Facebook
TwitterSoil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from the gSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesGeographic Extent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System: Web Mercator Auxiliary SphereVisible Scale: 1:144,000 to 1:1,000Source: USDA Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 What can you do with this layer?ArcGIS OnlineFeature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro.Below are just a few of the things you can do with a feature service in Online and Pro.Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-up ArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -
Facebook
TwitterThe pathway representation consists of segments and intersection elements. A segment is a linear graphic element that represents a continuous physical travel path terminated by path end (dead end) or physical intersection with other travel paths. Segments have one street name, one address range and one set of segment characteristics. A segment may have none or multiple alias street names. Segment types included are Freeways, Highways, Streets, Alleys (named only), Railroads, Walkways, and Bike lanes. SNDSEG_PV is a linear feature class representing the SND Segment Feature, with attributes for Street name, Address Range, Alias Street name and segment Characteristics objects. Part of the Address Range and all of Street name objects are logically shared with the Discrete Address Point-Master Address File layer. Appropriate uses include: Cartography - Used to depict the City's transportation network _location and connections, typically on smaller scaled maps or images where a single line representation is appropriate. Used to depict specific classifications of roadway use, also typically at smaller scales. Used to label transportation network feature names typically on larger scaled maps. Used to label address ranges with associated transportation network features typically on larger scaled maps. Geocode reference - Used as a source for derived reference data for address validation and theoretical address _location Address Range data repository - This data store is the City's address range repository defining address ranges in association with transportation network features. Polygon boundary reference - Used to define various area boundaries is other feature classes where coincident with the transportation network. Does not contain polygon features. Address based extracts - Used to create flat-file extracts typically indexed by address with reference to business data typically associated with transportation network features. Thematic linear _location reference - By providing unique, stable identifiers for each linear feature, thematic data is associated to specific transportation network features via these identifiers. Thematic intersection _location reference - By providing unique, stable identifiers for each intersection feature, thematic data is associated to specific transportation network features via these identifiers. Network route tracing - Used as source for derived reference data used to determine point to point travel paths or determine optimal stop allocation along a travel path. Topological connections with segments - Used to provide a specific definition of _location for each transportation network feature. Also provides a specific definition of connection between each transportation network feature. (defines where the streets are and the relationship between them ie. 4th Ave is west of 5th Ave and 4th Ave does intersect with Cherry St) Event _location reference - Used as source for derived reference data used to locate event and linear referencing.Data source is TRANSPO.SNDSEG_PV. Updated weekly.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The SMA implementation is comprised of one feature dataset, with several polygon feature classes, rather than a single feature class. SurfaceManagementAgency: The Surface Management Agency (SMA) Geographic Information System (GIS) dataset depicts Federal land for the United States and classifies this land by its active Federal surface managing agency. The SMA feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agencyâ s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details. SMA_Withdrawals: The Surface Management Agency (SMA) Withdrawals Geographic Information System (GIS) dataset includes all of the known withdrawals which transfer surface jurisdictional responsibilities to federal agencies. The SMA Withdrawls feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA Withdrawal is defined by formal actions that set aside, withhold, or reserve Federal land by statute or administrative order for public purposes. A withdrawal creates a title encumbrance on the land. Withdrawals must accomplish one or more of the following: A. Transfer total or partial jurisdiction of Federal land between Federal agencies. B. Close (segregate) Federal land to operation of all or some of the public land laws and/or mineral laws. C. Dedicate Federal land to a specific public purpose. There are four major categories of formal withdrawals: (1) Administrative, (2) Presidential Proclamations, (3) Congressional, and (4) Federal Power Act (FPA) or Federal Energy Regulatory Commission (FERC) Withdrawals. These SMA Withdrawals will include the present total extent of withdrawn areas rather than all of the individual withdrawal actions that created them over time. These data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details. SPP_WithdrawalAreas: The Special Public Purpose (SPP) Withdrawals Geographic Information System (GIS) dataset includes all of the known SPP Withdrawal Areas, which limit use or access to Federal lands (e.g. Wilderness, National Monument). The Special Public Purpose Withdrawal Areas feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SPP Withdrawal Area is defined by formal actions that set aside, withhold, or reserve Federal land by statute or administrative order for public purposes. A withdrawal creates a title encumbrance on the land. Withdrawals must accomplish one or more of the following: A. Transfer total or partial jurisdiction of Federal land between Federal agencies. B. Close (segregate) Federal land to operation of all or some of the public land laws and/or mineral laws. C. Dedicate Federal land to a specific public purpose. There are four major categories of formal withdrawals: (1) Administrative, (2) Presidential Proclamations, (3) Congressional, and (4) Federal Power Act (FPA) or Federal Energy Regulatory Commission (FERC) Withdrawals. These SPP Withdrawals include the present total extent of withdrawn areas rather than all of the individual withdrawal actions that created them over time. These data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Range polygons may include areas not currently occupied by a species and, conversely, may omit areas potentially used by a species. The boundary delineations are primarily based on ecoregion subsections (USDA F.S., Ecomap Subsections 2007), watersheds (USGS HUC12) and 10 Kilometer occurrence buffers. The ecoregions subsections and hucs were combined and will heretofore be referred to as "ecohuc"s. Criteria used to delineate range boundaries:Select all occupied ecohucs.Buffer species occurrences by 10 Kilometers (per maximum buffer distance suggested by scientific literature).If occurrence buffer extends outside a selected subsection, expand subsection boundary to incorporate buffer or ecohuc after assessing vegetational characteristics with subject matter experts.If non-selected subsection is surrounded by selected subsections, incorporate non-selected subsections into species range.Clip species range by California State boundary.Merge ecoregion subsections to create a seamless species range polygon.EcomapSubsections 2007 - MetadataThe Ecomap Subsections feature class contains ecological subsection polygons attributed with subsection names and descriptions. The EcomapSubsections 2007 data set describes the ecological subsections within the conterminous United States. It contains regional geographic delineations for analysis of ecological relationships across ecological units. ECOMAP is the term used for a USDA Forest Service initiative to map ecological units and encourage their use in ecosystem-based approaches to forest land conservation and management. This is a collaborative effort with many partners. It is coordinated at the national and regional levels by USDA Forest Service staff and implemented in cooperation with State forestry agencies and others. ECOMAP mapping criteria are outlined in the National Hierarchical Framework of Ecological Units (https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5286434.pdf). The framework systematically divides the country into progressively smaller areas of land and water that have similar physical and biological characteristics and ecological processes. Note: The "EcomapSubSections_2007" was downloaded from the USDA Forest Service Clearing House website on January 17, 2023.
Facebook
TwitterPublic Open Space Geographic Information System data collection for Perth and Peel Metropolitan Areas
The public open space (POS) dataset contains polygon boundaries of areas defined as publicly available and open. This geographic information system (GIS) dataset was collected in 2011/2012 using ArcGIS software and aerial photography dated from 2010-2011. The data was collected across the Perth Metro and Peel Region.
POS refer to all land reserved for the provision of green space and natural environments (e.g. parks, reserves, bushland) that is freely accessible and intended for use for recreation purposes (active or passive) by the general public. Four types of “green and natural public open spaces” are distinguished: (1) Park; (2) Natural or Conservation Area; (3) School Grounds; and (4) Residual. Areas where the public are not permitted except on payment or which are available to limited and selected numbers by membership (e.g. golf courses and sports centre facilities) or setbacks and buffers required by legislation are not included.
Initially, potential POSs were identified from a combination of existing geographic information system (GIS) spatial data layers to create a generalized representation of ‘green space’ throughout the Perth metropolitan and Peel regions. Base data layers include: cadastral polygons, metropolitan and regional planning scheme polygons, school point locations, and reserve vesting polygons. The ‘green’ space layer was then visually updated and edited to represent the true boundaries of each POS using 2010-2011 aerial photography within the ArcGIS software environment. Each resulting ’green’ polygon was then classified using a decision tree into one of four possible categories: park, natural or conservation area, school grounds, or residual green space.
Following the classification process, amenity and other information about each POS was collected for polygons classified as “Park” following a protocol developed at the Centre for the Built Environment and Health (CBEH) called POSDAT (Public Open Space Desktop Auditing Tool). The parks were audited using aerial photography visualized using ArcGIS software. . The presence or absence of amenities such as sporting facilities (e.g. tennis courts, soccer fields, skate parks etc) were audited as well as information on the environmental quality (i.e. presence of water, adjacency to bushland, shade along paths, etc), recreational amenities (e.g. presence of BBQ’, café or kiosks, public access toilets) and information on selected features related to personal safety.
The data is stored in an ArcGIS File Geodatabase Feature Class (size 4MB) and has restricted access.
Data creation methodology, data definitions, and links to publications based on this data, accompany the dataset.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The file geodatabase was obtained by the State Water Resources Control Board and was clipped to the North Coast Region, Region 1. Fields were added to the layers within the geodatabase, which include Impairment, Temperature, and Sedimentation. The Impairment field that was added shows the specific impairment the feature was listed under the Clean Water Act Section 303(d). The Temperature and Sedimentation fields were added to show whether the specific feature was listed under one of these impairments. Relationship class was created within the Lines and Polygon layers to further inform the user on listings and impairments. Point of Contact: Lance Le, Water Resource Control Engineer in the Planning and Watershed Stewardship Division in The North Coast Regional Water Quality Control Board. Email: Lance.Le@Waterboards.ca.govDisclaimer: This data information can change at anytime and should only be used as a general reference.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Landslide Compilation Polygons feature class represents landslide deposits throughout Utah, is the result of multiple landslide compilations and digitizing efforts by the Utah Geological Survey (UGS), and is not new landslide-specific mapping. Harty (1992, 1993) produced a statewide landslide compilation on 46 30’ x 60’ quadrangle maps at 1:100,000 scale. Landslides were compiled from all known pre-1989 published and unpublished references available at the time (Harty, 1992, 1993). The Utah Automated Geographic Reference Center (AGRC) digitized the 30’ x 60’ Harty (1992, 1993) quadrangle maps to create a digital statewide landslide deposit feature class. Elliott and Harty (2010) updated the AGRC feature class by adding additional landslides from 1989 to mid-2007 geologic maps and internal UGS landslide investigations. Elliott and Harty (2010) also added additional fields to the feature class. As a compilation, this data represents existing mapping from multiple sources, at a variety of scales and accuracies, and not new detailed comprehensive mapping of landslides. Last updated March 2016.
Facebook
TwitterThis dataset is a modified version of the FWS developed data depicting “Highly Important Landscapes”, as outlined in Memorandum FWS/AES/058711 and provided to the Wildlife Habitat Spatial analysis Lab on October 29th 2014. Other names and acronyms used to refer to this dataset have included: Areas of Significance (AoSs - name of GIS data set provided by FWS), Strongholds (FWS), and Sagebrush Focal Areas (SFAs - BLM). The BLM will refer to these data as Sagebrush Focal Areas (SFAs). Data were provided as a series of ArcGIS map packages which, when extracted, contained several datasets each. Based on the recommendation of the FWS Geographer/Ecologist (email communication, see data originator for contact information) the dataset called “Outiline_AreasofSignificance” was utilized as the source for subsequent analysis and refinement. Metadata was not provided by the FWS for this dataset. For detailed information regarding the dataset’s creation refer to Memorandum FWS/AES/058711 or contact the FWS directly. Several operations and modifications were made to this source data, as outlined in the “Description” and “Process Step” sections of this metadata file. Generally: The source data was named by the Wildlife Habitat Spatial Analysis Lab to identify polygons as described (but not identified in the GIS) in the FWS memorandum. The Nevada/California EIS modified portions within their decision space in concert with local FWS personnel and provided the modified data back to the Wildlife Habitat Spatial Analysis Lab. Gaps around Nevada State borders, introduced by the NVCA edits, were then closed as was a large gap between the southern Idaho & southeast Oregon present in the original dataset. Features with an area below 40 acres were then identified and, based on FWS guidance, either removed or retained. Finally, guidance from BLM WO resulted in the removal of additional areas, primarily non-habitat with BLM surface or subsurface management authority. Data were then provided to each EIS for use in FEIS development. Based on guidance from WO, SFAs were to be limited to BLM decision space (surface/sub-surface management areas) within PHMA. Each EIS was asked to provide the limited SFA dataset back to the National Operations Center to ensure consistent representation and analysis. Returned SFA data, modified by each individual EIS, was then consolidated at the BLM’s National Operations Center retaining the three standardized fields contained in this dataset.Several Modifications from the original FWS dataset have been made. Below is a summary of each modification.1. The data as received from FWS: 16,514,163 acres & 1 record.2. Edited to name SFAs by Wildlife Habitat Spatial Analysis Lab:Upon receipt of the “Outiline_AreasofSignificance” dataset from the FWS, a copy was made and the one existing & unnamed record was exploded in an edit session within ArcMap. A text field, “AoS_Name”, was added. Using the maps provided with Memorandum FWS/AES/058711, polygons were manually selected and the “AoS_Name” field was calculated to match the names as illustrated. Once all polygons in the exploded dataset were appropriately named, the dataset was dissolved, resulting in one record representing each of the seven SFAs identified in the memorandum.3. The NVCA EIS made modifications in concert with local FWS staff. Metadata and detailed change descriptions were not returned with the modified data. Contact Leisa Wesch, GIS Specialist, BLM Nevada State Office, 775-861-6421, lwesch@blm.gov, for details.4. Once the data was returned to the Wildlife Habitat Spatial Analysis Lab from the NVCA EIS, gaps surrounding the State of NV were closed. These gaps were introduced by the NVCA edits, exacerbated by them, or existed in the data as provided by the FWS. The gap closing was performed in an edit session by either extending each polygon towards each other or by creating a new polygon, which covered the gap, and merging it with the existing features. In addition to the gaps around state boundaries, a large area between the S. Idaho and S.E. Oregon SFAs was filled in. To accomplish this, ADPP habitat (current as of January 2015) and BLM GSSP SMA data were used to create a new polygon representing PHMA and BLM management that connected the two existing SFAs.5. In an effort to simplify the FWS dataset, features whose areas were less than 40 acres were identified and FWS was consulted for guidance on possible removal. To do so, features from #4 above were exploded once again in an ArcMap edit session. Features whose areas were less than forty acres were selected and exported (770 total features). This dataset was provided to the FWS and then returned with specific guidance on inclusion/exclusion via email by Lara Juliusson (lara_juliusson@fws.gov). The specific guidance was:a. Remove all features whose area is less than 10 acresb. Remove features identified as slivers (the thinness ratio was calculated and slivers identified by Lara Juliusson according to https://tereshenkov.wordpress.com/2014/04/08/fighting-sliver-polygons-in-arcgis-thinness-ratio/) and whose area was less than 20 acres.c. Remove features with areas less than 20 acres NOT identified as slivers and NOT adjacent to other features.d. Keep the remainder of features identified as less than 40 acres.To accomplish “a” and “b”, above, a simple selection was applied to the dataset representing features less than 40 acres. The select by location tool was used, set to select identical, to select these features from the dataset created in step 4 above. The records count was confirmed as matching between the two data sets and then these features were deleted. To accomplish “c” above, a field (“AdjacentSH”, added by FWS but not calculated) was calculated to identify features touching or intersecting other features. A series of selections was used: first to select records 6. Based on direction from the BLM Washington Office, the portion of the Upper Missouri River Breaks National Monument (UMRBNM) that was included in the FWS SFA dataset was removed. The BLM NOC GSSP NLCS dataset was used to erase these areas from #5 above. Resulting sliver polygons were also removed and geometry was repaired.7. In addition to removing UMRBNM, the BLM Washington Office also directed the removal of Non-ADPP habitat within the SFAs, on BLM managed lands, falling outside of Designated Wilderness’ & Wilderness Study Areas. An exception was the retention of the Donkey Hills ACEC and adjacent BLM lands. The BLM NOC GSSP NLCS datasets were used in conjunction with a dataset containing all ADPP habitat, BLM SMA and BLM sub-surface management unioned into one file to identify and delete these areas.8. The resulting dataset, after steps 2 – 8 above were completed, was dissolved to the SFA name field yielding this feature class with one record per SFA area.9. Data were provided to each EIS for use in FEIS allocation decision data development.10. Data were subset to BLM decision space (surface/sub-surface) within PHMA by each EIS and returned to the NOC.11. Due to variations in field names and values, three standardized fields were created and calculated by the NOC:a. SFA Name – The name of the SFA.b. Subsurface – Binary “Yes” or “No” to indicated federal subsurface estate.c. SMA – Represents BLM, USFS, other federal and non-federal surface management 12. The consolidated data (with standardized field names and values) were dissolved on the three fields illustrated above and geometry was repaired, resulting in this dataset.
Facebook
TwitterThis polygon feature class represents the spatial extent and boundaries for the Utah Greater Sage-Grouse (GRSG) seasonal habitats, as modeled by the Utah State University Kohl Model Version 5. The original habitat model is clipped to a habitat buffer created by the Utah Division of Wildlife Resources. The data contains a clipped polygon for nesting, summer, and winter habitat respectively. Process of creating habitat model, as described by the authors: The process of creating the seasonal habitats layer is described below.1. Creation of statewide general habitat model for GRSG (2016). In 2016, researchers at Utah State University (USU) developed a statewide general sage-grouse habitat map using a database of hundreds of lek locations and more than 20,000 GRSG telemetry locations collected statewide from 1998 – 2014. The map depicted habitat suitability on a scale from 0 to 100 at 1 km spatial resolution, based on comparing environmental (vegetation, topography, soils, climate) and anthropogenic (developed land cover, road density, powerline density) conditions at active lek and sage-grouse use locations versus inactive lek and random background locations statewide. Because multiple telemetry locations were often associated with a single brood-rearing or non-breeding bird, the median values of environmental and anthropogenic variables at these telemetry locations were used in the model. A random forest model was used to create the map (Breiman 2001, Cutler et al. 2007). Random forests is a highly accurate non-parametric classification technique that predicts the probability of an outcome (in this case, habitat vs non-habitat) by averaging the results of many classification trees, each of which is trained on a random subset of the available data. The general habitat map was reclassified into ‘habitat’ and ‘non-habitat’ classes such that habitat areas captured 99% of all sage-grouse use locations. These general habitat areas were used as a mask in order to constrain preliminary predictions of seasonal habitats, described below.2. Create preliminary seasonal GRSG habitat models (Jan - May 2017). Telemetry locations in the database were classified into three seasonal habitat types based on time of year and type of GRSG use. Breeding habitat was defined as areas used by GRSG engaged in lekking, nesting, and early brood-rearing, from March 1 – June 14. Summer habitat was defined as areas used by brood-rearing and non-breeding GRSG from June 15 – August 31. The June 15 cutoff date between breeding and summer use locations was selected based on the temporal distribution of nesting and brooding use locations. Winter habitat was defined as areas used by non-breeding GRSG from November 1 – February 29. As in the general habitat modeling approach, environmental conditions at annual brood-rearing or non-breeding locations associated with the same bird were measured as medians over the multiple locations. Seasonal habitats were modeled using the same predictors as the general habitat model, with the addition of distance to leks due to its association with breeding habitat. A random forest model was used to estimate the suitability of general habitat areas statewide (from step 1 above) for breeding, summer, and winter use. For each seasonal use class, a suitability threshold was selected such that 85% of all seasonal use locations were captured in the resulting seasonal habitat map. This resulted in models that were neither overly restrictive nor overly liberal. To reduce the 'salt and pepper’ effect of isolated or scattered habitat pixels, a 3x3 km smoothing window was applied to each of the seasonal habitat layers, assigning the majority value (habitat or non-habitat) to the center pixel. 3. DWR biologists reviewed seasonal models (April - June 2017). An overview of the general and seasonal mapping methodology and preliminary maps was presented to GRSG biologists and managers from the Utah Division of Wildlife Resources (UDWR), Bureau of Land Management (BLM), and Forest Service (FS) at Utah State University in Logan on 4/21/17. Feedback at the meeting led to a few minor changes to the seasonal mapping methods. Because the breeding seasonal use model was not picking up areas around all active leks, distance to leks was dropped as a predictor variable from the seasonal habitat random forest model, and a 3 km buffer around all active leks was manually included in the breeding habitat model. Updated seasonal use models were sent to UDWR on 5/17/17, where they were made available for review by biologists with local area knowledge. An ArcGIS Online webpage was used to share the models with biologists, and allow for them to provide recommended additions / deletions to areas captured by the models. Accompanying the spatial data was an 8 minute webinar communicating the modelling procedure. UDWR returned updated seasonal use models with biologists’ comments, additions, and deletions to USU researchers on 6/6/17. Most but not all areas in the state received substantive feedback and comments from UDWR biologists. 4. Additional review of seasonal use models and final edits performed (July – August 2017). USU researchers reviewed biologist edits on 7/13/17. Most of the areas flagged to be added/removed from the seasonal use models seemed appropriate and helpful. But, there were a few areas UDWR biologists identified to be deleted from the models that USU researchers considered questionable. These areas were identified and shared with UDWR managers on 7/13/17. UDWR managers indicated a desire to have another face to face meeting to make a final determination on areas to include / exclude from the seasonal use models. This meeting occurred on 8/8/17, at which it was determined that it would be preferable to have the final seasonal habitat products reflect both use and potential suitability, as opposed to only areas of known use. This led to rejecting some areas flagged for deletion by biologists, as biologist comments indicated they were conceptualizing the map as primarily a use map only. Numerous small edits were made to the seasonal use layers, including several edits to include seasonal use locations not captured by preliminary models. Finally, all single, isolated habitat pixels were removed from the map. References: Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32.Cutler, D.R., T.C. Edwards, K.H. Beard, A. Cutler, K.T Hess, J.C. Gibson and J.J. Lawler. 2007. Random forests for classification in ecology. Ecology 88(11):2783-2792.This dataset was used in the preparation of the Greater Sage-grouse (GRSG) 2018 DEIS planning maps and acreages initiated by Secretarial Order (SO) 3353 of June 7, 2017 and the Notice of Intent (NOI) of October 11, 2017. Recipient Principal Investigator/Project Manager: Terry A. Messmer, Jack H. Berryman Institute, Utah State University, 5230 Old Main Hill, Logan, Utah 84322-5230, Phone 435-797-3975, Fax 435-797-3796, E-mail terry.messmer@usu.edu Project Co-PIs and Staff: Dave Dahlgren, Eric Thacker, Kris Hulvey. Michel Kohl (Post-Doc), and Ben Crabb (GIS staff)
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Summary: This dataset contains an inventory of City of Los Angeles Sidewalks and related features (Access Ramps, Curbs, Driveways, and Parkways).Background: This inventory was performed throughout 2017 using a combination of G.I.S software, aerial imagery (2014 LARIAC), and a geographic dataset of property/right-of way lines. The dataset has not been updated since its creation.Description: The following provides more detail about the feature classes in this dataset. All features were digitized (“traced”) as observed in the orthophotography (digital aerial photos) and assigned the Parcel Identification Number (PIN) of their corresponding property:Sidewalk (polygon) – represents paved pedestrian walkways. Typical widths are between 3‐6 feet in residential areas and larger and more variable in commercial and high‐density traffic areas.Alley-Sidewalk (polygon) – represents the prevailing walkway or path of travel at the entrance/exit of an alley. Digitized as Sidewalk features but categorized as Alley Sidewalk and assigned a generic PIN value, ALLEY SIDEWALK.Corner Polygon (polygon) - feature created where sidewalks from two streets meet but do not intersect (i.e. at corner lots). There’s no standard shape/type and configurations vary widely. These are part of the Sidewalk feature class.In commercial and high‐density residential areas where there is only continuous sidewalk (no parkway strip), the sidewalk also functions as a Driveway.Driveway (polygon) – represents area that provides vehicular access to a property. Features are not split by extended parcel lot lines except when two adjacent properties are served by the same driveway approach (e.g. a common driveway), in which case they are and assigned a corresponding PIN.Parkway (polygon) – represents the strip of land behind the curb and in front of the sidewalk. Generally, they are landscaped with ground cover but they may also be filled in with decorative stone, pavers, decomposed granite, or concrete. They are created by offsetting lines, the Back of Curb (BOC) line and the Face of Walk (FOW). The distance between the BOC and FOW is measured off the aerial image and rounded to the nearest 0.5 foot, typically 6 – 10 feet.Curb (polygon) – represents the concrete edging built along the street to form part of the gutter. Features are always 6” wide strips and are digitized using the front of curb and back of curb digitized lines. They are the leading improvement polygon and are created for all corner, parkway, driveway and, sidewalk (if no parkway strip is present) features.Curb Ramp, aka Access Ramp (point) – represents the geographic center (centroid) of Corner Polygon features in the Sidewalk feature class. They have either a “Yes” or “No” attribute that indicates the presence or absence of a wheelchair access ramp, respectively.Fields: All features include the following fields...FeatureID – a unique feature identifier that is populated using the feature class’ OBJECTID fieldAssetID – a unique feature identifier populated by Los Angeles City staff for internal usePIND – a unique Parcel Identification Number (PIN) for all parcels within the City of L.A. All Sidewalk related features will be split, non-overlapping, and have one associated Parcel Identification Number (PIN). CreateDate – indicates date feature was createdModifiedDate – indicates date feature was revised/editedCalc_Width (excluding Access Ramps) – a generalized width of the feature calculated using spatial and mathematical algorithms on the feature. In almost all cases where features have variable widths, the minimum width is used. Widths are rounded to the nearest whole number. In cases where there is no value for the width, the applied algorithms were unable to calculate a reliable value.Calc_Length (excluding Access Ramps) – a generalized length of the feature calculated using spatial and mathematical algorithms on the feature. Lengths are rounded to the nearest whole number. In cases where there is no value for the length, the applied algorithms were unable to calculate a reliable value.Methodology: This dataset was digitized using a combination of G.I.S software, aerial imagery (2014 LARIAC), and a geographic dataset of property/right-of way lines.The general work flow is as follows:Create line work based on digital orthophotography, working from the face‐of‐curb (FOC) inward to the property right-of-way (ROW)Build sidewalk, parkway, driveway, and curb polygons from the digitized line workPopulate all polygons with the adjacent property PIN and classify all featuresCreate Curb Ramp pointsWarnings: This dataset has been provided to allow easy access and a visual display of Sidewalk and related features (Parkways, Driveway, Curb Ramps and Curbs). Every reasonable effort has been made to assure the accuracy of the data provided; nevertheless, some information may not be accurate. The City of Los Angeles assumes no responsibility arising from use of this information. THE MAPS AND ASSOCIATED DATA ARE PROVIDED WITHOUT WARRANTY OF ANY KIND, either expressed or implied, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Other things to keep in mind about this dataset are listed below:Obscured Features – The existence of dense tree canopy or dark shadows in the aerial imagery tend to obscure or make it difficult to discern the extent of certain features, such as Driveways. In these cases, they may have been inferred from the path in the corresponding parcel. If a feature and approach was completely obscured, it was not digitized. In certain instances the coloring of the sidewalk and adjacent pavement rendered it impossible to identify the curb line or that a sidewalk existed. Therefore a sidewalk may or may not be shown where one actually may or may not exist.Context: The following links provide information on the policy context surrounding the creation of this dataset. It includes links to City of L.A. websites:Willits v. City of Los Angeles Class Action Lawsuit Settlementhttps://www.lamayor.org/willits-v-city-la-sidewalk-settlement-announcedSafe Sidewalks LA – program implemented to repair broken sidewalks in the City of L.A., partly in response to the above class action lawsuit settlementhttps://sidewalks.lacity.org/Data Source: Bureau of EngineeringNotes: Please be aware that this dataset is not actively being maintainedLast Updated: 5/20/20215/20/2021 - Added Calc_Width and Calc_Length fieldsRefresh Rate: One-time deliverable. Dataset not actively being maintained.
Facebook
TwitterTerms of UseData Limitations and DisclaimerThe user’s use of and/or reliance on the information contained in the Document shall be at the user’s own risk and expense. MassDEP disclaims any responsibility for any loss or harm that may result to the user of this data or to any other person due to the user’s use of the Document.This is an ongoing data development project. Attempts have been made to contact all PWS systems, but not all have responded with information on their service area. MassDEP will continue to collect and verify this information. Some PWS service areas included in this datalayer have not been verified by the PWS or the municipality involved, but since many of those areas are based on information published online by the municipality, the PWS, or in a publicly available report, they are included in the estimated PWS service area datalayer.Please note: All PWS service area delineations are estimates for broad planning purposes and should only be used as a guide. The data is not appropriate for site-specific or parcel-specific analysis. Not all properties within a PWS service area are necessarily served by the system, and some properties outside the mapped service areas could be served by the PWS – please contact the relevant PWS. Not all service areas have been confirmed by the systems.Please use the following citation to reference these data:MassDEP, Water Utility Resilience Program. 2025. Community and Non-Transient Non-Community Public Water System Service Area (PubV2025_3).IMPORTANT NOTICE: This MassDEP Estimated Water Service datalayer may not be complete, may contain errors, omissions, and other inaccuracies and the data are subject to change. This version is published through MassGIS. We want to learn about the data uses. If you use this dataset, please notify staff in the Water Utility Resilience Program (WURP@mass.gov).
This GIS datalayer represents approximate service areas for Public Water Systems (PWS) in Massachusetts. In 2017, as part of its “Enhancing Resilience and Emergency Preparedness of Water Utilities through Improved Mapping” (Critical Infrastructure Mapping Project ), the MassDEP Water Utility Resilience Program (WURP) began to uniformly map drinking water service areas throughout Massachusetts using information collected from various sources. Along with confirming existing public water system (PWS) service area information, the project collected and verified estimated service area delineations for PWSs not previously delineated and will continue to update the information contained in the datalayers. As of the date of publication, WURP has delineated Community (COM) and Non-Transient Non-Community (NTNC) service areas. Transient non-community (TNCs) are not part of this mapping project.
Layers and Tables:
The MassDEP Estimated Public Water System Service Area data comprises two polygon feature classes and a supporting table. Some data fields are populated from the MassDEP Drinking Water Program’s Water Quality Testing System (WQTS) and Annual Statistical Reports (ASR).
The Community Water Service Areas feature class (PWS_WATER_SERVICE_AREA_COMM_POLY) includes polygon features that represent the approximate service areas for PWS classified as Community systems.The NTNC Water Service Areas feature class (PWS_WATER_SERVICE_AREA_NTNC_POLY) includes polygon features that represent the approximate service areas for PWS classified as Non-Transient Non-Community systems.The Unlocated Sites List table (PWS_WATER_SERVICE_AREA_USL) contains a list of known, unmapped active Community and NTNC PWS services areas at the time of publication.
Production
Data Universe
Public Water Systems in Massachusetts are permitted and regulated through the MassDEP Drinking Water Program. The WURP has mapped service areas for all active and inactive municipal and non-municipal Community PWSs in MassDEP’s Water Quality Testing Database (WQTS). Community PWS refers to a public water system that serves at least 15 service connections used by year-round residents or regularly serves at least 25 year-round residents.
All active and inactive NTNC PWS were also mapped using information contained in WQTS. An NTNC or Non-transient Non-community Water System refers to a public water system that is not a community water system and that has at least 15 service connections or regularly serves at least 25 of the same persons or more approximately four or more hours per day, four or more days per week, more than six months or 180 days per year, such as a workplace providing water to its employees.
These data may include declassified PWSs. Staff will work to rectify the status/water services to properties previously served by declassified PWSs and remove or incorporate these service areas as needed.
Maps of service areas for these systems were collected from various online and MassDEP sources to create service areas digitally in GIS. Every PWS is assigned a unique PWSID by MassDEP that incorporates the municipal ID of the municipality it serves (or the largest municipality it serves if it serves multiple municipalities). Some municipalities contain more than one PWS, but each PWS has a unique PWSID. The Estimated PWS Service Area datalayer, therefore, contains polygons with a unique PWSID for each PWS service area.
A service area for a community PWS may serve all of one municipality (e.g. Watertown Water Department), multiple municipalities (e.g. Abington-Rockland Joint Water Works), all or portions of two or more municipalities (e.g. Provincetown Water Dept which serves all of Provincetown and a portion of Truro), or a portion of a municipality (e.g. Hyannis Water System, which is one of four PWSs in the town of Barnstable).
Some service areas have not been mapped but their general location is represented by a small circle which serves as a placeholder. The location of these circles are estimates based on the general location of the source wells or the general estimated location of the service area - these do not represent the actual service area.
Service areas were mapped initially from 2017 to 2022 and reflect varying years for which service is implemented for that service area boundary. WURP maintains the dataset quarterly with annual data updates; however, the dataset may not include all current active PWSs. A list of unmapped PWS systems is included in the USL table PWS_WATER_SERVICE_AREA_USL available for download with the dataset. Some PWSs that are not mapped may have come online after this iteration of the mapping project; these will be reconciled and mapped during the next phase of the WURP project. PWS IDs that represent regional or joint boards with (e.g. Tri Town Water Board, Randolph/Holbrook Water Board, Upper Cape Regional Water Cooperative) will not be mapped because their individual municipal service areas are included in this datalayer.
Some PWSs that are not mapped may have come online after this iteration of the mapping project; these will be reconciled and mapped during the next phase of the WURP project. Those highlighted (e.g. Tri Town Water Board, Randolph/Holbrook Water Board, Upper Cape Regional Water Cooperative) represent regional or joint boards that will not be mapped, because their individual municipal service areas are included in this datalayer.
PWSs that do not have corresponding sources, may be part of consecutive systems, may have been incorporated into another PWSs, reclassified as a different type of PWS, or otherwise taken offline. PWSs that have been incorporated, reclassified, or taken offline will be reconciled during the next data update.
Methodologies and Data Sources
Several methodologies were used to create service area boundaries using various sources, including data received from the systems in response to requests for information from the MassDEP WURP project, information on file at MassDEP, and service area maps found online at municipal and PWS websites. When provided with water line data rather than generalized areas, 300-foot buffers were created around the water lines to denote service areas and then edited to incorporate generalizations. Some municipalities submitted parcel data or address information to be used in delineating service areas.
Verification Process
Small-scale PDF file maps with roads and other infrastructure were sent to every PWS for corrections or verifications. For small systems, such as a condominium complex or residential school, the relevant parcels were often used as the basis for the delineated service area. In towns where 97% or more of their population is served by the PWS and no other service area delineation was available, the town boundary was used as the service area boundary. Some towns responded to the request for information or verification of service areas by stating that the town boundary should be used since all or nearly all of the municipality is served by the PWS.
Sources of information for estimated drinking water service areas
The following information was used to develop estimated drinking water service areas:
EOEEA Water Assets Project (2005) water lines (these were buffered to create service areas)Horsely Witten Report 2008Municipal Master Plans, Open Space Plans, Facilities Plans, Water Supply System Webpages, reports and online interactive mapsGIS data received from PWSDetailed infrastructure mapping completed through the MassDEP WURP Critical Infrastructure InitiativeIn the absence of other service area information, for municipalities served by a town-wide water system serving at least 97% of the population, the municipality’s boundary was used. Determinations of which municipalities are 97% or more served by the PWS were made based on the Percent Water Service Map created in 2018 by MassDEP based on various sources of information including but not limited to:The Winter population served submitted by the PWS in the ASR submittalThe number of services from WQTS as a percent of
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Last update: October 16, 2025 OverviewThis point data was generated and filtered from OpenStreetMap and is intended to represent places of interest in the state of Utah. These may include businesses, restaurants, places of worship, airports, parks, schools, event centers, apartment complexes, hotels, car dealerships…almost anything that you can find in OpenStreetMap (OSM). There are over 23,000 features in the original dataset (March 2022) and users can directly contribute to it through openstreetmap.org. This data is updated approximately once every month and will likely continue to grow over time with user activity. Data SourcesThe original bulk set of OSM data for the state of Utah is downloaded from Geofabrik: https://download.geofabrik.de/north-america/us/utah-latest-free.shp.zipAdditional attributes for the Utah features are gathered via the Overpass API using the following query: https://overpass-turbo.eu/s/1geRData Creation ProcessThe Open Source Places layer is created by a Python script that pulls statewide OSM data from a nightly archive provided by Geofabrik (https://www.geofabrik.de/data/download.html). The archive data contains nearly 20 shapefiles, some that are relevant to this dataset and some that aren't. The Open Source Places layer is built by filtering the polygon and point data in those shapefiles down to a single point feature class with specific categories and attributes that UGRC determines would be of widest interest. The polygon features (buildings, areas, complexes, etc.) are converted to points using an internal centroid. Spatial filtering is done as the data from multiple shapefiles is combined into a single layer to minimize the occurrence of duplicate features. (For example, a restaurant can be represented in OSM as both a point of interest and as a building polygon. The spatial filtering helps reduce the chances that both of these features are present in the final dataset.) Additional de-duplication is performed by using the 'block_id' field as a spatial index, to ensure that no two features of the same name exist within a census block. Then, additional fields are created and assigned from UGRC's SGID data (county, city, zip, nearby address, etc.) via point-in-polygon and near analyses. A numeric check is done on the 'name' field to remove features where the name is less than 3 characters long or more than 50% numeric characters. This eliminates several features derived from the buildings layer where the 'name' is simply an apartment complex building number (ex: 3A) or house number (ex: 1612). Finally, additional attributes (osm_addr, opening_hours, phone, website, cuisine, etc.) are pulled from the Overpass API (https://wiki.openstreetmap.org/wiki/Overpass_API) and joined to the filtered data using the 'osm_id' field as the join key. Field Descriptionsaddr_dist - the distance (m) to the nearest UGRC address point within 25 mosm_id - the feature ID in the OSM databasecategory - the feature's data class based on the 4-digit code and tags in the OSM databasename - the name of the feature in the OSM databasecounty - the county the feature is located in (assigned from UGRC's county boundaries)city - the city the feature is located in (assigned from UGRC's municipal boundaries)zip - the zip code of the feature (assigned from UGRC's approximation of zip code boundaries)block_id - the census block the feature is located in (assigned from UGRC's census block boundaries)ugrc_addr - the nearest address (within 25 m) from the UGRC address point databasedisclaimer - a note from UGRC about the ugrc_near_addr fieldlon - the approximate longitude of the feature, calculated in WGS84 EPSG:4326lat - the approximate latitude of the feature, calculated in WGS84 EPSG:4326amenity - the amenity available at the feature (if applicable), often similar to the categorycuisine - the type of food available (if applicable), multiple types are separated by semicolons (;)tourism - the type of tourist location, if applicable (zoo, viewpoint, hotel, attraction, etc.)shop - the type of shop, if applicablewebsite - the feature's website in the OSM database, if availablephone - the feature's phone number(s) in the OSM database, if availableopen_hours - the feature's operating hours in the OSM database, if availableosm_addr - the feature's address in the OSM database, if availableMore information can be found on the UGRC data page for this layer:https://gis.utah.gov/data/society/open-source-places/
Facebook
TwitterThis parcel lines feature class represents the current city parcel lines within the City of Los Angeles. It shares topology with the Landbase Parcel_polygons feature class. The Mapping and Land Records Division of the Bureau of Engineering, Department of Public Works provides the most current geographic information of the public right of way, ownership and land record information. The legal boundaries are determined on the ground by license surveyors in the State of California, and by recorded documents from the Los Angeles County Recorder's office and the City Clerk's office of the City of Los Angeles. Parcel and ownership information are available on NavigateLA, a website hosted by the Bureau of Engineering, Department of Public Works.Associated information about the landbase parcel lines is entered into attributes. Principal attributes include:CV_LAYER: is the principal field that describes the various types of lines like street and freeway right-of-ways, tract, lots, government property and easements lines, private street lines, utility right-of-ways, and ownership lines. For a complete list of attribute values, please refer to Landbase_parcel_lines_data_dictionary.Landbase parcels lines layer was created in geographical information systems (GIS) software to display the location of parcel lots. The parcels lines layer is a feature class in the LACityLandbaseData.gdb Geodatabase dataset. The layer consists of spatial data as a line feature class and attribute data for the features. The lines are derived from the polygon feature class in the landbase parcels layer, and information about the lines is entered into attributes. The CV_LAYER field values describe the various types of lines. The right-of-way, row, line features consist of CV_LAYER = 6, CV_LAYER = 106, and portions of CV_LAYER = 1 where that line is both the city boundary and the parcel line. In some cases, a parcel line will share two different type descriptions. Refer to CV_LAYER field metadata for further explantion. Parcel information should only be added to the Landbase Parcels layer if documentation exists, such as a Deed or a Plan approved by the City Council. When seeking the definitive description of real property, consult the recorded Deed or Plan.List of Fields:ASSETIDCV_LAYER: This value is a number representing a different type of user-assigned layer. Each of the line segments in the landbase parcels lines are assigned one of the CV_LAYER numbers, representing a different type of line work, described below. In some cases, a parcel line will share two different type descriptions. Such as, a parcel line may have CV_LAYER = 1 City Boundary line, and it is a CV_LAYER = 8 Tract line. The Tract line description is used first, and the City Boundary line description is used second. When selecting City Boundary line using CV_LAYER = 1, then (special way to select data...). The right-of-way, row, line features consist of CV_LAYER = 6, CV_LAYER = 106, and portions of CV_LAYER = 1 where that line is both the city boundary and the parcel line. Values: • 50 - Lot cut linework. • 38 - Freeway ease as easement lines. • 108 - Tract lines that are private street lines. • 8 - Tract lines, Rancho lines, Freeway (Fwy), and Right of way lines. • 30 - Former city boundary lines; other city or county boundary line. • 34 - Overlap lines. • 6 - Right of way (R/W) sidelines. • 19 - LA City easement lines. • 21 - All governmental lines (Fee). • 37 - APN (BPP) lines shown on tax assessors map (PCL maps); but no new PIN is created for the parcels polygon feature. • 48 - Subdivision title anno shown for ownership purpose (lot cut). • 10 - Lot lines. • 68 - SBBM (San Bernardino Base Meridian) section lines. • 1 - Boundary lines (existing). • 110 - Lot lines that are private street lines. • 18 - All governmental easement lines (except LA City and State freeway ease right of way lines). • 106 - Fwy traveled roadway lines; Dash right of way lines; Railroad and transmission lines. • 0 - Cadastral format.SHAPE: Feature geometry.OBJECTID: Internal feature number.ID: A unique numeric identifier of the polygon. The ID value is the last part of the PIN field value.MAPSHEET: The alpha-numeric mapsheet number, which refers to a valid B-map or A-map number on the Cadastral tract index map. Values: • B, A, -5A - Any of these alpha-numeric combinations are used, whereas the underlined spaces are the numbers.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A polygon feature class of the Wellfield Protection Areas within Miami-Dade County. The protection areas are designated based on geological characteristics of the aquifer and the flow of water through it. New activities that use or store hazardous materials or generate hazardous waste are prohibited within certain parts of the wellfield protection areas.Updated: As Needed The data was created using: Projected Coordinate System: WGS_1984_Web_Mercator_Auxiliary_SphereProjection: Mercator_Auxiliary_Sphere
Facebook
TwitterThe pathway representation consists of segments and intersection elements. A segment is a linear graphic element that represents a continuous physical travel path terminated by path end (dead end) or physical intersection with other travel paths. Segments have one street name, one address range and one set of segment characteristics. A segment may have none or multiple alias street names. Segment types included are Freeways, Highways, Streets, Alleys (named only), Railroads, Walkways, and Bike lanes. SNDSEG_PV is a linear feature class representing the SND Segment Feature, with attributes for Street name, Address Range, Alias Street name and segment Characteristics objects. Part of the Address Range and all of Street name objects are logically shared with the Discrete Address Point-Master Address File layer. Appropriate uses include: Cartography - Used to depict the City's transportation network location and connections, typically on smaller scaled maps or images where a single line representation is appropriate. Used to depict specific classifications of roadway use, also typically at smaller scales. Used to label transportation network feature names typically on larger scaled maps. Used to label address ranges with associated transportation network features typically on larger scaled maps. Geocode reference - Used as a source for derived reference data for address validation and theoretical address location Address Range data repository - This data store is the City's address range repository defining address ranges in association with transportation network features. Polygon boundary reference - Used to define various area boundaries is other feature classes where coincident with the transportation network. Does not contain polygon features. Address based extracts - Used to create flat-file extracts typically indexed by address with reference to business data typically associated with transportation network features. Thematic linear location reference - By providing unique, stable identifiers for each linear feature, thematic data is associated to specific transportation network features via these identifiers. Thematic intersection location reference - By providing unique, stable identifiers for each intersection feature, thematic data is associated to specific transportation network features via these identifiers. Network route tracing - Used as source for derived reference data used to determine point to point travel paths or determine optimal stop allocation along a travel path. Topological connections with segments - Used to provide a specific definition of location for each transportation network feature. Also provides a specific definition of connection between each transportation network feature. (defines where the streets are and the relationship between them ie. 4th Ave is west of 5th Ave and 4th Ave does intersect with Cherry St) Event location reference - Used as source for derived reference data used to locate event and linear referencing.Data source is TRANSPO.SNDSEG_PV. Updated weekly.
Facebook
Twitter
The Wildland Fire Interagency Geospatial Services (WFIGS) Group
provides authoritative geospatial data products under the interagency Wildland
Fire Data Program. Hosted in the National Interagency Fire Center ArcGIS Online
Organization (The NIFC Org), WFIGS provides both internal and public facing data,
accessible in a variety of formats.
| Incident Name (Polygon) | The Incident Name from the source polygon. |
| Feature Category | Type of wildland fire perimeter set for the source polygon. |
| Map Method | Controlled vocabulary to define how the source polygon was derived. Map Method may help define data quality. |
| GIS Acres | User-calculated acreage on the source polygon. |
| Polygon Create Date | System field. Time stamp for the source polygon feature creation. |
| Polygon Modified Date | System field. Time stamp for the most recent edit to the source polygon feature. |
| Polygon Collection Date Time | Date time for the source polygon feature collection. |
| Acres Auto Calculated | Automated calculation of the source polygon acreage. |
| Polygon Source | Data source of the perimeter geometry. {Year} NIFS: Annual National Incident Feature Service FFP: Final Fire Perimeter Service (Certified Perimeters) |
| ABCD Misc | A FireCode used by USDA FS to track and compile cost information for emergency initial attack fire suppression expenditures. for A, B, C & D size class fires on FS lands. |
| ADS Permission State | Indicates the permission hierarchy that is currently being applied when a system utilizes the UpdateIncident operation. |
| IRWIN Archived On | A date set by IRWIN that indicates when an incident's data has met the rules defined for the record to become part of the historical fire records rather than an operational incident record. The value will be set the current date/time if any of the following criteria are met: 1. ContainmentDataTime or ControlDateTime or FireOutDateTime or ModifiedOnDateTime > 12 months from the current DateTime 2. FinalFireReportDate is not null and ADSPermissionState is 'certified'. |
| Calculated Acres | A measure of acres calculated (i.e., infrared) from a geospatial perimeter of a fire. More specifically, the number of acres within the current perimeter of a specific, individual incident, including unburned and unburnable islands. The minimum size must be 0.1. |
Facebook
TwitterThe documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updatesTitle: Soil Survey Geographic Database (SSURGO) DownloaderItem Type: Web Mapping Application URLSummary: Download ready-to-use project packages with over 170 attributes derived from the SSURGO (Soil Survey Geographic Database) dataset.Notes: Prepared by: Uploaded by EMcRae_NMCDCSource: https://nmcdc.maps.arcgis.com/home/item.html?id=cdc49bd63ea54dd2977f3f2853e07fff link to Esri web mapping applicationFeature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=305ef916da574a71877edb15c3f47f08#overviewUID: 26Data Requested: Ag CensusMethod of Acquisition: Esri web mapDate Acquired: 6/16/22Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 8Tags: PENDINGDOCUMENTATION FROM DATA SOURCE URL: This application provides quick access to ready-to-use project packages filled with useful soil data derived from the SSURGO dataset.To use this application, navigate to your study area and click the map. A pop-up window will open. Click download and the project package will be copied to your computer. Double click the downloaded package to open it in ArcGIS Pro. Alt + click on the layer in the table of contents to zoom to the subbasin.Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryThe map packages were created from the October 2021 SSURGO snapshot. The dataset covers the 48 contiguous United States plus Hawaii and portions of Alaska. Map packages are available for Puerto Rico and the US Virgin Islands. A project package for US Island Territories and associated states of the Pacific Ocean can be downloaded by clicking one of the included areas in the map. The Pacific Project Package includes: Guam, the Marshall Islands, the Northern Marianas Islands, Palau, the Federated States of Micronesia, and American Samoa.Not all areas within SSURGO have completed soil surveys and many attributes have areas with no data. The soil data in the packages is also available as a feature layer in the ArcGIS Living Atlas of the World.AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Map Unit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Map Unit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some map units have a null value for soil order, a
Facebook
TwitterCTPS TAZs were redrawn in 2011-2012 based on changes in Census geography from 2000; new residential and commercial developments; updated street centerline, rail and hydrography featureclasses; and a new CTPS town boundary featureclass based on the MassGIS town boundaries from survey points with coastal waters. The MassGIS town boundaries were extended out into coastal waters using the old TOWNS_PB boundaries as a template. Coastal water polygons were assigned a COAST attribute of 'Y.' Inland polygons received a COAST attribute of 'N.' The coastline of the town boundaries from survey points featureclass extends too far inland for practical use. For the new town boundary featureclass, the inland reach of the coastline was limited to approximately that of older versions of town boundaries. This featureclass was created by selecting only the non-coastal-water polygons.This featureclass contains multi-part polygons: one feature per town / taz.A small part of Wellesley adjacent to Needham along the Charles River that is isolated from the rest of Wellesley has been assigned to Needham zone 1495.
Facebook
TwitterTask4_ImperviousUpdate2022 - this feature class represents the complete set of impervious features created by the GeoTREE Center. The 2020 project used a multi-step geoprocessing workflow to import data from various sources provided by the City of Madison and then through visual interpretation and digitizing of features. The basic original process was to use a variety of semi-automated and manual geoprocessing to pull/create polygon features from a variety of feature classes provided by the City of Madison at the beginning of the project. These feature classes included curb lines (Curb_Line_Rd), bike/ped paths (Bike_Ped_Paths), buildings (Building_Footprint_DaneCo and SWU_ImperviousAreas), and water body areas (HydroPoly_RFPArea). After building these inherited polygons into this feature class the majority of the work in this project was digitizing impervious features in this feature class based on the Subtype schema associated with the source_area field in this feature class. That schema can be seen below:0 Flat Roof1 Sloped Roof2 Parking3 Unpaved Parking4 Sidewalks5 Driveways6 Water Body Areas7 Streets8 Alleys9 Playground10 Other Impervious Areas11 Landscaped Areas12 Undeveloped Areas13 Other Pervious Areas14 Isolated AreasAll original digitizing was done with 2018 imagery from https://gisimg.cityofmadison.com/arcgis/services/ImageServices/2018_CITY_COLOR/ImageServer. Descriptions of fields is below:source_area - this is the main field as required by the original RFP and in which the above subytpe schema was set up. When GeoTREE Center workers were editing they would choose from the subtype choices and create or edit polygons. GeometryFrom - this field will hold a value indicating the feature class that the original polygon was inherited from (e.g.. HydroPoly_RFPArea). It is still possible that a GeoTREE Center worker would have manually edited the polygons with a value in here although most of these geometries likely are directly inherited from the feature class indicated. The polygons with a value of Bike_Ped_Paths buffered' went through a process of buffering the original line features based on a width attribute and then were manually edited by GeoTREE Center workers as needed. The polygons with Curb_Line_RD with GeoTREE Edits in GeometryFrom field wrere the result of a multiple step geoprocessing workflow to translate the lines into polygons with significant manually editiing by GeoTREE Center workers. source_area_int - the integer value stored in source_area field source_area_desc - the source area descriptionIn 2022 the GeoTREE Center used imagery indicated below to visually inspect and digitize newly developed polygon features as well as to find changes in the built environment and to delete/edit/create new features as needed. The GeometryFrom column has a value of 'UNI GeoTREE Created 2022' the feature was created during this 2022 round of digitizing. https://gisimg.cityofmadison.com/arcgis/services/ImageServices/2020_CITY_COLOR_WEBMERC/ImageServerhttps://dcimapapps.countyofdane.com/arcgisimg/services/ColorOrtho6Inch2020WEB/ImageServer
Facebook
TwitterThis service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us online at https://goto.arcgisonline.com/landscape11/USA_Soils_Map_Units.Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary SphereExtent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaVisible Scale: 1:144,000 to 1:1,000Resolution/Tolerance: 1 meter/2 metersNumber of Features: 36,543,233Feature Request Limit: 10,000Source: USDA Natural Resources Conservation ServicePublication Date: October 1, 2019ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/rest/servicesData from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some mapunits have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Mapunit Name (muname) fields. This field was created using the dominant soil order of each mapunit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a model that included the Pivot Table Tool, the Summarize Tool and a custom script. The first 11 fields provide the sum of Component Percentage Representative Value for each soil order for each map unit. The Soil Order Dominant Condition field was calculated by selecting the highest value in the
Facebook
TwitterSoil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from the gSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesGeographic Extent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System: Web Mercator Auxiliary SphereVisible Scale: 1:144,000 to 1:1,000Source: USDA Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 What can you do with this layer?ArcGIS OnlineFeature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro.Below are just a few of the things you can do with a feature service in Online and Pro.Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-up ArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -