17 datasets found
  1. Surging Services: Will Dow Jones CPI Signal Continued Consumer Strength?...

    • kappasignal.com
    Updated Apr 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Surging Services: Will Dow Jones CPI Signal Continued Consumer Strength? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/surging-services-will-dow-jones-cpi.html
    Explore at:
    Dataset updated
    Apr 28, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Surging Services: Will Dow Jones CPI Signal Continued Consumer Strength?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  2. T

    European Union Consumer Price Index (cpi)

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). European Union Consumer Price Index (cpi) [Dataset]. https://tradingeconomics.com/european-union/consumer-price-index-cpi
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1996 - Jul 31, 2025
    Area covered
    European Union
    Description

    Consumer Price Index CPI in European Union increased to 133.81 points in July from 133.62 points in June of 2025. This dataset provides - European Union Consumer Price Index (CPI) - actual values, historical data, forecast, chart, statistics, economic calendar.

  3. What happens to gold if CPI increases? (Forecast)

    • kappasignal.com
    Updated Dec 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). What happens to gold if CPI increases? (Forecast) [Dataset]. https://www.kappasignal.com/2023/12/what-happens-to-gold-if-cpi-increases.html
    Explore at:
    Dataset updated
    Dec 21, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What happens to gold if CPI increases?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. Walmart Dataset

    • kaggle.com
    Updated Dec 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Yasser H (2021). Walmart Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/walmart-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 26, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    M Yasser H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://raw.githubusercontent.com/Masterx-AI/Project_Retail_Analysis_with_Walmart/main/Wallmart1.jpg" alt="">

    Description:

    One of the leading retail stores in the US, Walmart, would like to predict the sales and demand accurately. There are certain events and holidays which impact sales on each day. There are sales data available for 45 stores of Walmart. The business is facing a challenge due to unforeseen demands and runs out of stock some times, due to the inappropriate machine learning algorithm. An ideal ML algorithm will predict demand accurately and ingest factors like economic conditions including CPI, Unemployment Index, etc.

    Walmart runs several promotional markdown events throughout the year. These markdowns precede prominent holidays, the four largest of all, which are the Super Bowl, Labour Day, Thanksgiving, and Christmas. The weeks including these holidays are weighted five times higher in the evaluation than non-holiday weeks. Part of the challenge presented by this competition is modeling the effects of markdowns on these holiday weeks in the absence of complete/ideal historical data. Historical sales data for 45 Walmart stores located in different regions are available.

    Acknowledgements

    The dataset is taken from Kaggle.

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build Regression models to predict the sales w.r.t single & multiple features.
    • Also evaluate the models & compare their respective scores like R2, RMSE, etc.
  5. What is the relationship between CPI and the stock market? (Forecast)

    • kappasignal.com
    Updated Dec 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). What is the relationship between CPI and the stock market? (Forecast) [Dataset]. https://www.kappasignal.com/2023/12/what-is-relationship-between-cpi-and.html
    Explore at:
    Dataset updated
    Dec 21, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What is the relationship between CPI and the stock market?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  6. What is cpi? (Forecast)

    • kappasignal.com
    Updated May 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). What is cpi? (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/what-is-cpi.html
    Explore at:
    Dataset updated
    May 10, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What is cpi?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. Producer Price Index

    • catalog.data.gov
    Updated May 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Labor Statistics (2022). Producer Price Index [Dataset]. https://catalog.data.gov/dataset/producer-price-index-89292
    Explore at:
    Dataset updated
    May 16, 2022
    Dataset provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Description

    The Producer Price Index (PPI) is a family of indexes that measures the average change over time in selling prices received by domestic producers of goods and services. PPIs measure price change from the perspective of the seller. This contrasts with other measures, such as the Consumer Price Index (CPI), that measure price change from the purchaser's perspective. Sellers' and purchasers' prices may differ due to government subsidies, sales and excise taxes, and distribution costs. There are three main PPI classification structures which draw from the same pool of price information provided to the BLS by cooperating company reporters: Industry classification. A Producer Price Index for an industry is a measure of changes in prices received for the industry's output sold outside the industry (that is, its net output). The PPI publishes approximately 535 industry price indexes in combination with over 4,000 specific product line and product category sub-indexes, as well as, roughly 500 indexes for groupings of industries. North American Industry Classification System (NAICS) index codes provide comparability with a wide assortment of industry-based data for other economic programs, including productivity, production, employment, wages, and earnings. Commodity classification. The commodity classification structure of the PPI organizes products and services by similarity or material composition, regardless of the industry classification of the producing establishment. This system is unique to the PPI and does not match any other standard coding structure. In all, PPI publishes more than 3,700 commodity price indexes for goods and about 800 for services (seasonally adjusted and not seasonally adjusted), organized by product, service, and end use. Commodity-based Final Demand-Intermediate Demand (FD-ID) System. Commodity-based FD-ID price indexes regroup commodity indexes for goods, services, and construction at the subproduct class (six-digit) level, according to the type of buyer and the amount of physical processing or assembling the products have undergone. The PPI publishes over 600 FD-ID indexes (seasonally adjusted and not seasonally adjusted) measuring price change for goods, services, and construction sold to final demand and to intermediate demand. The FD-ID system replaced the PPI stage-of-processing (SOP) system as PPI's primary aggregation model with the release of data for January 2014. The FD-ID system expands coverage in its aggregate measures beyond that of the SOP system by incorporating indexes for services, construction, exports, and government purchases. For more information, visit: https://www.bls.gov/ppi

  8. T

    Poland Inflation Rate

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Poland Inflation Rate [Dataset]. https://tradingeconomics.com/poland/inflation-cpi
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1992 - Aug 31, 2025
    Area covered
    Poland
    Description

    Inflation Rate in Poland decreased to 2.80 percent in August from 3.10 percent in July of 2025. This dataset provides the latest reported value for - Poland Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  9. T

    Switzerland Consumer Price Index (CPI)

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Switzerland Consumer Price Index (CPI) [Dataset]. https://tradingeconomics.com/switzerland/consumer-price-index-cpi
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1950 - Aug 31, 2025
    Area covered
    Switzerland
    Description

    Consumer Price Index CPI in Switzerland decreased to 107.70 points in August from 107.80 points in July of 2025. This dataset provides - Switzerland Consumer Price Index (CPI) - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  10. T

    Thailand Inflation Rate

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Thailand Inflation Rate [Dataset]. https://tradingeconomics.com/thailand/inflation-cpi
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Sep 4, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1977 - Aug 31, 2025
    Area covered
    Thailand
    Description

    Inflation Rate in Thailand decreased to -0.79 percent in August from -0.70 percent in July of 2025. This dataset provides the latest reported value for - Thailand Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  11. Electric power selling price index, monthly

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Aug 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Electric power selling price index, monthly [Dataset]. http://doi.org/10.25318/1810020401-eng
    Explore at:
    Dataset updated
    Aug 12, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Electric power selling price index (EPSPI). Monthly data are available from January 1981. The table presents data for the most recent reference period and the last four periods. The base period for the index is (2014=100).

  12. T

    Gold - Price Data

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Gold - Price Data [Dataset]. https://tradingeconomics.com/commodity/gold
    Explore at:
    excel, csv, json, xmlAvailable download formats
    Dataset updated
    Sep 11, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1968 - Sep 12, 2025
    Area covered
    World
    Description

    Gold rose to 3,642.37 USD/t.oz on September 12, 2025, up 0.29% from the previous day. Over the past month, Gold's price has risen 8.52%, and is up 41.26% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on September of 2025.

  13. T

    Singapore Inflation Rate

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Aug 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Singapore Inflation Rate [Dataset]. https://tradingeconomics.com/singapore/inflation-cpi
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Aug 25, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1962 - Jul 31, 2025
    Area covered
    Singapore
    Description

    Inflation Rate in Singapore decreased to 0.60 percent in July from 0.80 percent in June of 2025. This dataset provides - Singapore Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  14. T

    India Inflation Rate MoM

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, India Inflation Rate MoM [Dataset]. https://tradingeconomics.com/india/inflation-rate-mom
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Oct 3, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 28, 2011 - Aug 31, 2025
    Area covered
    India
    Description

    The Consumer Price Index in India increased 0.46 percent in August of 2025 over the previous month. This dataset provides - India Inflation Rate MoM- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  15. T

    South Africa Inflation Rate

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Aug 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). South Africa Inflation Rate [Dataset]. https://tradingeconomics.com/south-africa/inflation-cpi
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Aug 20, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 31, 1968 - Jul 31, 2025
    Area covered
    South Africa
    Description

    Inflation Rate in South Africa increased to 3.50 percent in July from 3 percent in June of 2025. This dataset provides - South Africa Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  16. T

    Canada Food Inflation

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Canada Food Inflation [Dataset]. https://tradingeconomics.com/canada/food-inflation
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Jul 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1951 - Jul 31, 2025
    Area covered
    Canada
    Description

    Cost of food in Canada increased 3.30 percent in July of 2025 over the same month in the previous year. This dataset provides the latest reported value for - Canada Food Inflation - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  17. T

    United States Initial Jobless Claims

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Initial Jobless Claims [Dataset]. https://tradingeconomics.com/united-states/jobless-claims
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Sep 11, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 7, 1967 - Sep 6, 2025
    Area covered
    United States
    Description

    Initial Jobless Claims in the United States increased to 263 thousand in the week ending September 6 of 2025 from 236 thousand in the previous week. This dataset provides the latest reported value for - United States Initial Jobless Claims - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  18. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
KappaSignal (2024). Surging Services: Will Dow Jones CPI Signal Continued Consumer Strength? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/surging-services-will-dow-jones-cpi.html
Organization logo

Surging Services: Will Dow Jones CPI Signal Continued Consumer Strength? (Forecast)

Explore at:
Dataset updated
Apr 28, 2024
Dataset authored and provided by
KappaSignal
License

https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

Description

This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

Surging Services: Will Dow Jones CPI Signal Continued Consumer Strength?

Financial data:

  • Historical daily stock prices (open, high, low, close, volume)

  • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

  • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

Machine learning features:

  • Feature engineering based on financial data and technical indicators

  • Sentiment analysis data from social media and news articles

  • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

Potential Applications:

  • Stock price prediction

  • Portfolio optimization

  • Algorithmic trading

  • Market sentiment analysis

  • Risk management

Use Cases:

  • Researchers investigating the effectiveness of machine learning in stock market prediction

  • Analysts developing quantitative trading Buy/Sell strategies

  • Individuals interested in building their own stock market prediction models

  • Students learning about machine learning and financial applications

Additional Notes:

  • The dataset may include different levels of granularity (e.g., daily, hourly)

  • Data cleaning and preprocessing are essential before model training

  • Regular updates are recommended to maintain the accuracy and relevance of the data

Search
Clear search
Close search
Google apps
Main menu