Analytics and Data Visualization for COVID-19 Intelligence.An ArcGIS Blog arcticle that explains how to leverage ready-to-use reports and tutorials to gauge COVID-19 pandemic's impact worldwide._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
The HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions displays State-specific monthly trends in inpatient stays related to COVID-19 and other conditions, and facilitates comparisons of the number of hospital discharges, the average length of stays, and in-hospital mortality rates across patient/stay characteristics and States. This information is based on the HCUP State Inpatient Databases (SID), starting with 2018 data, plus newer annual and quarterly inpatient data, if and when available.
The purpose of this code is to produce a line graph visualization of COVID-19 data. This Jupyter notebook was built and run on Google Colab. This code will serve mostly as a guide and will need to be adapted where necessary to be run locally. The separate COVID-19 datasets uploaded to this Dataverse can be used with this code. This upload is made up of the IPYNB and PDF files of the code.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains 3,000 rows and 26 columns of synthetically generated COVID-19 records. It replicates realistic global pandemic data, simulating values for cases, deaths, tests, vaccinations, demographics, and policy measures. The data mimics actual records from sources like Our World in Data, designed specifically for data science experimentation, visualization, and machine learning projects.
It is ideal for:
Practicing exploratory data analysis (EDA)
Creating dashboards
Building predictive models
Teaching or student projects
Kaggle Notebooks without API dependencies
Visual map at kumu.io/access2perspectives/covid19-resources
Data set doi: 10.5281/zenodo.3732377 // available in different formats (pdf, xls, ods, csv,)
Correspondence: (JH) info@access2perspectives.com
Objectives
Provide citizens with crucial and reliable information
Encourage and facilitate South South collaboration
Bridging language barriers
Provide local governments and cities with lessons learned about COVID-19 crisis response
Facilitate global cooperation and immediate response on all societal levels
Enable LMICs to collaborate and innovate across distances and leverage locally available and context-relevant resources
Methodology
The data feeding the map at kumu.io was compiled from online resources and information shared in various community communication channels.
Kumu.io is a visualization platform for mapping complex systems and to provide a deeper understanding of their intrinsic relationships. It provides blended systems thinking, stakeholder mapping, and social network analysis.
Explore the map // https://kumu.io/access2perspectives/covid19-resources#global
Click on individual nodes and view the information by country
info hotlines
governmental informational websites, Twitter feeds & Facebook pages
fact checking online resources
language indicator
DIY resources
clinical staff capacity building
etc.
With the navigation buttons to the right, you can zoom in and out, select and focus on specific elements.
If you have comments, questions or suggestions for improvements on this map email us at info@access2perspectives.com
Contribute
Please add data to the spreadsheet at https://tinyurl.com/COVID19-global-response
you can add additional information on country, city or neighbourhood level (see e.g. the Cape Town entry)
Related documents
Google Doc: tinyurl.com/COVID19-Africa-Response
This dataset was created by Aditya301112
It contains the following files:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets used for this manuscript were derived from multiple sources: Denver Public Health, Esri, Google, and SafeGraph. Any reuse or redistribution of the datasets are subjected to the restrictions of the data providers: Denver Public Health, Esri, Google, and SafeGraph and should consult relevant parties for permissions.1. COVID-19 case dataset were retrieved from Denver Public Health (Link: https://storymaps.arcgis.com/stories/50dbb5e7dfb6495292b71b7d8df56d0a )2. Point of Interests (POIs) data were retrieved from Esri and SafeGraph (Link: https://coronavirus-disasterresponse.hub.arcgis.com/datasets/6c8c635b1ea94001a52bf28179d1e32b/data?selectedAttribute=naics_code) and verified with Google Places Service (Link: https://developers.google.com/maps/documentation/javascript/reference/places-service)3. The activity risk information is accessible from Texas Medical Association (TMA) (Link: https://www.texmed.org/TexasMedicineDetail.aspx?id=54216 )The datasets for risk assessment and mapping are included in a geodatabase. Per SafeGraph data sharing guidelines, raw data cannot be shared publicly. To view the content of the geodatabase, users should have installed ArcGIS Pro 2.7. The geodatabase includes the following:1. POI. Major attributes are locations, name, and daily popularity.2. Denver neighborhood with weekly COVID-19 cases and computed regional risk levels.3. Simulated four travel logs with anchor points provided. Each is a separate point layer.
Daily confirmed new cases, rolling 7-day average
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary table of the patient characteristics and the duration of hospitalization.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 India dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/dhamur/covid19-india-dataset on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This data set contains the data of covid-19 Conformed, Recovered and Deaths in India. This data is took from the non-governmental organization.
COVID19-India - The data from 31-Jan-2020 to 31-Oct-2021. Remaining data from
--- Original source retains full ownership of the source dataset ---
Data visualizations of the COVID-19 pandemic in the United States often have presented case and death rates by state in separate visualizations making it difficult to discern the temporal relationship between these two epidemiological metrics. By combining the COVID-19 case and death rates into a single visualization we have provided an intuitive format for depicting the relationship between cases and deaths. Moreover, by using animation we have made the temporal lag between cases and subsequent deaths more obvious and apparent. This work helps to inform expectations for the trajectory of death rates in the United States given the recent surge in case rates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
As scientific technology and space science progress, remote sensing has emerged as an innovative solution to ease the challenges of the COVID-19 pandemic. To examine the research characteristics and growth trends in using remote sensing for monitoring and managing the COVID-19 research, a bibliometric analysis was conducted on the scientific documents appearing in the Scopus database. A total of 1,509 documents on this study topic were indexed between 2020 and 2022, covering 165 countries, 577 journals, 5239 institutions, and 8,616 authors. The studies related to remote sensing and COVID-19 have a significant increase of 30% with 464 articles. The United States (429 articles, 28.42% of the global output), China (295 articles, 19.54% of the global output), and the United Kingdom (174 articles, 11.53%) appeared as the top three most contributions to the literature related to remote sensing and COVID-19 research. Sustainability, Science of the Total Environment, and International Journal of Environmental Research and Public Health were the three most productive journals in this research field. The utmost predominant themes were COVID-19, remote sensing, spatial analysis, coronavirus, lockdown, and air pollution. The expansion of these topics appears to be associated with cross-sectional research on remote sensing, evidence-based tools, satellite mapping, and geographic information systems (GIS). Global pandemic risks will be monitored and managed much more effectively in the coming years with the use of remote sensing technology.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The dataset data visualization contains information on where COVID-19 is spreading by tracking new cases found each day and the total number of cases and deaths in the US on the county-level. The data can be dowloaded and visualized on the website.
This dataset was created by Darshan Senthil
The PSSUQ is a 19-item validated questionnaire with likest-scale responses (1 to 7); answers of value 8 indicate that the question is "Not Applicable". For more information refer to:
Lewis JR. Psychometric Evaluation of the Post-Study System Usability Questionnaire: The PSSUQ. Proc Hum Factors Ergonomics Soc Annu Meet 1992;36:1259--1260. doi:10.1177/154193129203601617
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The coronavirus traffic light acts as a dynamic tool for a consistent, coordinated and transparent approach by the authorities to COVID-19 according to the respective epidemiological situation at regional level. The Corona traffic light serves as a guidance system for informing authorities and the public about the corresponding COVID-19 risk. On the basis of the coronavirus traffic light, the Austrian authorities are taking appropriate measures and guidelines for all social and economic sectors at regional level. In order to contain the COVID-19 crisis, the public is asked to take note of and comply with these requirements on an ongoing basis. The recommendations and guidelines are based on the respective epidemiological situation and are flexibly adapted to the respective COVID-19 situation. The measures may apply to the entire federal territory, individual states or districts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘us-statewise-covid data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/dhamur/usstatewisecovid-data on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This is a covid19 data set from United States. It includes date, Number of cases, Number of deaths. The other countries data are also available in my Kaggle and Github profile. The links are provided below - Github - Kaggle If you want to read more about the data Click here
--- Original source retains full ownership of the source dataset ---
The DATESET is of US-COUNTRIES for COVID19.
Prediction can be done for column CovidImpacted by choosing Deaths,confirmed cases by some algo and show the accuracy,performance etc
As because we are in COVID19 hope this DATA can be used for beginners,intermediate to work in it Hope it Helps!
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Materials for reproducibility of results in manuscript Rapid on-site pathology visualization of COVID-19 characteristics using higher harmonic generation microscopy.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data obtained from a variety of sources and transformed into a form suitable for driving the Covid-19 Data Explorer. The visual itself is driven by a JSON file which contains the same data as the resources in this dataset which point to published csvs from a Google spreadsheet.
Analytics and Data Visualization for COVID-19 Intelligence.An ArcGIS Blog arcticle that explains how to leverage ready-to-use reports and tutorials to gauge COVID-19 pandemic's impact worldwide._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...