6 datasets found
  1. a

    Non-contrast head/brain CT CQ500 Dataset

    • academictorrents.com
    bittorrent
    Updated Oct 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Qure.ai (2018). Non-contrast head/brain CT CQ500 Dataset [Dataset]. https://academictorrents.com/details/47e9d8aab761e75fd0a81982fa62bddf3a173831
    Explore at:
    bittorrent(28660285880)Available download formats
    Dataset updated
    Oct 5, 2018
    Dataset provided by
    Qure.ai
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    CQ500 dataset of 491 Computed tomography scans with 193,317 slices Anonymized dicoms for all the scans and the corresponding radiologists reads. ![]() Paper:

  2. Z

    Seg-CQ500

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ståhle Jennifer (2023). Seg-CQ500 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8063220
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    Kaijser Magnus
    Wang Chunliang
    Spahr Antoine
    Ståhle Jennifer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Intracranial hemorrhages segmentation labels for 51 CT-scans from the CQ500 dataset (http://headctstudy.qure.ai/dataset).

    Two trained radiologists from the Karolinska Instituted in Stockholm, labeled 51 scans to provide 3D mask of intracranial hemorrhages.

    We hope our new labels will promote the comparability of hemorrhage segmentation algorithm in the future and help push the field forward.

    If you use those labels, please cite our paper in Frontiers in Neuroimaging:

    
    
    Spahr A, Ståhle J, Wang C and Kaijser M (2023)
    Label-efficient deep semantic segmentation of
    intracranial hemorrhages in CT-scans.
    Front. Neuroimaging 2:1157565.
    doi: 10.3389/fnimg.2023.1157565
    
    
    
  3. t

    CQ500 - Dataset - LDM

    • service.tib.eu
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). CQ500 - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/cq500
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    Publicly available dataset of head CT scans for intracranial hemorrhage detection

  4. f

    Overall performance of multi-class classification using RSNA and CQ500...

    • figshare.com
    xls
    Updated Aug 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dittapong Songsaeng; Akara Supratak; Pantid Chantangphol; Saowapot Sarumpakul; Natsuda Kaothanthong (2025). Overall performance of multi-class classification using RSNA and CQ500 datasets. [Dataset]. http://doi.org/10.1371/journal.pone.0327871.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Aug 6, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Dittapong Songsaeng; Akara Supratak; Pantid Chantangphol; Saowapot Sarumpakul; Natsuda Kaothanthong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overall performance of multi-class classification using RSNA and CQ500 datasets.

  5. f

    Binary classification performance of the proposed HU-RGB with adaptive...

    • plos.figshare.com
    xls
    Updated Aug 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dittapong Songsaeng; Akara Supratak; Pantid Chantangphol; Saowapot Sarumpakul; Natsuda Kaothanthong (2025). Binary classification performance of the proposed HU-RGB with adaptive window preprocessing compared with the other methods using RSNA and CQ500 datasets. [Dataset]. http://doi.org/10.1371/journal.pone.0327871.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Aug 6, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Dittapong Songsaeng; Akara Supratak; Pantid Chantangphol; Saowapot Sarumpakul; Natsuda Kaothanthong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Binary classification performance of the proposed HU-RGB with adaptive window preprocessing compared with the other methods using RSNA and CQ500 datasets.

  6. SEResNext101_rsna_cq500_2class_weights

    • kaggle.com
    Updated Oct 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samyar Rahimi (2021). SEResNext101_rsna_cq500_2class_weights [Dataset]. https://www.kaggle.com/datasets/samyarr/seresnext101-rsna-cq500-2class-weights
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 29, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Samyar Rahimi
    Description

    Dataset

    This dataset was created by Samyar Rahimi

    Contents

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Qure.ai (2018). Non-contrast head/brain CT CQ500 Dataset [Dataset]. https://academictorrents.com/details/47e9d8aab761e75fd0a81982fa62bddf3a173831

Non-contrast head/brain CT CQ500 Dataset

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
bittorrent(28660285880)Available download formats
Dataset updated
Oct 5, 2018
Dataset provided by
Qure.ai
License

https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

Description

CQ500 dataset of 491 Computed tomography scans with 193,317 slices Anonymized dicoms for all the scans and the corresponding radiologists reads. ![]() Paper:

Search
Clear search
Close search
Google apps
Main menu