100+ datasets found
  1. COVID-19-Related Shocks in Rural India 2020, Rounds 1-3 - India

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jan 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2021). COVID-19-Related Shocks in Rural India 2020, Rounds 1-3 - India [Dataset]. https://microdata.worldbank.org/index.php/catalog/3830
    Explore at:
    Dataset updated
    Jan 15, 2021
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank
    Time period covered
    2020
    Area covered
    India
    Description

    Abstract

    An effective policy response to the economic impacts of the COVID-19 pandemic requires an enormous range of data to inform the design and response of programs. Public health measures require data on the spread of the disease, beliefs in the population, and capacity of the health system. Relief efforts depend on an understanding of hardships being faced by various segments of the population. Food policy requires measurement of agricultural production and hunger. In such a rapidly evolving pandemic, these data must be collected at a high frequency. Given the unexpected nature of the shock and urgency with which a response was required, Indian policymakers needed to formulate policies affecting India’s 1.4 billion people, without the detailed evidence required to construct effective programs. To help overcome this evidence gap, the World Bank, IDinsight, and the Development Data Lab sought to produce rigorous and responsive data for policymakers across six states in India: Jharkhand, Rajasthan, Uttar Pradesh, Andhra Pradesh, Bihar, and Madhya Pradesh.

    Geographic coverage

    Andhra Pradesh, Bihar, Jharkhand, Madhya Pradesh, Rajasthan, and Uttar Pradesh

    Analysis unit

    Household

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    This dataset includes observations covering six states (Andhra Pradesh, Bihar, Jharkhand, Madhya Pradesh, Rajasthan, Uttar Pradesh) and three survey rounds. The survey did not have a single, unified frame from which to sample phone numbers. The final sample was assembled from several different sample frames, and the choice of frame sample frames varied across states and survey rounds.

    These frames comprise four prior IDinsight projects and from an impact evaluation of the National Rural Livelihoods project conducted by the Ministry of Rural Development. Each of these surveys sought to represent distinct populations, and employed idiosyncratic sample designs and weighting schemes.

    A detailed note covering key features of each sample frame is available for download.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    The survey questionnaires covered the following subjects:

    1. Agriculture: COVID-19-related changes in price realisation, acreage decisions, input expenditure, access to credit, access to fertilisers, etc.

    2. Income and consumption: Changes in wage rates, employment duration, consumption expenditure, prices of essential commodities, status of food security etc.

    3. Migration: Rates of in-migration, migrant income and employment status, return migration plans etc.

    4. Access to relief: Access to in-kind, cash and workfare relief, quantities of relief received, and constraints on the access to relief.

    5. Health: Access to health facilities and rates of foregone healthcare, knowledge of COVID-19 related symptoms and protective behaviours.

    While a number of indicators were consistent across all three rounds, questions were added and removed as and when necessary to account for seasonal changes (i.e: in the agricultural cycle).

    Response rate

    Round 1: ~55% Round 2: ~46% Round 3: ~55%

  2. o

    Coronavirus (Covid-19) Data in the United States

    • openicpsr.org
    • catalog.midasnetwork.us
    • +4more
    Updated Dec 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times (2020). Coronavirus (Covid-19) Data in the United States [Dataset]. http://doi.org/10.3886/E128303V1
    Explore at:
    Dataset updated
    Dec 7, 2020
    Dataset authored and provided by
    New York Times
    Time period covered
    Jan 21, 2020 - Nov 22, 2020
    Area covered
    United States
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. This time series data is being compiled from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak. This deposit contains live data from three geographic levels: U.S., states and counties. ICPSR staff scraped these data on 11/22/2020. For the most current data, please visit https://github.com/nytimes/covid-19-data.

  3. COVID-19 dataset by Our World in Data

    • kaggle.com
    zip
    Updated Sep 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    YuryBolkonsky (2020). COVID-19 dataset by Our World in Data [Dataset]. https://www.kaggle.com/bolkonsky/covid19
    Explore at:
    zip(1453120 bytes)Available download formats
    Dataset updated
    Sep 20, 2020
    Authors
    YuryBolkonsky
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data on COVID-19 (coronavirus) by Our World in Data

    Our complete COVID-19 dataset is a collection of the COVID-19 data maintained by Our World in Data. It is updated daily and includes data on confirmed cases, deaths, and testing, as well as other variables of potential interest.

    🗂️ Download our complete COVID-19 dataset : CSV | XLSX | JSON

    We will continue to publish up-to-date data on confirmed cases, deaths, and testing, throughout the duration of the COVID-19 pandemic.

    Our data sources

    • Confirmed cases and deaths: our data comes from the European Centre for Disease Prevention and Control (ECDC). We discuss how and when the ECDC collects and publishes this data here. The cases & deaths dataset is updated daily. *Note: the number of cases or deaths reported by any institution—including the ECDC, the WHO, Johns Hopkins and others—on a given day does not necessarily represent the actual number on that date. This is because of the long reporting chain that exists between a new case/death and its inclusion in statistics. This also means that negative values in cases and deaths can sometimes appear when a country sends a correction to the ECDC, because it had previously overestimated the number of cases/deaths. Alternatively, large changes can sometimes (although rarely) be made to a country's entire time series if the ECDC decides (and has access to the necessary data) to correct values retrospectively.*
    • Testing for COVID-19: this data is collected by the Our World in Data team from official reports; you can find further details in our post on COVID-19 testing, including our checklist of questions to understand testing data, information on geographical and temporal coverage, and detailed country-by-country source information. The testing dataset is updated around twice a week.
    • Other variables: this data is collected from a variety of sources (United Nations, World Bank, Global Burden of Disease, Blavatnik School of Government, etc.). More information is available in our codebook.

    The complete Our World in Data COVID-19 dataset

    Our complete COVID-19 dataset is available in CSV, XLSX, and JSON formats, and includes all of our historical data on the pandemic up to the date of publication.

    The CSV and XLSX files follow a format of 1 row per location and date. The JSON version is split by country ISO code, with static variables and an array of daily records.

    The variables represent all of our main data related to confirmed cases, deaths, and testing, as well as other variables of potential interest.

    As of 10 September 2020, the columns are: iso_code, continent, location, date, total_cases, new_cases, new_cases_smoothed, total_deaths, new_deaths, new_deaths_smoothed, total_cases_per_million, new_cases_per_million, new_cases_smoothed_per_million, total_deaths_per_million, new_deaths_per_million, new_deaths_smoothed_per_million, total_tests, new_tests, new_tests_smoothed, total_tests_per_thousand, new_tests_per_thousand, new_tests_smoothed_per_thousand, tests_per_case, positive_rate, tests_units, stringency_index, population, population_density, median_age, aged_65_older, aged_70_older, gdp_per_capita, extreme_poverty, cardiovasc_death_rate, diabetes_prevalence, female_smokers, male_smokers, handwashing_facilities, hospital_beds_per_thousand, life_expectancy, human_development_index

    A full codebook is made available, with a description and source for each variable in the dataset.

    Additional files and information

    If you are interested in the individual files that make up the complete dataset, or more detailed information, other files can be found in the subfolders:

  4. o

    Knowledge, attitudes and practices related to COVID-19 in the U.S.

    • openicpsr.org
    • catalog.midasnetwork.us
    delimited
    Updated Jul 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ralph J. DiClemente (2020). Knowledge, attitudes and practices related to COVID-19 in the U.S. [Dataset]. http://doi.org/10.3886/E120308V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Jul 16, 2020
    Dataset provided by
    New York University
    Authors
    Ralph J. DiClemente
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Given the urgent need for data to inform public health messaging to mitigate the spread of the COVID-19 pandemic, this national survey sought to assess the state of COVID-19-related knowledge, beliefs, mental health, substance use changes, and behaviors among a sample of U.S. adults. A survey of U.S. adults was administered online from March 20-30, 2020. The survey collected data on socio-demographic characteristics; COVID-19-related knowledge, awareness and adoption of preventive practices; depression and anxiety (assessed by the Patient Health Questionnaire-4); stress (adapted Impact of Event Scale-6); pessimism; and changes in tobacco and alcohol use.

  5. COVID-19 Stats and Mobility Trends

    • kaggle.com
    zip
    Updated Mar 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diogo Alex (2021). COVID-19 Stats and Mobility Trends [Dataset]. https://www.kaggle.com/datasets/diogoalex/covid19-stats-and-trends
    Explore at:
    zip(998511 bytes)Available download formats
    Dataset updated
    Mar 28, 2021
    Authors
    Diogo Alex
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    COVID-19 Stats & Trends

    Context

    This dataset seeks to provide insights into what has changed due to policies aimed at combating COVID-19 and evaluate the changes in community activities and its relation to reduced confirmed cases of COVID-19. The reports chart movement trends, compared to an expected baseline, over time (from 2020/02/15 to 2020/02/05) by geography (across 133 countries), as well as some other stats about the country that might help explain the evolution of the disease.

    Content

    1. Grocery & Pharmacy: Mobility trends for places like grocery markets, food warehouses, farmers' markets, specialty food shops, drug stores, and pharmacies.
    2. Parks: Mobility trends for places like national parks, public beaches, marinas, dog parks, plazas, and public gardens.
    3. Residential: Mobility trends for places of residence.
    4. Retail & Recreation: Mobility trends for places like restaurants, cafes, shopping centers, theme parks, museums, libraries, and movie theaters.
    5. Transit stations: Mobility trends for places like public transport hubs such as subway, bus, and train stations.
    6. Workplaces: Mobility trends for places of work.
    7. Total Cases: Total number of people infected with the SARS-CoV-2.
    8. Fatalities: Total number of deaths caused by CoV-19.
    9. Government Response Stringency Index: Additive score of nine indicators of government response to CoV-19: School closures, workplace closures, cancellation of public events, public information campaigns, stay at home policies, restrictions on internal movement, international travel controls, testing policy, and contact tracing.
    10. COVID-19 Testing: Total number of tests performed.
    11. Total Vaccinations: Total number of shots given.
    12. Total People Vaccinated: Total number of people given a shot.
    13. Total People Fully Vaccinated: Total number of people fully vaccinated (might require two shots of some vaccines).
    14. Population: Total number of inhabitants.
    15. Population Density per km2: Number of human inhabitants per square kilometer.
    16. Health System Index: Overall performance of the health system.
    17. Human Development Index (HDI): Summary index based on life expectancy at birth, expected years of schooling for children and mean years of schooling for adults, and GNI per capita.
    18. GDP (PPP) per capita: Gross Domestic Product (GDP) per capita based on Purchasing Power Parity (PPP), taking into account the relative cost of local goods, services and inflation rates of the country, rather than using international market exchange rates, which may distort the real differences in per capita income.
    19. Elderly Population (percentage): Percentage of the population above the age of 65 years old.

    References & Acknowledgements

    Bing COVID-19 data. Available at: https://github.com/microsoft/Bing-COVID-19-Data COVID-19 Community Mobility Report. Available at: https://www.google.com/covid19/mobility/ COVID-19: Government Response Stringency Index. Available at: https://ourworldindata.org/grapher/covid-stringency-index Coronavirus (COVID-19) Testing. Available at: https://github.com/owid/covid-19-data/blob/master/public/data/testing/covid-testing-all-observations.csv Coronavirus (COVID-19) Vaccination. Available at: https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/vaccinations/vaccinations.csv List of countries and dependencies by population. Available at: https://www.kaggle.com/tanuprabhu/population-by-country-2020 List of countries and dependencies by population density. Available at: https://www.kaggle.com/tanuprabhu/population-by-country-2020 List of countries by Human Development Index. Available at: http://hdr.undp.org/en/data Measuring Overall Health System Performance. Available at: https://www.who.int/healthinfo/paper30.pdf?ua=1 List of countries by GDP (PPP) per capita. Available at: https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD List of countries by age structure (65+). Available at: https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS

    Authors

    • Diogo Silva, up201706892@fe.up.pt
  6. COVID-19 Exposure and Protective Measures - Bangladesh

    • microdata.unhcr.org
    Updated Dec 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WHO (2021). COVID-19 Exposure and Protective Measures - Bangladesh [Dataset]. https://microdata.unhcr.org/index.php/catalog/587
    Explore at:
    Dataset updated
    Dec 20, 2021
    Dataset provided by
    United Nations High Commissioner for Refugeeshttp://www.unhcr.org/
    Durham University
    UN OCHA
    UN Global Pulse
    WHO
    Time period covered
    2020
    Area covered
    Bangladesh
    Description

    Abstract

    This dataset was collected as a complement to UN Global Pulse, UNHCR, Durham University, WHO and OCHA's study on simulation models to help with COVID-19 planning in world’s largest refugee settlement. The spread of infectious diseases such as COVID-19 presents many challenges to healthcare systems and infrastructures across the world, exacerbating inequalities and leaving the world’s most vulnerable populations most affected. Given their density and available infrastructure, refugee and internally displaced person (IDP) settlements can be particularly susceptible to disease spread. This survey collected data on individual's contact, interactions and time spent in public zones of refugees' camps in Cox's Bazar, in order to fill spreading matrices to inform this simulation of spread.

    Geographic coverage

    Cox's Bazar

    Analysis unit

    Individuals

    Universe

    All participants of Community Based Protection Groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample frame obtained from lists of Community-Based Protection regular working groups. Each camp group was stratified by gender, age and disabilities, and members of each camp were randomly selected from the working groups of 20 camps in Cox's Bazar.

    Mode of data collection

    Telephone interview

  7. COVID-19 Vaccination Survey, July 2021 - China

    • microdata.unhcr.org
    Updated Oct 3, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNHCR (2021). COVID-19 Vaccination Survey, July 2021 - China [Dataset]. https://microdata.unhcr.org/index.php/catalog/518
    Explore at:
    Dataset updated
    Oct 3, 2021
    Dataset provided by
    United Nations High Commissioner for Refugeeshttp://www.unhcr.org/
    Authors
    UNHCR
    Time period covered
    2021
    Area covered
    China
    Description

    Abstract

    The COVID-19 Vaccination Survey in China was conducted in July 2021 to understand refugees' accessibility and willingness to receive a COVID-19 vaccination in China. UNHCR stresses that no one can be left behind in the global effort against COVID-19 and is monitoring the inclusion of refugees and asylum seekers in vaccination plans around the world. At the time, Chinese government policy did not provide free vaccines for foreigners without social security. The survey results however show that this policy was implemented with some flexibility, because among the few that were vaccinated already, more than half received a free COVID-19 vaccine. Some refugees reported difficulties or lack of information about vaccine registration or identity documents to book an appointment. Results further show that even though most are willing to get vaccinated, anti-vaccine sentiments are driven by fear of side effects.

    Geographic coverage

    The survey covers 24 provinces with most respondents residing in the province of Guangdong.

    Analysis unit

    Households

    Universe

    The survey was distributed to all 1017 refugees and asylum seekers.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    No sampling was implmented.

    Mode of data collection

    Self-administered questionnaire: Web-based

    Response rate

    Out of 1017 distributed surveys, UNHCR received 455 answers (45%). Of those, 30 respondents did not provide consent to participate in the survey.

  8. COVID-19 Related Shocks Survey in Rural India 2020, Round 1 - India

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2021). COVID-19 Related Shocks Survey in Rural India 2020, Round 1 - India [Dataset]. https://microdata.worldbank.org/index.php/catalog/3769
    Explore at:
    Dataset updated
    Jan 14, 2021
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank
    Time period covered
    2020
    Area covered
    India
    Description

    Abstract

    An effective policy response to the economic impacts of the COVID-19 pandemic requires an enormous range of data to inform the design and response of programs. Public health measures require data on the spread of the disease, beliefs in the population, and capacity of the health system. Relief efforts depend on an understanding of hardships being faced by various segments of the population. Food policy requires measurement of agricultural production and hunger. In such a rapidly evolving pandemic, these data must be collected at a high frequency. Given the unexpected nature of the shock and urgency with which a response was required, Indian policymakers needed to formulate policies affecting India's 1.4 billion people, without the detailed evidence required to construct effective programs. To help overcome this evidence gap, the World Bank, IDinsight, and the Development Data Lab sought to produce rigorous and responsive data for policymakers across six states in India: Jharkhand, Rajasthan, Uttar Pradesh, Andhra Pradesh, Bihar, and Madhya Pradesh.

    Geographic coverage

    Jharkhand, Rajasthan, Uttar Pradesh, Andhra Pradesh, Bihar, and Madhya Pradesh

    Analysis unit

    Household

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The samples for these surveys were drawn from surveys and impact evaluations previously conducted by the World Bank, the Ministry of Rural Development, India and IDInsight. A detailed note on the sampling frames is available for download.

    Sampling deviation

    Details will be made available after all rounds of data collection and analysis is complete.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    The survey questionnaire consists of the following modules: - Module 0: Introduction - Module 1: Migration - Module 2: Labor and Income - Module 3: Consumption - Module 4: Agriculture - Module 5: Access to Relief - Module 6: Health

    Response rate

    ~55%

  9. Socioeconomic Impact of COVID-19, 2021 - Costa Rica

    • microdata.unhcr.org
    • datacatalog.ihsn.org
    • +2more
    Updated Mar 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNHCR (2022). Socioeconomic Impact of COVID-19, 2021 - Costa Rica [Dataset]. https://microdata.unhcr.org/index.php/catalog/636
    Explore at:
    Dataset updated
    Mar 21, 2022
    Dataset provided by
    United Nations High Commissioner for Refugeeshttp://www.unhcr.org/
    Authors
    UNHCR
    Time period covered
    2021
    Area covered
    Costa Rica
    Description

    Abstract

    The COVID-19 pandemic is first and foremost a health shock, but the secondary economic shock is equally formidable. Access to timely, policy-relevant information on the awareness of, responses to and impacts of the health situation and related restrictions are critical to effectively design, target and evaluate programme and policy interventions. This research project investigates the main socioeconomic impacts of the pandemic on UNHCR people of concern (PoC) – and nationals where possible – in terms of access to information, services and livelihoods opportunities. Two regions were targeted: the Greater Metropolitan Area and the Northern region. Two rounds of data collection took place for this survey, with the purpose of following up with the respondents.

    Analysis unit

    Household

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    UNHCR’s ProGres database in Costa Rica contains 47,491 registered individuals of which 30,494 are active. Of the 30,494 active individuals registered in the database, 22,487 have a known location as well as a listed primary phone number. Phone penetration rates are high among the PoC population in Costa Rica with 9 out of 10 families having a phone number registered in the ProGres database. This list constitutes just over 22% of the total estimated PoC population living in Costa Rica. As such, this final list serves as the first-choice sampling frame for the phone survey. In addition, two regions of Costa Rica were identified for targeted sampling of PoC following discussion with the UNHCR country team and regional bureau and based on information captured in the ProGres database. These include the Greater Metropolitan Area (GAM, for its acronym in Spanish) inclusive of the capital San Jose and the Northern region. Moreover, it was identified that understanding differences across sub-groups based on country of origin was essential for operational needs. In the GAM the biggest groups are Nicaraguans (67%), Venezuelans (13%) and Cubans (11%). Alternatively, in the North Nicaraguans represent 90% of the PoC population. Based on the above, a sampling strategy was proposed based on four separate strata in order to adequately represent the regions and sub-groups of interest: 1.)GAM – Nicaragua stratum: Nicaraguan PoC in GAM; 2.) GAM – Venezuela stratum: Venezuelan PoC in GAM; 3.) GAM – Cuba stratum: Cuban PoC in GAM; and 4.) North – Nicaragua stratum: Nicaraguan PoC in the North.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    Questionnaire contained the following sections: consent, knowledge, behaviour, access, employment, income, food security, concerns, resilience, networks, demographics

  10. Socioeconomic Impact of COVID-19, 2021 - Mexico

    • microdata.unhcr.org
    • datacatalog.ihsn.org
    • +2more
    Updated Mar 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNHCR (2022). Socioeconomic Impact of COVID-19, 2021 - Mexico [Dataset]. https://microdata.unhcr.org/index.php/catalog/643
    Explore at:
    Dataset updated
    Mar 22, 2022
    Dataset provided by
    United Nations High Commissioner for Refugeeshttp://www.unhcr.org/
    Authors
    UNHCR
    Time period covered
    2021
    Area covered
    Mexico
    Description

    Abstract

    The COVID-19 pandemic is first and foremost a health shock, but the secondary economic shock is equally formidable. Access to timely, policy-relevant information on the awareness of, responses to and impacts of the health situation and related restrictions are critical to effectively design, target and evaluate programme and policy interventions. This research project investigates the main socioeconomic impacts of the pandemic on UNHCR people of concern (PoC) – and nationals where possible – in terms of access to information, services and livelihoods opportunities. Three geographic regions were taken into consideration: Southern Mexico, Mexico City and the Northern and Central Industrial Corridor. Two rounds of data collection took place for this survey, with the purpose of following up with the respondents.

    Geographic coverage

    Southern Mexico, Mexico City, Northern and Central Mexico

    Analysis unit

    Household

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The ProGres database served as the sampling frame due to the unavailability of other reliable sources. Likewise, the sample was stratified by location and population groups based on country of origin helping to account for the different economic realities from one part of the country to another, as well as differences between nationalities. Following discussion with the UNHCR country team and regional bureau, three geographic regions were presented for consideration : a) Southern Mexico; b) Mexico City; and c) the Northern and Central Industrial Corridor. Additionally, partners expressed interest in the Venezuelan community as a separate group, primarily residing in Mexico City, Monterrey and Cancun. The population of the four groups represents 67% of the active registered refugees in Mexico. Out of the 35,140 refugee households in the four regions, 26,688 families have at least one phone number representing an overall high rate of phone penetration. Across regions of interest, Hondurans make up the single largest group of PoC in Southern Mexico (38%), and the Northern and Central Industrial Corridor (43%), whereas Venezuelans make up over half of the PoC population in Mexico City (52%). Based on the above, a sampling strategy based on four separate strata was proposed in order to adequately represent the regions and sub-groups of interest: 1. Southern Mexico – Honduran and El Salvadoran PoC population 2. Mexico City – Honduran, El Salvadoran and Cuban PoC population 3. Northern and Central Industrial Corridor – Hondurans and El Salvadoran PoC population 4. Venezuelan Population – Mexico City, Monterey (Nuevo Leon) and Cancun (Quintana Roo) A comparable sub-sample of the national population in the same locations PoC were sampled was also generated using random digit dialing (RDD). This was made possible through the inclusion of location-based area codes in the list of phone numbers, however selected participants were also asked about their current location as a first filter to proceed with the phone survey to ensure a comparable national sub-sample.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    Questionnaire contained the following sections: consent, knowledge, behaviour, access, employment, income, food security, concerns, resilience, networks, demographics

  11. COVID 19 DATASET TILL 22/2/2022

    • kaggle.com
    zip
    Updated Feb 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Taranveer Singh Anttal (2022). COVID 19 DATASET TILL 22/2/2022 [Dataset]. https://www.kaggle.com/datasets/taranvee/covid-19-dataset-till-2222022
    Explore at:
    zip(9372578 bytes)Available download formats
    Dataset updated
    Feb 23, 2022
    Authors
    Taranveer Singh Anttal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data on COVID-19 (coronavirus) by Our World in Data

    🗂️ Download our complete COVID-19 dataset : CSV | XLSX | JSON

    Our complete COVID-19 dataset is a collection of the COVID-19 data maintained by Our World in Data. We will update it daily throughout the duration of the COVID-19 pandemic (more information on our updating process and schedule here). It includes the following data:

    MetricsSourceUpdatedCountries
    VaccinationsOfficial data collated by the Our World in Data teamDaily218
    Tests & positivityOfficial data collated by the Our World in Data teamWeekly151
    Hospital & ICUOfficial data collated by the Our World in Data teamDaily47
    Confirmed casesJHU CSSE COVID-19 DataDaily216
    Confirmed deathsJHU CSSE COVID-19 DataDaily216
    Reproduction rateArroyo-Marioli F, Bullano F, Kucinskas S, Rondón-Moreno CDaily189
    Policy responsesOxford COVID-19 Government Response TrackerDaily186
    Other variables of interestInternational organizations (UN, World Bank, OECD, IHME…)Fixed241

    A specific section of this repository is also dedicated to vaccinations, with a lighter dataset containing only vaccination data.

    The data you find here and our data sources

    • Confirmed cases and deaths: our data comes from the COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). We discuss how and when JHU collects and publishes this data here. The cases & deaths dataset is updated daily. *Note: the number of cases or deaths reported by any institution—including JHU, the WHO, the ECDC and others—on a given day does not necessarily represent the actual number on that date. This is because of the long reporting chain that exists between a new case/death and its inclusion in statistics. This also means that negative values in cases and deaths can sometimes appear when a country corrects historical data, because it had previously overestimated the number of cases/deaths. Alternatively, large changes can sometimes (although rarely) be made to a country's entire time series if JHU decides (and has access to the necessary data) to correct values retrospectively.*
    • Hospitalizations and intensive care unit (ICU) admissions: our data is collected from official sources and collated by Our World in Data. The complete list of country-by-country sources is available here.
    • Testing for COVID-19: this data is collected by the Our World in Data team from official reports; you can find further details in our post on COVID-19 testing, including our checklist of questions to understand testing data, information on geographical and temporal coverage, and detailed country-by-country source information. The testing dataset is updated around twice a week.
    • Vaccinations against COVID-19: this data is collected by the Our World in Data team from official reports.
    • Other variables: this data is collected from a variety of sources (United Nations, World Bank, Global Burden of Disease, Blavatnik School of Government, etc.). More information is available in our codebook.

    The complete Our World in Data COVID-19 dataset

    **Our complete COVID-19 dataset is available in CSV, XLSX, and JSON formats, and inc...

  12. Up-to-date mapping of COVID-19 treatment and vaccine development...

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, png
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomáš Wagner; Ivana Mišová; Ivana Mišová; Ján Frankovský; Ján Frankovský; Tomáš Wagner (2024). Up-to-date mapping of COVID-19 treatment and vaccine development (covid19-help.org data dump) [Dataset]. http://doi.org/10.5281/zenodo.4601446
    Explore at:
    csv, png, binAvailable download formats
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tomáš Wagner; Ivana Mišová; Ivana Mišová; Ján Frankovský; Ján Frankovský; Tomáš Wagner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The free database mapping COVID-19 treatment and vaccine development based on the global scientific research is available at https://covid19-help.org/.

    Files provided here are curated partial data exports in the form of .csv files or full data export as .sql script generated with pg_dump from our PostgreSQL 12 database. You can also find .png file with our ER diagram of tables in .sql file in this repository.

    Structure of CSV files

    *On our site, compounds are named as substances

    compounds.csv

    1. Id - Unique identifier in our database (unsigned integer)

    2. Name - Name of the Substance/Compound (string)

    3. Marketed name - The marketed name of the Substance/Compound (string)

    4. Synonyms - Known synonyms (string)

    5. Description - Description (HTML code)

    6. Dietary sources - Dietary sources where the Substance/Compound can be found (string)

    7. Dietary sources URL - Dietary sources URL (string)

    8. Formula - Compound formula (HTML code)

    9. Structure image URL - Url to our website with the structure image (string)

    10. Status - Status of approval (string)

    11. Therapeutic approach - Approach in which Substance/Compound works (string)

    12. Drug status - Availability of Substance/Compound (string)

    13. Additional data - Additional data in stringified JSON format with data as prescribing information and note (string)

    14. General information - General information about Substance/Compound (HTML code)

    references.csv

    1. Id - Unique identifier in our database (unsigned integer)

    2. Impact factor - Impact factor of the scientific article (string)

    3. Source title - Title of the scientific article (string)

    4. Source URL - URL link of the scientific article (string)

    5. Tested on species - What testing model was used for the study (string)

    6. Published at - Date of publication of the scientific article (Date in ISO 8601 format)

    clinical-trials.csv

    1. Id - Unique identifier in our database (unsigned integer)

    2. Title - Title of the clinical trial study (string)

    3. Acronym title - Acronym of title of the clinical trial study (string)

    4. Source id - Unique identifier in the source database

    5. Source id optional - Optional identifier in other databases (string)

    6. Interventions - Description of interventions (string)

    7. Study type - Type of the conducted study (string)

    8. Study results - Has results? (string)

    9. Phase - Current phase of the clinical trial (string)

    10. Url - URL to clinical trial study page on clinicaltrials.gov (string)

    11. Status - Status in which study currently is (string)

    12. Start date - Date at which study was started (Date in ISO 8601 format)

    13. Completion date - Date at which study was completed (Date in ISO 8601 format)

    14. Additional data - Additional data in the form of stringified JSON with data as locations of study, study design, enrollment, age, outcome measures (string)

    compound-reference-relations.csv

    1. Reference id - Id of a reference in our DB (unsigned integer)

    2. Compound id - Id of a substance in our DB (unsigned integer)

    3. Note - Id of a substance in our DB (unsigned integer)

    4. Is supporting - Is evidence supporting or contradictory (Boolean, true if supporting)

    compound-clinical-trial.csv

    1. Clinical trial id - Id of a clinical trial in our DB (unsigned integer)

    2. Compound id - Id of a Substance/Compound in our DB (unsigned integer)

    tags.csv

    1. Id - Unique identifier in our database (unsigned integer)

    2. Name - Name of the tag (string)

    tags-entities.csv

    1. Tag id - Id of a tag in our DB (unsigned integer)

    2. Reference id - Id of a reference in our DB (unsigned integer)

    API Specification

    Our project also has an Open API that gives you access to our data in a format suitable for processing, particularly in JSON format.

    https://covid19-help.org/api-specification

    Services are split into five endpoints:

    • Substances - /api/substances

    • References - /api/references

    • Substance-reference relations - /api/substance-reference-relations

    • Clinical trials - /api/clinical-trials

    • Clinical trials-substances relations - /api/clinical-trials-substances

    Method of providing data

    • All dates are text strings formatted in compliance with ISO 8601 as YYYY-MM-DD

    • If the syntax request is incorrect (missing or incorrectly formatted parameters) an HTTP 400 Bad Request response will be returned. The body of the response may include an explanation.

    • Data updated_at (used for querying changed-from) refers only to a particular entity and not its logical relations. Example: If a new substance reference relation is added, but the substance detail has not changed, this is reflected in the substance reference relation endpoint where a new entity with id and current dates in created_at and updated_at fields will be added, but in substances or references endpoint nothing has changed.

    The recommended way of sequential download

    • During the first download, it is possible to obtain all data by entering an old enough date in the parameter value changed-from, for example: changed-from=2020-01-01 It is important to write down the date on which the receiving the data was initiated let’s say 2020-10-20

    • For repeated data downloads, it is sufficient to receive only the records in which something has changed. It can therefore be requested with the parameter changed-from=2020-10-20 (example from the previous bullet). Again, it is important to write down the date when the updates were downloaded (eg. 2020-10-20). This date will be used in the next update (refresh) of the data.

    Services for entities

    List of endpoint URLs:

    Format of the request

    All endpoints have these parameters in common:

    • changed-from - a parameter to return only the entities that have been modified on a given date or later.

    • continue-after-id - a parameter to return only the entities that have a larger ID than specified in the parameter.

    • limit - a parameter to return only the number of records specified (up to 1000). The preset number is 100.

    Request example:

    /api/references?changed-from=2020-01-01&continue-after-id=1&limit=100

    Format of the response

    The response format is the same for all endpoints.

    • number_of_remaining_ids - the number of remaining entities that meet the specified criteria but are not displayed on the page. An integer of virtually unlimited size.

    • entities - an array of entity details in JSON format.

    Response example:

    {

    "number_of_remaining_ids" : 100,

    "entities" : [

    {

    "id": 3,

    "url": "https://www.ncbi.nlm.nih.gov/pubmed/32147628",

    "title": "Discovering drugs to treat coronavirus disease 2019 (COVID-19).",

    "impact_factor": "Discovering drugs to treat coronavirus disease 2019 (COVID-19).",

    "tested_on_species": "in silico",

    "publication_date": "2020-22-02",

    "created_at": "2020-30-03",

    "updated_at": "2020-31-03",

    "deleted_at": null

    },

    {

    "id": 4,

    "url": "https://www.ncbi.nlm.nih.gov/pubmed/32157862",

    "title": "CT Manifestations of Novel Coronavirus Pneumonia: A Case Report",

    "impact_factor": "CT Manifestations of Novel Coronavirus Pneumonia: A Case Report",

    "tested_on_species": "Patient",

    "publication_date": "2020-06-03",

    "created_at": "2020-30-03",

    "updated_at": "2020-30-03",

    "deleted_at": null

    },

    ]

    }

    Endpoint details

    Substances

    URL: /api/substances

    Substances

  13. Covid-19 Vulnerability

    • kaggle.com
    zip
    Updated Sep 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marília Prata (2020). Covid-19 Vulnerability [Dataset]. https://www.kaggle.com/mpwolke/cusersmarildownloadsvulnerabilitycsv
    Explore at:
    zip(16138 bytes)Available download formats
    Dataset updated
    Sep 27, 2020
    Authors
    Marília Prata
    Description

    Context

    The INFORM COVID-19 Risk Index is primarily concerned with structural risk factors, i.e. those that existed before the outbreak. It can be used to support prioritization of preparedness and early response actions for the primary impacts of the pandemic, and identify countries where secondary impacts are likely to have the most critical humanitarian consequences.

    https://data.humdata.org/dataset/inform-covid-19-risk-index-version-0-1-4

    Content

    Vulnerability: Movement and behaviour components retained. Although these are less relevant during restrictions on movement, they will become more relevant when restrictions are partially or fully lifted. Demographic and Comorbidities specific to COVID-19.

    Acknowledgements

    https://data.humdata.org/dataset/inform-covid-19-risk-index-version-0-1-4

    Photo by Thaiphirun Hul on Unsplash

    Inspiration

    Covid-19 Pandemic

  14. d

    COVID-19 Vaccine Delivery - Historical

    • catalog.data.gov
    • data.cityofchicago.org
    • +1more
    Updated Dec 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2023). COVID-19 Vaccine Delivery - Historical [Dataset]. https://catalog.data.gov/dataset/covid-19-vaccine-delivery
    Explore at:
    Dataset updated
    Dec 2, 2023
    Dataset provided by
    data.cityofchicago.org
    Description

    Note: This dataset is historical only. -- COVID-19 vaccine delivered to providers in the City of Chicago. Daily counts are shown for the total number of doses delivered as well as cumulative totals as of that date. Data are updated Monday to Friday. As of the launch of this dataset, weekend deliveries are unusual but will be added to the appropriate date (i.e., Saturday or Sunday) the following Monday if they occur. All data are provisional and subject to change. Information is updated as additional details are received. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. For information about the number of vaccine doses administered by Chicago providers, see https://data.cityofchicago.org/Health-Human-Services/COVID-19-Daily-Vaccinations-Administered-in-Chicag/4564-ixr2. For information about the number of vaccine doses administered to Chicago residents and number of residents considered fully vaccinated regardless of if they were vaccinated in Chicago, see https://data.cityofchicago.org/Health-Human-Services/COVID-19-Daily-Vaccinations-Chicago-Residents/2vhs-cf6b. For all datasets related to COVID-19, see https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=covid-19. Data Sources: Vaccine Tracking System (VTrcks)

  15. Data from: FOXP3 in COVID-19

    • wikipathways.org
    Updated Feb 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WikiPathways (2023). FOXP3 in COVID-19 [Dataset]. https://www.wikipathways.org/pathways/WP5063.html
    Explore at:
    Dataset updated
    Feb 15, 2023
    Dataset authored and provided by
    WikiPathwayshttp://wikipathways.org/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    FOXP3 in Covid-19

  16. COVID-19 Vaccinations in the United States, County

    • datalumos.org
    • data.cdc.gov
    • +1more
    delimited
    Updated Oct 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Health and Human Services. Centers for Disease Control and Prevention (2025). COVID-19 Vaccinations in the United States, County [Dataset]. http://doi.org/10.3886/E238956V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Oct 16, 2025
    Authors
    United States Department of Health and Human Services. Centers for Disease Control and Prevention
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 13, 2020 - May 12, 2023
    Area covered
    United States
    Description

    Overall US COVID-19 Vaccine administration and vaccine equity data at county level. Data represents all vaccine partners including jurisdictional partner clinics, retail pharmacies, long-term care facilities, dialysis centers, Federal Emergency Management Agency and Health Resources and Services Administration partner sites, and federal entity facilities.

  17. Covid-19 in Moscow-weekly

    • kaggle.com
    zip
    Updated Mar 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marília Prata (2021). Covid-19 in Moscow-weekly [Dataset]. https://www.kaggle.com/mpwolke/cusersmarildownloadsweeklycsv
    Explore at:
    zip(578 bytes)Available download formats
    Dataset updated
    Mar 4, 2021
    Authors
    Marília Prata
    Area covered
    Moscow
    Description

    Context

    Original data of COVID-19 statistics collected from the official website of Moscow government.

    https://data.humdata.org/dataset/covid-19-cases-data-in-moscow https://www.mos.ru/en/city/projects/covid-19/

    Content

    This dataset from original data of COVID-19 statistics collected from the official website of Moscow government.

    Acknowledgements

    https://data.humdata.org/dataset/covid-19-cases-data-in-moscow https://www.mos.ru/en/city/projects/covid-19/

    Photo by Michael Parulava on Unsplash

    Inspiration

    Covid-19 Pandemic.

  18. d

    Chicago COVID-19 Community Vulnerability Index (CCVI)

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Dec 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2023). Chicago COVID-19 Community Vulnerability Index (CCVI) [Dataset]. https://catalog.data.gov/dataset/chicago-covid-19-community-vulnerability-index-ccvi
    Explore at:
    Dataset updated
    Dec 2, 2023
    Dataset provided by
    data.cityofchicago.org
    Area covered
    Chicago
    Description

    The Chicago CCVI identifies communities that have been disproportionately affected by COVID-19 and are vulnerable to barriers to COVID-19 vaccine uptake​. Vulnerability is defined as a combination of sociodemographic factors, epidemiological factors​, occupational factors​, and cumulative COVID-19 burden. The 10 components of the index include COVID-19 specific risk factors and outcomes and social factors known to be associated with social vulnerability in the context of emergency preparedness. The CCVI is derived from ranking values of the components by Chicago Community Area, then synthesizing them into a single composite weighted score. The higher the score, the more vulnerable the geographic area. ZIP Code CCVI is included to enable comparison with other COVID-19 data available on the Chicago Data Portal. Some elements of the CCVI are not available by ZIP Code. To create ZIP Code CCVI, the proportion of the ZIP Code population contributed by each Community Areas was determined. The apportioned populations were then weighted by the Community Area CCVI score and averaged to determine a ZIP Code CCVI score. The COVID-19 Community Vulnerability Index (CCVI) is adapted and modified from a Surgo Ventures collaboration (https://precisionforcovid.org/ccvi) and the CDC Social Vulnerability Index​. ZIP Codes are based on ZIP Code Tabulation Areas (ZCTAs) developed by the U.S. Census Bureau. For full documentation see: https://www.chicago.gov/content/dam/city/sites/covid/reports/012521/Community_Vulnerability_Index_012521.pdf

  19. COVID-19 Impact on Food Security, Livelihoods and Local Markets (Jul - Sep...

    • microdata.unhcr.org
    • catalog.ihsn.org
    • +1more
    Updated Feb 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNHCR (2021). COVID-19 Impact on Food Security, Livelihoods and Local Markets (Jul - Sep 2020) - Zimbabwe [Dataset]. https://microdata.unhcr.org/index.php/catalog/294
    Explore at:
    Dataset updated
    Feb 19, 2021
    Dataset provided by
    United Nations High Commissioner for Refugeeshttp://www.unhcr.org/
    Authors
    UNHCR
    Time period covered
    2020 - 2021
    Area covered
    Zimbabwe
    Description

    Abstract

    Assessment of the impact of the COVID-19 pandemic on food security, livelihoods and local markets for refugees in urban areas.

    Geographic coverage

    Urban areas in Zimbabwe

    Analysis unit

    Household

    Universe

    Urban refugees

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Random sampling

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

  20. k

    Saudi Arabia Coronavirus disease (COVID-19) situation – Demographics

    • datasource.kapsarc.org
    • data.kapsarc.org
    Updated Mar 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Saudi Arabia Coronavirus disease (COVID-19) situation – Demographics [Dataset]. https://datasource.kapsarc.org/explore/dataset/saudi-arabia-coronavirus-disease-covid-19-situation-demographics/
    Explore at:
    Dataset updated
    Mar 13, 2024
    Area covered
    Saudi Arabia
    Description

    COVID-19 situation in Saudi Arabia collected from MOH daily reports https://twitter.com/SaudiMOH Explore the latest data on the COVID-19 situation and demographics in Saudi Arabia. This dataset provides valuable insights into the impact of the pandemic within the country. Follow data.kapsarc.org for timely data to advance energy economics research.

    COVID-19 Saudi Arabia

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
World Bank (2021). COVID-19-Related Shocks in Rural India 2020, Rounds 1-3 - India [Dataset]. https://microdata.worldbank.org/index.php/catalog/3830
Organization logo

COVID-19-Related Shocks in Rural India 2020, Rounds 1-3 - India

Explore at:
15 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 15, 2021
Dataset provided by
World Bank Grouphttp://www.worldbank.org/
Authors
World Bank
Time period covered
2020
Area covered
India
Description

Abstract

An effective policy response to the economic impacts of the COVID-19 pandemic requires an enormous range of data to inform the design and response of programs. Public health measures require data on the spread of the disease, beliefs in the population, and capacity of the health system. Relief efforts depend on an understanding of hardships being faced by various segments of the population. Food policy requires measurement of agricultural production and hunger. In such a rapidly evolving pandemic, these data must be collected at a high frequency. Given the unexpected nature of the shock and urgency with which a response was required, Indian policymakers needed to formulate policies affecting India’s 1.4 billion people, without the detailed evidence required to construct effective programs. To help overcome this evidence gap, the World Bank, IDinsight, and the Development Data Lab sought to produce rigorous and responsive data for policymakers across six states in India: Jharkhand, Rajasthan, Uttar Pradesh, Andhra Pradesh, Bihar, and Madhya Pradesh.

Geographic coverage

Andhra Pradesh, Bihar, Jharkhand, Madhya Pradesh, Rajasthan, and Uttar Pradesh

Analysis unit

Household

Kind of data

Sample survey data [ssd]

Sampling procedure

This dataset includes observations covering six states (Andhra Pradesh, Bihar, Jharkhand, Madhya Pradesh, Rajasthan, Uttar Pradesh) and three survey rounds. The survey did not have a single, unified frame from which to sample phone numbers. The final sample was assembled from several different sample frames, and the choice of frame sample frames varied across states and survey rounds.

These frames comprise four prior IDinsight projects and from an impact evaluation of the National Rural Livelihoods project conducted by the Ministry of Rural Development. Each of these surveys sought to represent distinct populations, and employed idiosyncratic sample designs and weighting schemes.

A detailed note covering key features of each sample frame is available for download.

Mode of data collection

Computer Assisted Telephone Interview [cati]

Research instrument

The survey questionnaires covered the following subjects:

  1. Agriculture: COVID-19-related changes in price realisation, acreage decisions, input expenditure, access to credit, access to fertilisers, etc.

  2. Income and consumption: Changes in wage rates, employment duration, consumption expenditure, prices of essential commodities, status of food security etc.

  3. Migration: Rates of in-migration, migrant income and employment status, return migration plans etc.

  4. Access to relief: Access to in-kind, cash and workfare relief, quantities of relief received, and constraints on the access to relief.

  5. Health: Access to health facilities and rates of foregone healthcare, knowledge of COVID-19 related symptoms and protective behaviours.

While a number of indicators were consistent across all three rounds, questions were added and removed as and when necessary to account for seasonal changes (i.e: in the agricultural cycle).

Response rate

Round 1: ~55% Round 2: ~46% Round 3: ~55%

Search
Clear search
Close search
Google apps
Main menu