people having received their first and full vaccination. The earliest data are from 2020-12-27.
de_state.*: Geospatial shape files for Germany's 16 federal states. Downloaded via Germany's Federal Agency for Cartography and Geodesy . Specifically, the shape file was obtained from this link.
COVID-19 dataset covid_de.csv:
state: Name of the German federal state. Germany has 16 federal states. I removed converted special characters from the original data.
county: The name of the German Landkreis (LK) or Stadtkreis (SK), which correspond roughly to US counties.
age_group: The COVID-19 data is being reported for 6 age groups: 0-4, 5-14, 15-34, 35-59, 60-79, and above 80 years old. As a shortcut the last category I'm using "80-99", but there might well be persons above 99 years old in this dataset. This column has a few NA entries.
gender: Reported as male (M) or female (F). This column has a few NA entries.
date: The calendar date of when a case or death were reported. There might be delays that will be corrected by retroactively assigning cases to earlier dates.
cases: COVID-19 cases that have been confirmed through laboratory work. This and the following 2 columns are counts per day, not cumulative counts.
deaths: COVID-19 related deaths.
recovered: Recovered cases.
Demographic dataset demographics_de.csv:
state, gender, age_group: same as above. The demographic data is available in higher age resolution, but I have binned it here to match the corresponding age groups in the covid_de.csv file.
population: Population counts for the respective categories. These numbers reflect the (most recent available) estimates on 2018-12-31.
Vaccination progress dataset covid_de_vaccines.csv:
date: calendar date of vaccination
doses, doses_first, doses_second: Daily count of administered doses: total, 1st shot, 2nd shot.
pfizer_cumul, moderna_cumul, astrazeneca_cumul: Daily cumulative number of administered vaccinations by manufacturer.
persons_first_cumul, persons_full_cumul: Daily cumulative number of people having received their 1st shot and full vaccination, respectively.
All the data have been extracted from open data sources which are being gratefully acknowledged:
Facebook
TwitterBy Valtteri Kurkela [source]
The dataset is constantly updated and synced hourly to ensure up-to-date information. With over several columns available for analysis and exploration purposes, users can extract valuable insights from this extensive dataset.
Some of the key metrics covered in the dataset include:
Vaccinations: The dataset covers total vaccinations administered worldwide as well as breakdowns of people vaccinated per hundred people and fully vaccinated individuals per hundred people.
Testing & Positivity: Information on total tests conducted along with new tests conducted per thousand people is provided. Additionally, details on positive rate (percentage of positive Covid-19 tests out of all conducted) are included.
Hospital & ICU: Data on ICU patients and hospital patients are available along with corresponding figures normalized per million people. Weekly admissions to intensive care units and hospitals are also provided.
Confirmed Cases: The number of confirmed Covid-19 cases globally is captured in both absolute numbers as well as normalized values representing cases per million people.
5.Confirmed Deaths: Total confirmed deaths due to Covid-19 worldwide are provided with figures adjusted for population size (total deaths per million).
6.Reproduction Rate: The estimated reproduction rate (R) indicates the contagiousness of the virus within a particular country or region.
7.Policy Responses: Besides healthcare-related metrics, this comprehensive dataset includes policy responses implemented by countries or regions such as lockdown measures or travel restrictions.
8.Other Variables of InterestThe data encompasses various socioeconomic factors that may influence Covid-19 outcomes including population density,membership in a continent,gross domestic product(GDP)per capita;
For demographic factors: -Age Structure : percentage populations aged 65 and older,aged (70)older,median age -Gender-specific factors: Percentage of female smokers -Lifestyle-related factors: Diabetes prevalence rate and extreme poverty rate
- Excess Mortality: The dataset further provides insights into excess mortality rates, indicating the percentage increase in deaths above the expected number based on historical data.
The dataset consists of numerous columns providing specific information for analysis, such as ISO code for countries/regions, location names,and units of measurement for different parameters.
Overall,this dataset serves as a valuable resource for researchers, analysts, and policymakers seeking to explore various aspects related to Covid-19
Introduction:
Understanding the Basic Structure:
- The dataset consists of various columns containing different data related to vaccinations, testing, hospitalization, cases, deaths, policy responses, and other key variables.
- Each row represents data for a specific country or region at a certain point in time.
Selecting Desired Columns:
- Identify the specific columns that are relevant to your analysis or research needs.
- Some important columns include population, total cases, total deaths, new cases per million people, and vaccination-related metrics.
Filtering Data:
- Use filters based on specific conditions such as date ranges or continents to focus on relevant subsets of data.
- This can help you analyze trends over time or compare data between different regions.
Analyzing Vaccination Metrics:
- Explore variables like total_vaccinations, people_vaccinated, and people_fully_vaccinated to assess vaccination coverage in different countries.
- Calculate metrics such as people_vaccinated_per_hundred or total_boosters_per_hundred for standardized comparisons across populations.
Investigating Testing Information:
- Examine columns such as total_tests, new_tests, and tests_per_case to understand testing efforts in various countries.
- Calculate rates like tests_per_case to assess testing efficiency or identify changes in testing strategies over time.
Exploring Hospitalization and ICU Data:
- Analyze variables like hosp_patients, icu_patients, and hospital_beds_per_thousand to understand healthcare systems' strain.
- Calculate rates like icu_patients_per_million or hosp_patients_per_million for cross-country comparisons.
Assessing Covid-19 Cases and Deaths:
- Analyze variables like total_cases, new_ca...
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional deaths registration data for single year of age and average age of death (median and mean) of persons whose death involved coronavirus (COVID-19), England and Wales. Includes deaths due to COVID-19 and breakdowns by sex.
Facebook
TwitterNOTE: This dataset has been retired and marked as historical-only. This dataset is a companion to the COVID-19 Daily Cases and Deaths dataset (https://data.cityofchicago.org/d/naz8-j4nc). The major difference in this dataset is that the case, death, and hospitalization corresponding rates per 100,000 population are not those for the single date indicated. They are rolling averages for the seven-day period ending on that date. This rolling average is used to account for fluctuations that may occur in the data, such as fewer cases being reported on weekends, and small numbers. The intent is to give a more representative view of the ongoing COVID-19 experience, less affected by what is essentially noise in the data. All rates are per 100,000 population in the indicated group, or Chicago, as a whole, for “Total” columns. Only Chicago residents are included based on the home address as provided by the medical provider. Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the date the test specimen was collected. Deaths among cases are aggregated by day of death. Hospitalizations are reported by date of first hospital admission. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation. Denominators are from the U.S. Census Bureau American Community Survey 1-year estimate for 2018 and can be seen in the Citywide, 2018 row of the Chicago Population Counts dataset (https://data.cityofchicago.org/d/85cm-7uqa). All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects cases and deaths currently known to CDPH. Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases and deaths, sources used, how cases and deaths are associated to a specific date, and similar factors. Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, U.S. Census Bureau American Community Survey
Facebook
TwitterA. SUMMARY This dataset shows San Francisco COVID-19 deaths by population characteristics. This data may not be immediately available for recently reported deaths. Data updates as more information becomes available. Because of this, death totals may increase or decrease.
Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how deaths have been distributed among different subgroups. This information can reveal trends and disparities among groups.
B. HOW THE DATASET IS CREATED As of January 1, 2023, COVID-19 deaths are defined as persons who had COVID-19 listed as a cause of death or a significant condition contributing to their death on their death certificate. This definition is in alignment with the California Department of Public Health and the national https://preparedness.cste.org/wp-content/uploads/2022/12/CSTE-Revised-Classification-of-COVID-19-associated-Deaths.Final_.11.22.22.pdf">Council of State and Territorial Epidemiologists. Death certificates are maintained by the California Department of Public Health.
Data on the population characteristics of COVID-19 deaths are from: *Case reports *Medical records *Electronic lab reports *Death certificates
Data are continually updated to maximize completeness of information and reporting on San Francisco COVID-19 deaths.
To protect resident privacy, we summarize COVID-19 data by only one population characteristic at a time. Data are not shown until cumulative citywide deaths reach five or more.
Data notes on select population characteristic types are listed below.
Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases.
Gender * The City collects information on gender identity using these guidelines.
C. UPDATE PROCESS Updates automatically at 06:30 and 07:30 AM Pacific Time on Wednesday each week.
Dataset will not update on the business day following any federal holiday.
D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a dataset based on the San Francisco Population and Demographic Census dataset.These population estimates are from the 2018-2022 5-year American Community Survey (ACS).
This dataset includes several characteristic types. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of cumulative deaths.
Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed.
To explore data on the total number of deaths, use the COVID-19 Deaths Over Time dataset.
E. CHANGE LOG
Facebook
TwitterNote: Note: Starting October 10th, 2025 this dataset is deprecated and is no longer being updated. As of April 27, 2023 updates changed from daily to weekly. Summary The cumulative number of confirmed COVID-19 deaths among Maryland residents within a single Maryland jurisdiction. Description The MD COVID-19 - Confirmed Deaths by County data layer is a collection of the statewide confirmed COVID-19 related deaths that have been reported each day by the Vital Statistics Administration that have occurred in each Maryland jurisdiction. A death is classified as confirmed if the person had a laboratory-confirmed positive COVID-19 test result. Some data on deaths may be unavailable due to the time lag between the death, typically reported by a hospital or other facility, and the submission of the complete death certificate. This data layer does not include probable deaths. Probable deaths are available from the MD COVID-19 - Probable Deaths by County data layer. Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
As of July 2nd, 2024 the COVID-19 Deaths by Population Characteristics Over Time dataset has been retired. This dataset is archived and will no longer update. We will be publishing a cumulative deaths by population characteristics dataset that will update moving forward.
A. SUMMARY This dataset shows San Francisco COVID-19 deaths by population characteristics and by date. This data may not be immediately available for recently reported deaths. Data updates as more information becomes available. Because of this, death totals for previous days may increase or decrease. More recent data is less reliable.
Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how deaths have been distributed among different subgroups. This information can reveal trends and disparities among groups.
B. HOW THE DATASET IS CREATED As of January 1, 2023, COVID-19 deaths are defined as persons who had COVID-19 listed as a cause of death or a significant condition contributing to their death on their death certificate. This definition is in alignment with the California Department of Public Health and the national https://preparedness.cste.org/wp-content/uploads/2022/12/CSTE-Revised-Classification-of-COVID-19-associated-Deaths.Final_.11.22.22.pdf">Council of State and Territorial Epidemiologists. Death certificates are maintained by the California Department of Public Health.
Data on the population characteristics of COVID-19 deaths are from: *Case reports *Medical records *Electronic lab reports *Death certificates
Data are continually updated to maximize completeness of information and reporting on San Francisco COVID-19 deaths.
To protect resident privacy, we summarize COVID-19 data by only one characteristic at a time. Data are not shown until cumulative citywide deaths reach five or more.
Data notes on each population characteristic type is listed below.
Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases.
Gender * The City collects information on gender identity using these guidelines.
C. UPDATE PROCESS Updates automatically at 06:30 and 07:30 AM Pacific Time on Wednesday each week.
Dataset will not update on the business day following any federal holiday.
D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
This dataset includes many different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of deaths on each date.
New deaths are the count of deaths within that characteristic group on that specific date. Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed.
This data may not be immediately available for more recent deaths. Data updates as more information becomes available.
To explore data on the total number of deaths, use the COVID-19 Deaths Over Time dataset.
E. CHANGE LOG
Facebook
TwitterThis file contains COVID-19 death counts and rates by month and year of death, jurisdiction of residence (U.S., HHS Region) and demographic characteristics (sex, age, race and Hispanic origin, and age/race and Hispanic origin). United States death counts and rates include the 50 states, plus the District of Columbia.
Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file.
Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death.
Death counts should not be compared across jurisdictions. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly.
The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington.
Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf).
Rate are based on deaths occurring in the specified week and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly) rate prevailed for a full year.
Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).
Facebook
TwitterNote: This COVID-19 data set is no longer being updated as of December 1, 2023. Access current COVID-19 data on the CDPH respiratory virus dashboard (https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/Respiratory-Viruses/RespiratoryDashboard.aspx) or in open data format (https://data.chhs.ca.gov/dataset/respiratory-virus-dashboard-metrics).
As of August 17, 2023, data is being updated each Friday.
For death data after December 31, 2022, California uses Provisional Deaths from the Center for Disease Control and Prevention’s National Center for Health Statistics (NCHS) National Vital Statistics System (NVSS). Prior to January 1, 2023, death data was sourced from the COVID-19 registry. The change in data source occurred in July 2023 and was applied retroactively to all 2023 data to provide a consistent source of death data for the year of 2023.
As of May 11, 2023, data on cases, deaths, and testing is being updated each Thursday. Metrics by report date have been removed, but previous versions of files with report date metrics are archived below.
All metrics include people in state and federal prisons, US Immigration and Customs Enforcement facilities, US Marshal detention facilities, and Department of State Hospitals facilities. Members of California's tribal communities are also included.
The "Total Tests" and "Positive Tests" columns show totals based on the collection date. There is a lag between when a specimen is collected and when it is reported in this dataset. As a result, the most recent dates on the table will temporarily show NONE in the "Total Tests" and "Positive Tests" columns. This should not be interpreted as no tests being conducted on these dates. Instead, these values will be updated with the number of tests conducted as data is received.