https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about stocks per day. It has 3,905 rows and is filtered where the stock is CPI-R.BK. It features 6 columns including stock, opening price, highest price, and lowest price.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Consumer Price Index CPI in the United States increased to 322.56 points in June from 321.46 points in May of 2025. This dataset provides the latest reported value for - United States Consumer Price Index (CPI) - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Capita stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html
The Dow Jones U.S. Consumer Services index is expected to experience moderate growth in the near future. Key factors driving this growth include rising consumer spending, increased disposable income, and favorable economic conditions. However, risks associated with the index include rising inflation, geopolitical uncertainty, and supply chain disruptions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This line chart displays closing price by date using the aggregation sum. The data is filtered where the stock is CPI.BK. The data is about stocks per day.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South African monthly The FTSE/JSE All Share Index data was procured from Bloomberg and the nominal effective exchange rate (NEER) from South African Reserve Bank (SARB) database, where the data has been seasonally adjusted specifying 2015 as the base year. Volatility measures in these markets are generated through a multivaraite EGARCH model in the WinRATS software. South African monthly consumer price index (CPI) data was procured from the International Monetary Fund’s International Financial Statistics (IFS) database, where the data has been seasonally adjusted, specifying 2010 as the base year. The inflation rate is constructed by taking the year-on-year changes in the monthly CPI figures. Inflation uncertainty was generated through the GARCH model in Eviews software. The following South African macroeconomic variables were procured from the SARB: real industrial production (IP), which is used as a proxy for real GDP, real investment (I), real consumption (C), inflation (CPI), broad money (M3), the 3-month treasury bill rate (TB3) and the policy rate (R), a measure of U.S. EPU developed by Baker et al. (2016) to account for global developments available at http://www.policyuncertainty.com/us_monthly.html.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset provides historical stock market performance data for specific companies. It enables users to analyze and understand the past trends and fluctuations in stock prices over time. This information can be utilized for various purposes such as investment analysis, financial research, and market trend forecasting.
https://meyka.com/licensehttps://meyka.com/license
AI-powered price forecasts for CPI.L stock across different timeframes including weekly, monthly, yearly, and multi-year predictions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Loans: Stock: Household: by Indexers: Consumer Price Index (CPI): Broad Category - IPCA: Espírito Santo data was reported at 337,085,723.680 BRL in Jan 2025. This records an increase from the previous number of 333,620,229.710 BRL for Dec 2024. Loans: Stock: Household: by Indexers: Consumer Price Index (CPI): Broad Category - IPCA: Espírito Santo data is updated monthly, averaging 265,873,689.505 BRL from Aug 2016 (Median) to Jan 2025, with 102 observations. The data reached an all-time high of 378,280,323.150 BRL in May 2022 and a record low of 171,644.150 BRL in Aug 2016. Loans: Stock: Household: by Indexers: Consumer Price Index (CPI): Broad Category - IPCA: Espírito Santo data remains active status in CEIC and is reported by Central Bank of Brazil. The data is categorized under Brazil Premium Database’s Monetary – Table BR.KAB113: Loans: Stock: Household: by Indexers: Consumer Price Index: Broad Category - IPCA. [COVID-19-IMPACT]
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Capita reported GBP4.29B in Market Capitalization this August of 2025, considering the latest stock price and the number of outstanding shares.Data for Capita | CPI - Market Capitalization including historical, tables and charts were last updated by Trading Economics this last August in 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Capita reported GBP1.7B in Outstanding Shares in January of 2025. Data for Capita | CPI - Outstanding Shares including historical, tables and charts were last updated by Trading Economics this last August in 2025.
In 2023, the U.S. Consumer Price Index was 309.42, and is projected to increase to 352.27 by 2029. The base period was 1982-84. The monthly CPI for all urban consumers in the U.S. can be accessed here. After a time of high inflation, the U.S. inflation rateis projected fall to two percent by 2027. United States Consumer Price Index ForecastIt is projected that the CPI will continue to rise year over year, reaching 325.6 in 2027. The Consumer Price Index of all urban consumers in previous years was lower, and has risen every year since 1992, except in 2009, when the CPI went from 215.30 in 2008 to 214.54 in 2009. The monthly unadjusted Consumer Price Index was 296.17 for the month of August in 2022. The U.S. CPI measures changes in the price of consumer goods and services purchased by households and is thought to reflect inflation in the U.S. as well as the health of the economy. The U.S. Bureau of Labor Statistics calculates the CPI and defines it as, "a measure of the average change over time in the prices paid by urban consumers for a market basket of consumer goods and services." The BLS records the price of thousands of goods and services month by month. They consider goods and services within eight main categories: food and beverage, housing, apparel, transportation, medical care, recreation, education, and other goods and services. They aggregate the data collected in order to compare how much it would cost a consumer to buy the same market basket of goods and services within one month or one year compared with the previous month or year. Given that the CPI is used to calculate U.S. inflation, the CPI influences the annual adjustments of many financial institutions in the United States, both private and public. Wages, social security payments, and pensions are all affected by the CPI.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Korea Consumer Price Index (CPI): Commodities: AMP: Stock Products data was reported at 157.500 2000=100 in Nov 2006. This records a decrease from the previous number of 162.600 2000=100 for Oct 2006. Korea Consumer Price Index (CPI): Commodities: AMP: Stock Products data is updated monthly, averaging 87.705 2000=100 from Jan 1985 (Median) to Nov 2006, with 263 observations. The data reached an all-time high of 168.700 2000=100 in Jun 2006 and a record low of 47.759 2000=100 in Dec 1987. Korea Consumer Price Index (CPI): Commodities: AMP: Stock Products data remains active status in CEIC and is reported by Statistics Korea. The data is categorized under Global Database’s South Korea – Table KR.I028: Consumer Price Index: Special Groups: 2000=100.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CPI Card Group shares outstanding from 2013 to 2025. Shares outstanding can be defined as the number of shares held by shareholders (including insiders) assuming conversion of all convertible debt, securities, warrants and options. This metric excludes the company's treasury shares.
https://meyka.com/licensehttps://meyka.com/license
AI-powered price forecasts for CPI stock across different timeframes including weekly, monthly, yearly, and multi-year predictions.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data