26 datasets found
  1. d

    Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 [Dataset]. https://catalog.data.gov/dataset/contour-dataset-of-the-potentiometric-surface-of-groundwater-level-altitudes-near-the-plan
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Hot Springs, Arkansas
    Description

    This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.

  2. Viewshed

    • cartong-esriaiddev.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Jul 5, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Viewshed [Dataset]. https://cartong-esriaiddev.opendata.arcgis.com/items/1ff463dbeac14b619b9edbd7a9437037
    Explore at:
    Dataset updated
    Jul 5, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Viewshed analysis layer is used to identify visible areas. You specify the places you are interested in, either from a file or interactively, and the Viewshed service combines this with Esri-curated elevation data to create output polygons of visible areas. Some questions you can answer with the Viewshed task include:What areas can I see from this location? What areas can see me?Can I see the proposed wind farm?What areas can be seen from the proposed fire tower?The maximum number of input features is 1000.Viewshed has the following optional parameters:Maximum Distance: The maximum distance to calculate the viewshed.Maximum Distance Units: The units for the Maximum Distance parameter. The default is meters.DEM Resolution: The source elevation data; the default is 90m resolution SRTM. Other options include 30m, 24m, 10m, and Finest.Observer Height: The height above the surface of the observer. The default value of 1.75 meters is an average height of a person. If you are looking from an elevation location such as an observation tower or a tall building, use that height instead.Observer Height Units: The units for the Observer Height parameter. The default is meters.Surface Offset: The height above the surface of the object you are trying to see. The default value is 0. If you are trying to see buildings or wind turbines add their height here.Surface Offset Units: The units for the Surface Offset parameter. The default is meters.Generalize Viewshed Polygons: Determine if the viewshed polygons are to be generalized or not. The viewshed calculation is based upon a raster elevation model which creates a result with stair-stepped edges. To create a more pleasing appearance, and improve performance, the default behavior is to generalize the polygons. This generalization will not change the accuracy of the result for any location more than one half of the DEM's resolution.By default, this tool currently works worldwide between 60 degrees north and 56 degrees south based on the 3 arc-second (approximately 90 meter) resolution SRTM dataset. Depending upon the DEM resolution pick by the user, different data sources will be used by the tool. For 24m, tool will use global dataset WorldDEM4Ortho (excluding the counties of Azerbaijan, DR Congo and Ukraine) 0.8 arc-second (approximately 24 meter) from Airbus Defence and Space GmbH. For 30m, tool will use 1 arc-second resolution data in North America (Canada, United States, and Mexico) from the USGS National Elevation Dataset (NED), SRTM DEM-S dataset from Geoscience Australia in Australia and SRTM data between 60 degrees north and 56 degrees south in the remaining parts of the world (Africa, South America, most of Europe and continental Asia, the East Indies, New Zealand, and islands of the western Pacific). For 10m, tool will use 1/3 arc-second resolution data in the continental United States from USGS National Elevation Dataset (NED) and approximately 10 meter data covering Netherlands, Norway, Finland, Denmark, Austria, Spain, Japan Estonia, Latvia, Lithuania, Slovakia, Italy, Northern Ireland, Switzerland and Liechtenstein from various authoritative sources.To learn more, read the developer documentation for Viewshed or follow the Learn ArcGIS exercise called I Can See for Miles and Miles. To use this Geoprocessing service in ArcGIS Desktop 10.2.1 and higher, you can either connect to the Ready-to-Use Services, or create an ArcGIS Server connection. Connect to the Ready-to-Use Services by first signing in to your ArcGIS Online Organizational Account:Once you are signed in, the Ready-to-Use Services will appear in the Ready-to-Use Services folder or the Catalog window:If you would like to add a direct connection to the Elevation ArcGIS Server in ArcGIS for Desktop or ArcGIS Pro, use this URL to connect: https://elevation.arcgis.com/arcgis/services. You will also need to provide your account credentials. ArcGIS for Desktop:ArcGIS Pro:The ArcGIS help has additional information about how to do this:Learn how to make a ArcGIS Server Connection in ArcGIS Desktop. Learn more about using geoprocessing services in ArcGIS Desktop.This tool is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  3. a

    NZ Elevation

    • our-council-eaglelabs.hub.arcgis.com
    • pacificgeoportal.com
    • +4more
    Updated Aug 6, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eagle Technology Group Ltd (2019). NZ Elevation [Dataset]. https://our-council-eaglelabs.hub.arcgis.com/datasets/2ce4fe7d77024e719f8a04d2155b3fd2
    Explore at:
    Dataset updated
    Aug 6, 2019
    Dataset authored and provided by
    Eagle Technology Group Ltd
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Will be updated as new data becomes availableProjectionNew Zealand Transverse Mercator 2000 (NZTM2000).Vertical DatumNew Zealand Vertical Datum 2016 (NZVD2016).The NZ Elevation layer is an elevation surface for use in 3D applications in the NZTM projection. By adding this layer to a Scene in ArcGIS Pro or in the Scene Viewer it will be define the base height in your application.See the metadata layer with information about the data here.NZTM Basemaps can be used on top of this service, providing it shares the same tiling scheme. When combining it with the NZ Basemaps provided by Eagle Technolgy, make sure to use the raster basemaps with the updated tiling scheme or one of the vector basemaps. All the compatible basemaps can be found in this group. When creating your own basemap or tiled layer make sure to use the tiling scheme provided here.The elevation service is made up of the available publicly-owned 1m and 2m dems. For areas where 1m/2m elevation data is not available the 8m dem provided by LINZ is being used. Outside of the coverage of the 8m dem, a 0m dem is used for visual purposes.This service is offered by Eagle Technology (Official Esri Distributor). Eagle Technology offers layers and maps that can be used in the ArcGIS platform. The Content team at Eagle Technology updates the layers on a regular basis and regularly adds new content to the Living Atlas. By using this content and combining it with other data you can create new information products quickly and easily.If you have any questions or remarks about the content, please let us now at livingatlas@eagle.co.nz

  4. d

    Data from: Florida Reef Tract 2016-2019 Seafloor Elevation Stability Models,...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Florida Reef Tract 2016-2019 Seafloor Elevation Stability Models, Maps, and Tables [Dataset]. https://catalog.data.gov/dataset/florida-reef-tract-2016-2019-seafloor-elevation-stability-models-maps-and-tables
    Explore at:
    Dataset updated
    Nov 26, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Florida
    Description

    The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the years of 2016 and 2019 along the Florida Reef Tract (FRT) from Miami to Key West within a 939.4 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Fehr and others (2021) derived from an elevation-change analysis between two elevation datasets acquired in 2016/2017 and 2019 using the methods of Yates and others (2017). Most of the elevation data from the 2016/2017 time period were collected during 2016, so as an abbreviated naming convention, we refer to this time period as 2016. Due to file size limitations, the elevation-change data was divided into five blocks. A seafloor stability threshold was determined for the 2016-2019 FRT elevation-change datasets based on the vertical uncertainty of the 2016 and 2019 digital elevation models (DEMs). Five stability categories (which include, Stable: 0.0 meters (m) to ±0.24 m or 0.0 m to ±0.49 m; Moderately stable: ±0.25 m to ±0.49 m; Moderately unstable: ±0.50 m to ±0.74 m; Mostly unstable: ±0.75 m to ±0.99 m; and Unstable: ±1.00 m to Max/Min elevation change) were created and used to define levels of stability and instability for each elevation-change value (total of 235,153,117 data points at 2-m horizontal resolution) based on the amount of erosion and accretion during the 2016 to 2019 time period. Seafloor-stability point and triangulated irregular network (TIN) surface models were created for each block at five different elevation-change data resolutions (1st order through 5th order) with each resolution becoming increasingly more detailed. The stability models were used to determine the level of seafloor stability at potential areas of interest for coral restoration and 14 habitat types found along the FRT. Stability surface (TIN) models were used for areas defined by specific XY geographic points, while stability point models were used for areas defined by bounding box coordinate locations. This data release includes ArcGIS Pro map packages containing the binned and color-coded stability point and surface (TIN) models, potential coral restoration locations, and habitat files for each block; maps of each stability model; and data tables containing stability and elevation-change data for the potential coral restoration locations and habitat types. Data were collected under Florida Keys National Marine Sanctuary permit FKNMS-2016-068. Coral restoration locations were provided by Mote Marine Laboratory under Special Activity License SAL-18-1724-SCRP.

  5. l

    IntroTo3DGIS PrintableOneSheet

    • visionzero.geohub.lacity.org
    • opendata.rcmrd.org
    Updated Jul 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nath2869 (2020). IntroTo3DGIS PrintableOneSheet [Dataset]. https://visionzero.geohub.lacity.org/documents/d8ddd38812324c7d9457f30bdd8f13bf
    Explore at:
    Dataset updated
    Jul 10, 2020
    Dataset authored and provided by
    nath2869
    Description

    New to 3D GIS with @esri and @ArcGISPro?I’ve put together a printable 2-page cheat-sheet of the concepts and terms you need to get started! 😊First, take a quick anatomy lesson to learn about the elements that make up a 3D scene. Not every scene has every element, but you need to know your options.Perhaps most importantly, think about HOW you intend to share your 3D map BEFORE you spend hours (or days) making it. - Tip: If it’s an image or a video, you can spend more time on areas you know the camera will visit, and less on the rest. 3D also has this nasty habit of showing continuous scales (aka levels-of-detail / LODs) throughout the view… You WILL need to think about how scales change off into the distance, as well as choosing the “just-right” LOD for the features you’re showing.Got data with no Z’s? No problem – give them a place to draw by creating an elevation surface. While ‘Ground’ is the most famous, you can also model surfaces: underground; in the air; and based on thematic values.“Paint” your surfaces by draping them with imagery and cartographic content… but don’t forget about the whole continuous-scale thing.Vector content are the “pretty boys” of your 3D map. They give the scene depth and things for people to click on. They can also be high maintenance, both in creation time and performance impact. Use them wisely, and consistently, to avoid a scene that tries to do too much.Vector objects come in all shapes and sizes. Think about how even a simple shape – rotated and resized into place – can communicate information to the user. Everything does NOT* have to look “real”!* (Full Disclosure: sometimes it does).Much like the Ground surface, the exterior shell of vector objects can also be “painted”. The source could be oblique imagery… or procedurally-placed windows and bricks… or even “material” properties that can make a surface appear to be iron or glass or wood. Text in a 3D view can label locations and reinforce the direction a feature is oriented. Make it 3D (where you can) and only drape it on the ground as a last resort… or when you have full camera control (eg: video).Once you’ve symbolized all your layers, you still have more to do – you must also think about the scene as a whole! A scene’s light direction can change the mood, exaggeration can make flat land interesting, and the background color might be critical for the intended use of an exported image.And, finally, if you’re sharing an interactive 3D view, please have a little EMPATHY for your audience. Some of them will be new to 3D and – let’s be honest - navigating around can be hard.If you give them ‘safe places’ (bookmarks / slides) to zoom to if they get lost, they will love your work even more.Hope this helps – good luck with your 3D!-Nathan.

  6. d

    Data from: Upper Florida Keys 2002-2016 Seafloor Elevation Stability Models,...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Nov 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Upper Florida Keys 2002-2016 Seafloor Elevation Stability Models, Maps, and Tables [Dataset]. https://catalog.data.gov/dataset/upper-florida-keys-2002-2016-seafloor-elevation-stability-models-maps-and-tables
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Florida Keys, Florida
    Description

    The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the years of 2002 and 2016 in the Upper Florida Keys (UFK) from Triumph Reef to Pickles Reef within a 242.4 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Murphy and others (2021) derived from an elevation-change analysis between two elevation datasets acquired in 2001/2002 and 2016/2017 using the methods of Yates and others (2017). Most of the elevation data from these two time periods were collected during 2002 and 2016, so as an abbreviated naming convention, we refer to this study time period as 2002-2016. A seafloor stability threshold was determined for the 2002-2016 UFK elevation-change dataset based on the vertical uncertainty of the 2002 and 2016 digital elevation models (DEMs). Five stability categories (which include, Stable: 0.0 meters (m) to ±0.24 m or 0.0 m to ±0.49 m; Moderately stable: ±0.25 m to ±0.49 m; Moderately unstable: ±0.50 m to ±0.74 m; Mostly unstable: ±0.75 m to ±0.99 m; and Unstable: ±1.00 m to Max/Min elevation change) were created and used to define levels of stability and instability for each elevation-change value (60,585,610 data points at 2-m horizontal resolution) based on the amount of erosion and accretion during the 2002 to 2016 time period. Seafloor-stability point and triangulated irregular network (TIN) surface models were created at five different elevation-change data resolutions (1st order through 5th order) with each resolution becoming increasingly more detailed. The stability models were used to determine the level of seafloor stability at potential areas of interest for coral restoration and 13 habitat types found in the UFK. Stability surface (TIN) models were used for areas defined by specific XY geographic points, while stability point models were used for areas defined by bounding box coordinate locations. This data release includes ArcGIS Pro map packages containing the binned and color-coded stability point and surface (TIN) models, potential coral restoration locations, and habitat files; maps of each stability model; and data tables containing stability and elevation-change data for the potential coral restoration locations and habitat types. Data were collected under Florida Keys National Marine Sanctuary permit FKNMS-2016-068.

  7. d

    DEM, DSM, and Cleaned LiDAR Point Cloud Data from the NGEE Arctic UAS...

    • search.dataone.org
    • resodate.org
    • +1more
    Updated Jul 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shannon Dillard; Adam Collins; Julian Dann; Christian Andresen; Emma Lathrop; Erika Swanson; Lauren Charsley-Groffman (2024). DEM, DSM, and Cleaned LiDAR Point Cloud Data from the NGEE Arctic UAS Campaigns at the Teller 27 Field Site from 2017 and 2018, Seward Peninsula, Alaska [Dataset]. http://doi.org/10.5440/2217322
    Explore at:
    Dataset updated
    Jul 24, 2024
    Dataset provided by
    ESS-DIVE
    Authors
    Shannon Dillard; Adam Collins; Julian Dann; Christian Andresen; Emma Lathrop; Erika Swanson; Lauren Charsley-Groffman
    Time period covered
    Aug 19, 2017 - Jul 16, 2018
    Area covered
    Description

    A Digital Elevation Model (DEM) and Digital Surface Model (DSM) were derived from airborne Light Detection and Ranging (LiDAR) data collected from Los Alamos National Laboratory's (LANL) heavy-lift unoccupied aerial system (UAS) quadcopter and hexacopter platforms operated by Next-Generation Ecosystem Experiments: Arctic (NGEE Arctic) scientists from the EES-14 group at LANL. These data were collected in August 2017 and July 2018 at the NGEE Arctic field site near mile marker 27 of the Bob Blodgett Nome-Teller Memorial Highway between Nome, Alaska and Teller, Alaska. A Vulcan Raven X8 Airframe (Mitcheldean, Gloucestershire, UK), DJI Matrice 600 Pro Airframe (Shenzhen, China), and Routescene UAV LiDARSystem (Edinburgh, Scotland, UK) were used to collect LiDAR data. Following pre-processing in Routescene LidarViewer Pro software, the LiDAR point clouds were cleaned and processed using CloudCompare software to separate ground and off-ground points. A high resolution DEM and DSM were then created using ArcGIS Pro software. This data package contains fully cleaned point clouds of ground and off-ground points (.las), a 25 cm DEM (.tif), and a 25 cm DSM (.tif) for the Teller 27 field site. Ancillary aircraft data, flight mission parameters, weather conditions, and raw lidar data and imagery can be found in the L0 datasets for these campaigns: NGA299 (2017) and NGA297 (2018). Minimally processed point clouds and auxiliary files can be found in the L1 dataset: NGA304 (2017 and 2018). The Next-Generation Ecosystem Experiments: Arctic (NGEE Arctic), was a 15-year research effort (2012-2027) to reduce uncertainty in Earth System Models by developing a predictive understanding of carbon-rich Arctic ecosystems and feedbacks to climate. NGEE Arctic was supported by the Department of Energy's Office of Biological and Environmental Research. The NGEE Arctic project had two field research sites: 1) located within the Arctic polygonal tundra coastal region on the Barrow Environmental Observatory (BEO) and the North Slope near Utqiagvik (Barrow), Alaska and 2) multiple areas on the discontinuous permafrost region of the Seward Peninsula north of Nome, Alaska. Through observations, experiments, and synthesis with existing datasets, NGEE Arctic provided an enhanced knowledge base for multi-scale modeling and contributed to improved process representation at global pan-Arctic scales within the Department of Energy's Earth system Model (the Energy Exascale Earth System Model, or E3SM), and specifically within the E3SM Land Model component (ELM).

  8. a

    Topographic Contours 2024 - Download

    • hub.arcgis.com
    Updated Sep 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tallahassee-Leon County GIS (2025). Topographic Contours 2024 - Download [Dataset]. https://hub.arcgis.com/datasets/e45c287d81a04a2c927d42914eed2669
    Explore at:
    Dataset updated
    Sep 25, 2025
    Dataset authored and provided by
    Tallahassee-Leon County GIS
    Area covered
    Description

    This downloadable zip file contains an ESRI File Geodatabase (FGDB) that is compatible with most versions of ArcGIS Pro, ArcMap, and AutoCAD Map 3D or Civil 3D. To view the geodatabase’s contents, please download the zip file to a local directory and extract its contents. This zipped geodatabase will require approximately 1.38 GB of disc space (1.49 GB extracted). Due to its size, the zip file may take some time to download.This downloadable file geodataase (FGDB) includes Topographic Countours and Spot Elevations derived from LiDAR collected in spring of 2024 by Dewberry Engineers in coordination with Tallahassee - Leon County GIS. The contours were extracted at a 2 foot interval with index contours every 10 feet. Lidar Acquisition Executive SummaryThe primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (lidar) technology for the Tallahassee Leon County Project Area. The lidar data were processed and classified according to project specifications. Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data was formatted according to tiles with each tile covering an area of 5000 ft by 5000 ft. A total of 876 tiles were produced for the project encompassing an area of approximately 785.55 sq. miles. The dataset was created by TLCGIS from lidar data acquired by a Riegl CQ-1560i lidar system from January 14, 2024 through January 19, 2024.ORIGINAL COORDINATE REFERENCE SYSTEMData produced for the project were delivered in the following reference system.Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 with the 2011 Adjustment (NAD 83 (2011))Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)Coordinate System: NAD83 (2011) State Plane Florida North (US survey feet)Units: Horizontal units are in U.S. Survey Feet, Vertical units are in U.S. Survey Feet.Geiod Model: Geoid12B (Geoid 12B) was used to convert ellipsoid heights to orthometric heights).

  9. g

    Interpolated groundwater levels and altitudes for Monroe County, West...

    • gimi9.com
    Updated Jan 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Interpolated groundwater levels and altitudes for Monroe County, West Virginia, 2017-2019 | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_interpolated-groundwater-levels-and-altitudes-for-monroe-county-west-virginia-2017-2019/
    Explore at:
    Dataset updated
    Jan 22, 2024
    Area covered
    West Virginia, Monroe County
    Description

    These interpolated groundwater levels and altitudes product, for Monroe County, WV, was derived from groundwater-level data obtained from a U.S. Geological Survey (USGS) synoptic survey of 257 groundwater wells during October 23, 2017 through September 19, 2019, and selected points from the National Hydrography Dataset (NHD) to represent equal-altitude contour lines of groundwater altitudes in 50-foot intervals. Attributes include groundwater altitudes in decimal feet. Horizontal coordinates are referenced to UTM zone 17, NAD83, and groundwater altitudes are referenced to the North American Vertical Datum of 1988 (NAVD88). The potentiometric surface map, based on the 257 groundwater measurements, was constrained by the NHD streamlines and location of known springs. ArcGIS Pro was used to make contour lines from point data, and the resulting contours were further edited in areas where automated methods were not as precise given fewer data points; the areas edited were where the land-surface elevation was lower than water-surface elevation, approximately.

  10. r

    2022 Lidar DEMs (swipe app)

    • rigis.org
    Updated Feb 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Data Center (2024). 2022 Lidar DEMs (swipe app) [Dataset]. https://www.rigis.org/datasets/2022-lidar-dems-swipe-app
    Explore at:
    Dataset updated
    Feb 14, 2024
    Dataset authored and provided by
    Environmental Data Center
    Description

    Use the swipe interface to compare two different versions of a hillshade and shaded relief created from the 2022 lidar DEM.Left panel: An imagery layer of the hillshade rendition of the hydro-flattened, continuous bare earth surface (excluding trees, buildings, manmade structures), raster-formatted, high resolution (1ft) Digital Elevation Model (DEM).Right panel: This shaded relief map image service is based on a bare earth DEM from the 2022 Spring Lidar was created by Paul Jordan at RIDEM. This service uses the Dynamic Range Adjustment (DRA) feature to symbolize the data.This feature automatically adjusts your active stretch type as you navigate around your image based on the pixel values in your current display. (See ArcGIS Pro help, Imagery appearance for more information).

  11. n

    Orthomosaic and digital surface model of the main Casey station buildings,...

    • access.earthdata.nasa.gov
    • researchdata.edu.au
    • +1more
    Updated Mar 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Orthomosaic and digital surface model of the main Casey station buildings, 12th February 2021. [Dataset]. https://access.earthdata.nasa.gov/collections/C2102891813-AU_AADC
    Explore at:
    Dataset updated
    Mar 19, 2021
    Time period covered
    Feb 12, 2021
    Area covered
    Description

    Images were acquired from approximately 80 m above ground surface on the 12th of February 2021, using a Phantom 4 Advanced drone with an FC330 camera. The images are in file input_images.zip.

    The mission planning software DJI GS Pro was used to automatically acquire images at suitable locations across the survey area to enable the reconstruction of a three dimensional model.

    Images 422 to 531 were imported to the photogrammetry software Pix4D (version 4.6.4). The created Pix4D project is Station12Feb2021_limited.p4d, and the processing report is Station12Feb2021_limited_report.pdf.

    Four three-dimensional ground control points were used to improve the positioning of the model. No two dimensional control points or check points were used.

    These points were in ITRF 2000@2000 datum (UTM Zone 49S), with co-ordinates as per the table below:

    Label, Type, X(m), Y(m), Z(m), Accuracy Horz(m), Accuracy Vert(M) BM05, 3D GCP, 478814.460, 2648561.910, 38.558, 0.050, 0.100 EW-05, 3D GCP, 478635.540, 2648617.260, 27.260, 0.050, 0.100 FuelFlange, 3D GCP, 478970.810, 2648642.250, 21.920, 0.050, 0.100 MeltbellFootingA, 3D GCP, 478680.270, 2648466.547, 35.850, 0.050, 0.100

    BM-05 is a survey benchmark near the Casey flagpoles, see https://data.aad.gov.au/aadc/survey/display_station.cfm?station_id=600 EW-05 is a 44 gallon drum used as a groundwater extraction well by the remediation project Fuel Flange is the last fuel flange located on the elevated fuel line prior to the fuel line “dipping” under the wharf road. Meltbell footing A is a concrete footing for the Casey melt bell (surveyed in 2019/20).

    No point cloud processing (e.g. removal of errant points) was done prior to orthomosaic and model generation.

    The resulting orthomosaic (Station12Feb2021_limited_transparent_mosaic_group1.tif) has an average ground sampling distance of 2.9 cm, and covers an area of approximately 15.8 hectares, encompassing the majority of buildings along “main street” at Casey. The quarry, biopiles, helipad, and upper fuel farm area are all visible.

    Contour lines were generated in Pix4D at 0.5 m intervals.

    Due to the limited number of ground control points, and their imprecision, the estimated residual mean squared error across three dimensions is 0.17 m (17cm), and will be worse on the periphery of the imaged area.

    The orthomosaic was exported from ArcGIS to a Google Earth file (CaseyStation Orthomosaic Feb 12 2021.kmz) using XTools Pro Version 17.2.

    A map was created in ArcGIS showing the orthomosaic with a background showing contour lines obtained from the AADC data product windmill_is.mdb.

    The map was exported in .jpg and .pdf format at 250 dpi. Casey Station Orthomosaic Feb 12 2021.pdf Casey Station Orthomosaic Feb 12 2021.jpg

    The Pix4D folder structure has been copied across (with the exception of the temp folder) and is included in this dataset.

    Pix4D Folder Structure:

    Station12Feb2021_limited.zip 1_intitial • Contains Pix4D files created during the project • Contains the final processing report (as .pdf) 2_densification • Contains the 3D mesh as an .obj file • Contains the point cloud as a .LAS and .PLY file • Contains the point cloud as a .p4b file 3_dsm_ortho • Contains the digital surface model as a georeferenced .tif file • Contains the orthomosaic as a georeferenced .tif file

    A text readable log file from the project processing is in the file Station12Feb2021_limited.log

  12. d

    Data from: Inventory of rock avalanches in the central Chugach Mountains,...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Oct 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Inventory of rock avalanches in the central Chugach Mountains, northern Prince William Sound, Alaska, 1984-2024 [Dataset]. https://catalog.data.gov/dataset/inventory-of-rock-avalanches-in-the-central-chugach-mountains-northern-prince-william-1984
    Explore at:
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Chugach Mountains, Chugach Census Area, Prince William Sound, Alaska
    Description

    In the Prince William Sound region of Alaska, recent glacier retreat started in the mid-1800s and began to accelerate in the mid-2000s in response to warming air temperatures (Maraldo and others, 2020). Prince William Sound is surrounded by the central Chugach Mountains and consists of numerous ocean-terminating glaciers, with rapid deglaciation increasingly exposing oversteepened bedrock walls of fiords. Deglaciation may accelerate the occurrence of rapidly moving rock avalanches (RAs), which have the potential to generate tsunamis and adversely impact maritime vessels, marine activities, and coastal infrastructure and populations in the Prince William Sound region. RAs have been documented in the Chugach Mountains in the past (Post, 1967; McSaveney, 1978; Uhlmann and others, 2013), but a time series of RAs in the Chugach Mountains is not currently available. A systematic inventory of RAs in the Chugach is needed as a baseline to evaluate any future changes in RA frequency, magnitude, and mobility. This data release presents a comprehensive historical inventory of RAs in a 4600 km2 area of the Prince William Sound. The inventory was generated from: (1) visual inspection of 30-m resolution Landsat satellite images collected between July 1984 and August 2024; and (2) the use of an automated image classification script (Google earth Engine supRaglAciaL Debris INput dEtector (GERALDINE, Smith and others, 2020)) designed to detect new rock-on-snow events from repeat Landsat images from the same time period. RAs were visually identified and mapped in a Geographic Information System (GIS) from the near-infrared (NIR) band of Landsat satellite images. This band provides significant contrast between rock and snow to detect newly deposited rock debris. A total of 252 Landsat images were visually examined, with more images available in recent years compared to earlier years (Figure 1). Calendar year 1984 was the first year when 30-m resolution Landsat data were available, and thus provided a historical starting point from which RAs could be detected with consistent certainty. By 2017, higher resolution (<5-m) daily Planet satellite images became consistently available and were used to better constrain RA timing and extent. Figure 1. Diagram showing the number of usable Landsat images per year. This inventory reveals 118 RAs ranging in size from 0.1 km2 to 2.3 km2. All of these RAs occurred during the months of May through September (Figure 2). The data release includes three GIS feature classes (polygons, points, and polylines), each with its own attribute information. The polygon feature class contains the entire extent of individual RAs and does not differentiate the source and deposit areas. The point feature class contains headscarp and toe locations, and the polyline feature class contains curvilinear RA travel distance lines that connect the headscarp and toe points. Additional attribute information includes the following: location of headscarp and toe points, date of earliest identified occurrence, if and when the RA was sequestered into the glacier, presence and delineation confidence levels (see Table 1 for definition of A, B, and C confidence levels), identification method (visual inspection versus automated detection), image platform, satellite, estimated cloud cover, if the RA is lobate, image ID, image year, image band, affected area in km2, length, height, length/height, height/length, notes, minimum and maximum elevation, aspect at the headscarp point, slope at the headscarp point, and geology at the headscarp point. Topographic information was derived from 5-m interferometric synthetic aperture radar (IfSAR) Digital Elevation Models (DEMs) that were downloaded from the USGS National Elevation Dataset website (U.S. Geological Survey, 2015) and were mosaicked together in ArcGIS Pro. The aspect and slope layers were generated from the downloaded 5-m DEM with the “Aspect” and “Slope” tools in ArcGIS Pro. Aspect and slope at the headscarp mid-point were then recorded in the attribute table. A shapefile of Alaska state geology was downloaded from Wilson and others (2015) and was used to determine the geology at the headscarp location. The 118 identified RAs have the following confidence level breakdown for presence: 66 are A-level, 51 are B-level, and 1 is C-level. The 118 identified RAs have the following confidence level breakdown for delineation: 39 are A-level and 79 are B-level. Please see the provided attribute table spreadsheet for more detailed information. Figure 2. Diagram showing seasonal timing of mapped rock avalanches. Table 1. Rock avalanche presence and delineation confidence levels Category Grade Justification Presence A Feature is clearly visible in one or more satellite images. B Feature is clearly visible in one or more satellite images but has low contrast with the surroundings and may be surficial debris from rock fall, rather than from a rock avalanche. C Feature presence is possible but uncertain due to poor quality of imagery (e.g., heavy cloud cover or shadows) or lack of multiple views. Delineation A Exact outline of the feature from headscarp to toe is clear. B General shape of the feature is clear but the exact headscarp or toe location is unclear (e.g., due to clouds or shadows). Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. References Maraldo, D.R., 2020, Accelerated retreat of coastal glaciers in the Western Prince William Sound, Alaska: Arctic, Antarctic, and Alpine Research, v. 52, p. 617-634, https://doi.org/10.1080/15230430.2020.1837715 McSaveney, M.J., 1978, Sherman glacier rock avalanche, Alaska, U.S.A. in Voight, B., ed., Rockslides and Avalanches, Developments in Geotechnical Engineering, Amsterdam, Elsevier, v. 14, p. 197–258. Post, A., 1967, Effects of the March 1964 Alaska earthquake on glaciers: U.S. Geological Survey Professional Paper 544-D, Reston, Virgina, p. 42, https://pubs.usgs.gov/pp/0544d/ Smith, W. D., Dunning, S. A., Brough, S., Ross, N., and Telling, J., 2020, GERALDINE (Google Earth Engine supRaglAciaL Debris INput dEtector): A new tool for identifying and monitoring supraglacial landslide inputs: Earth Surface Dynamics, v. 8, p. 1053-1065, https://doi.org/10.5194/esurf-8-1053-2020 Uhlmann, M., Korup, O., Huggel, C., Fischer, L., and Kargel, J. S., 2013, Supra-glacial deposition and flux of catastrophic rock-slope failure debris, south-central Alaska: Earth Surface Processes and Landforms, v. 38, p. 675–682, https://doi.org/10.1002/esp.3311 U.S. Geological Survey, 2015, USGS NED Digital Surface Model AK IFSAR-Cell37 2010 TIFF 2015: U.S. Geological Survey, https://elevation.alaska.gov/#60.67183:-147.68372:8 Wilson, F.H., Hults, C.P., Mull, C.G, and Karl, S.M, compilers, 2015, Geologic map of Alaska: U.S. Geological Survey Scientific Investigations Map 3340, pamphlet p. 196, 2 sheets, scale 1:1,584,000, https://pubs.usgs.gov/publication/sim3340

  13. w

    WA PSP Active Channel Mapping Project Tools

    • geo.wa.gov
    • data-wutc.opendata.arcgis.com
    • +1more
    Updated Apr 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Washington State Puget Sound Partnership (2024). WA PSP Active Channel Mapping Project Tools [Dataset]. https://geo.wa.gov/datasets/wa-psp::wa-psp-active-channel-mapping-project-tools
    Explore at:
    Dataset updated
    Apr 25, 2024
    Dataset authored and provided by
    Washington State Puget Sound Partnership
    Description

    Accurate evaluation of riparian forests depends on precise delineation of both bank to bank (active channel) and single-thread hydrography. Local land use and salmon recovery planners use hydrography as a reliable tool for understanding and managing watershed impacts across the state. Active channel mapping allows practitioners to delineate riparian zones, examine the shading effects of riparian vegetation, map the location, extent, and distribution of anadromous and resident fish as well as locate fish blocking culverts, map protective stream buffers, and accurately inventory existing hydrography (Hyatt et al, 2022).The manual provided in this package describes methods and procedures used to digitize active channel polygons from high resolution elevation data and high-resolution imagery. Methods like this have become necessary, as access to high resolution data has become easier. Included in this method is AC Tools, a Python script-based ArcGIS Pro Toolset that can be used to delineate channel bank and channel island contour lines along river mainstems and larger tributaries. Much of the method involves how to select those contours and create active channel polygons. Methods are also available for download at https://pspwa.box.com/s/3stokaav635odvd8k2dtkcigef5sbkr2Pilot results of this methodology were conducted in Stillaguamish, Queets, and the Entiat River, and are available at the Puget Sound Partnerships Spatial Data Hub.

    Active Channel HydrographyThe “active channel” includes the wetted channels of rivers and streams as well as adjacent un-vegetated cobble and gravel bars that are inundated during high flows. In this method, the active channel is analogous to the “bankfull channel” (Leopold and Maddock 1953, Leopold et al 1964, Williams 1978) or the ordinary high-water mark line (OHWM), where the presence and action of waters are “so common and usual, and so long continued in ordinary years as to mark upon the soil or vegetation a character distinct from the abutting upland,”(WAC 220-660-030(111)). In places where this line cannot the delineated the ordinary high water line is delineated along the elevation of the mean annual flood for every three years.

    There are many reasons for considering the boundary of the active channel network. A common use for delineating the active channel is to map the inner edge of the riparian zone (eg. Hyatt 2023). Riparian areas are transitional areas between land and aquatic ecosystems that include both lotic and lentic systems (Gregory et al, 1991). These zones can include the surface and subsurface water influences and human induced natural forces, understanding the active channel boundary thereby isn’t just important for managing fish populations and identifying habitat restoration sites, it is also important for land use planning and management.

  14. n

    Data from: Nine-banded Armadillo (Dasypus novemcinctus) occupancy and...

    • data.niaid.nih.gov
    • data.usgs.gov
    • +5more
    zip
    Updated Nov 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leah McTigue; Brett DeGregorio (2023). Nine-banded Armadillo (Dasypus novemcinctus) occupancy and density across an urban to rural gradient [Dataset]. http://doi.org/10.5061/dryad.7m0cfxq1r
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 29, 2023
    Dataset provided by
    Michigan State University
    University of Arkansas at Fayetteville
    Authors
    Leah McTigue; Brett DeGregorio
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    The nine-banded Armadillo (Dasypus novemcinctus) is the only species of Armadillo in the United States and alters ecosystems by excavating extensive burrows used by many other wildlife species. Relatively little is known about its habitat use or population densities, particularly in developed areas, which may be key to facilitating its range expansion. We evaluated Armadillo occupancy and density in relation to anthropogenic and landcover variables in the Ozark Mountains of Arkansas along an urban to rural gradient. Armadillo detection probability was best predicted by temperature (positively) and precipitation (negatively). Contrary to expectations, occupancy probability of Armadillos was best predicted by slope (negatively) and elevation (positively) rather than any landcover or anthropogenic variables. Armadillo density varied considerably between sites (ranging from a mean of 4.88 – 46.20 Armadillos per km2) but was not associated with any environmental or anthropogenic variables. Methods Site Selection Our study took place in Northwest Arkansas, USA, in the greater Fayetteville metropolitan area. We deployed trail cameras (Spypoint Force Dark (Spypoint Inc, Victoriaville, Quebec, Canada) and Browning Strikeforce XD cameras (Browning, Morgan, Utah, USA) over the course of two winter seasons, December 2020-March 2021, and November 2021-March 2022. We sampled 10 study sites in year one, and 12 study sites in year two. All study sites were located in the Ozark Mountains ecoregion in Northwest Arkansas. Sites were all Oak Hickory dominated hardwood forests at similar elevation (213.6 – 541 m). Devils Eyebrow and ONSC are public natural areas managed by the Arkansas Natural heritage Commission (ANHC). Devil’s Den and Hobbs are managed by the Arkansas state park system. Markham Woods (Markham), Ninestone Land Trust (Ninestone) and Forbes, are all privately owned, though Markham has a publicly accessible trail system throughout the property. Lake Sequoyah, Mt. Sequoyah Woods, Kessler Mountain, Lake Fayetteville, and Millsaps Mountain are all city parks and managed by the city of Fayetteville. Lastly, both Weddington and White Rock are natural areas within Ozark National Forest and managed by the U.S. Forest Service. We sampled 5 sites in both years of the study including Devils Eyebrow, Markham Hill, Sequoyah Woods, Ozark Natural Science Center (ONSC), and Kessler Mountain. We chose our study sites to represent a gradient of human development, based primarily on Anthropogenic noise values (Buxton et al. 2017, Mennitt and Fristrup 2016). We chose open spaces that were large enough to accommodate camera trap research, as well as representing an array of anthropogenic noise values. Since anthropogenic noise is able to permeate into natural areas within the urban interface, introducing human disturbance that may not be detected by other layers such as impervious surface and housing unit density (Buxton et al. 2017), we used dB values for each site as an indicator of the level of urbanization. Camera Placement We sampled ten study sites in the first winter of the study. At each of the 10 study sites, we deployed anywhere between 5 and 15 cameras. Larger study areas received more cameras than smaller sites because all cameras were deployed a minimum of 150m between one another. We avoided placing cameras on roads, trails, and water sources to artificially bias wildlife detections. We also avoided placing cameras within 15m of trails to avoid detecting humans. At each of the 12 study areas we surveyed in the second winter season, we deployed 12 to 30 cameras. At each study site, we used ArcGIS Pro (Esri Inc, Redlands, CA) to delineate the trail systems and then created a 150m buffer on each side of the trail. We then created random points within these buffered areas to decide where to deploy cameras. Each random point had to occur within the buffered areas and be a minimum of 150m from the next nearest camera point, thus the number of cameras at each site varied based upon site size. We placed all cameras within 50m of the random points to ensure that cameras were deployed on safe topography and with a clear field of view, though cameras were not set in locations that would have increased animal detections (game trails, water sources, burrows etc.). Cameras were rotated between sites after 5 or 10 week intervals to allow us to maximize camera locations with a limited number of trail cameras available to us. Sites with more than 25 cameras were active for 5 consecutive weeks while sites with fewer than 25 cameras were active for 10 consecutive weeks. We placed all cameras on trees or tripods 50cm above ground and at least 15m from trails and roads. We set cameras to take a burst of three photos when triggered. We used Timelapse 2.0 software (Greenberg et al. 2019) to extract metadata (date and time) associated with all animal detections. We manually identified all species occurring in photographs and counted the number of individuals present. Because density estimation requires the calculation of detection rates (number of Armadillo detections divided by the total sampling period), we wanted to reduce double counting individuals. Therefore, we grouped photographs of Armadillos into “episodes” of 5 minutes in length to reduce double counting individuals that repeatedly triggered cameras (DeGregorio et al. 2021, Meek et al. 2014). A 5 min threshold is relatively conservative with evidence that even 1-minute episodes adequately reduces double counting (Meek et al. 2014). Landcover Covariates To evaluate occupancy and density of Armadillos based on environmental and anthropogenic variables, we used ArcGIS Pro to extract variables from 500m buffers placed around each camera (Table 2). This spatial scale has been shown to hold biological meaning for Armadillos and similarly sized species (DeGregorio et al. 2021, Fidino et al. 2016, Gallo et al. 2017, Magle et al. 2016). At each camera, we extracted elevation, slope, and aspect from the base ArcGIS Pro map. We extracted maximum housing unit density (HUD) using the SILVIS housing layer (Radeloff et al. 2018, Table 2). We extracted anthropogenic noise from the layer created by Mennitt and Fristrup (2016, Buxton et al. 2017, Table 2) and used the “L50” anthropogenic sound level estimate, which was calculated by taking the difference between predicted environmental noise and the calculated noise level. Therefore, we assume that higher levels of L50 sound corresponded to higher human presence and activity (i.e. voices, vehicles, and other sources of anthropogenic noise; Mennitt and Fristrup 2016). We derived the area of developed open landcover, forest area, and distance to forest edge from the 2019 National Land Cover Database (NLDC, Dewitz 2021, Table 2). Developed open landcover refers to open spaces with less than 20% impervious surface such as residential lawns, cemeteries, golf courses, and parks and has been shown to be important for medium-sized mammals (Gallo et al. 2017, Poessel et al. 2012). Forest area was calculated by combing all forest types within the NLCD layer (deciduous forest, mixed forest, coniferous forest), and summarizing the total area (km2) within the 500m buffer. Distance to forest edge was derived by creating a 30m buffer on each side of all forest boundaries and calculating the distance from each camera to the nearest forest edge. We calculated distance to water by combining the waterbody and flowline features in the National Hydrogeography Dataset (U.S. Geological Survey) for the state of Arkansas to capture both permanent and ephemeral water sources that may be important to wildlife. We measured the distance to water and distance to forest edge using the geoprocessing tool “near” in ArcGIS Pro which calculates the Euclidean distance between a point and the nearest feature. We extracted Average Daily Traffic (ADT) from the Arkansas Department of Transportation database (Arkansas GIS Office). The maximum value for ADT was calculated using the Summarize Within tool in ArcGIS Pro. We tested for correlation between all covariates using a Spearman correlation matrix and removed any variable with correlation greater than 0.6. Pairwise comparisons between distance to roads and HUD and between distance to forest edge and forest area were both correlated above 0.6; therefore, we dropped distance to roads and distance to forest edge from analyses as we predicted that HUD and forest area would have larger biological impacts on our focal species (Kretser et al. 2008). Occupancy Analysis In order to better understand habitat associations while accounting for imperfect detection of Armadillos, we used occupancy modeling (Mackenzie et al. 2002). We used a single-species, single-season occupancy model (Mackenzie et al. 2002) even though we had two years of survey data at 5 of the study sites. We chose to do this rather than using a multi-season dynamic occupancy model because most sites were not sampled during both years of the study. Even for sites that were sampled in both years, cameras were not placed in the same locations each year. We therefore combined all sampling into one single-season model and created unique site by year combinations as our sampling locations and we used year as a covariate for analysis to explore changes in occupancy associated with the year of study. For each sampling location, we created a detection history with 7 day sampling periods, allowing presence/absence data to be recorded at each site for each week of the study. This allowed for 16 survey periods between 01 December 2020, and 11 March 2021 and 22 survey periods between 01 November 2021 and 24 March 2022. We treated each camera as a unique survey site, resulting in a total of 352 sites. Because not all cameras were deployed at the same time and for the same length of time, we used a staggered entry approach. We used a multi-stage fitting approach in which we

  15. a

    NZ Elevation - Metadata

    • hub.arcgis.com
    Updated Dec 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eagle Technology Group Ltd (2021). NZ Elevation - Metadata [Dataset]. https://hub.arcgis.com/maps/eaglegis::nz-elevation-metadata
    Explore at:
    Dataset updated
    Dec 18, 2021
    Dataset authored and provided by
    Eagle Technology Group Ltd
    Area covered
    New Zealand,
    Description

    See the NZ Elevation Layer for more information on the NZ Elevation layerThe NZ Elevation - Metadata layer provides information about the data used for the NZ Elevation layer. You can identify what areas use 1m or 2m DEM's derived from LiDAR and what areas use the 8m DEM provided by LINZ. You can also find information, whenever available, about capture dates, point cloud density and links to the layer's in the LINZ Data Service.The NZ Elevation layer is an elevation surface for use in 3D applications in the NZTM projection. By adding this layer to a Scene in ArcGIS Pro or in the Scene Viewer it will be define the base height in your application.NZTM Basemaps can be used on top of this service, providing it shares the same tiling scheme. When combining it with the NZ Basemaps provided by Eagle Technolgy, make sure to use the raster basemaps with the updated tiling scheme or one of the vector basemaps. All the compatible basemaps can be found in this group. When creating your own basemap or tiled layer make sure to use the tiling scheme provided here.The elevation service is made up of the available publicly-owned 1m and 2m dems. For areas where 1m/2m elevation data is not available the 8m dem provided by LINZ is being used. Outside of the coverage of the 8m dem, a 0m dem is used for visual purposes.This service is offered by Eagle Technology (Official Esri Distributor). Eagle Technology offers layers and maps that can be used in the ArcGIS platform. The Content team at Eagle Technology updates the layers on a regular basis and regularly adds new content to the Living Atlas. By using this content and combining it with other data you can create new information products quickly and easily.If you have any questions or remarks about the content, please let us now at livingatlas@eagle.co.nz

  16. a

    View Points

    • open-data-scenicvaviewshed.hub.arcgis.com
    Updated May 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scenic Virginia Viewsheds (2024). View Points [Dataset]. https://open-data-scenicvaviewshed.hub.arcgis.com/datasets/view-points
    Explore at:
    Dataset updated
    May 10, 2024
    Dataset authored and provided by
    Scenic Virginia Viewsheds
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was created in ArcGIS pro using a point layer and the Geodesic Viewshed tool. To generate this map the Old Rag Peak point was placed on the peak indicated by the basemap and Esri provided elevation model. This point was then used to generate a viewshed using the Geodesic Viewshed too, with a 1.7m offset to account for the height of the average viewer and a presumed focal angle of 120 degrees. The yellow highlighted area is the visible surface from the peak of Old Rag. This viewshed was generated in June of 2024.

  17. a

    Topographic Contours 2020 Map Tile

    • hub.arcgis.com
    Updated Apr 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tallahassee-Leon County GIS (2022). Topographic Contours 2020 Map Tile [Dataset]. https://hub.arcgis.com/datasets/a2a46a754b2c4aa9a8cadebe59b1dd9b
    Explore at:
    Dataset updated
    Apr 4, 2022
    Dataset authored and provided by
    Tallahassee-Leon County GIS
    Area covered
    Description

    This topographic contour layer was derived from LiDAR collected in spring of 2020 by Dewberry Engineers in coordination with Tallahassee - Leon County GIS. The contours were extracted at a 2 foot interval with index contours every 10 feet. This tile layer was generated as a Map Tile Package (.mtpkx) in ArcGIS Pro and published to ArcGIS online as a hosted tile layer. For web mapping compatibility, this layer has been re-projected from its original coordinate system to the web standard used by ESRI, Google, and Bing (Web Mercator Auxiliary Sphere).The feature layer used to generate this tile layer can be downloaded as a zipped geodatabase from TLCGIS' geodatahub. Download LinkLidar Acquisition Executive SummaryThe primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (lidar) technology for the Tallahassee Leon County Project Area. The lidar data were processed and classified according to project specifications. Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data was formatted according to tiles with each tile covering an area of 5000 ft by 5000 ft. A total of 876 tiles were produced for the project encompassing an area of approximately 785.55 sq. miles.The Project TeamDewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for LAS classification, all lidar products, breakline production, Digital Elevation Model (DEM) production, and quality assurance. Dewberry’s Frederick C. Rankin completed ground surveying for the project and delivered surveyed checkpoints. His task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the lidar-derived surface model. He also verified the GPS base station coordinates used during lidar data acquisition to ensure that the base station coordinates were accurate. Please see Appendix A to view the separate Survey Report that was created for this portion of the project. Digital Aerial Solutions, LLC completed lidar data acquisition and data calibration for the project area.SURVEY AREAThe project area addressed by this report falls within the Florida county of Leon.DATE OF SURVEYThe lidar aerial acquisition was conducted from TBDORIGINAL COORDINATE REFERENCE SYSTEMData produced for the project were delivered in the following reference system.Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 with the 2011 Adjustment (NAD 83 (2011))Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)Coordinate System: NAD83 (2011) State Plane Florida North (US survey feet)Units: Horizontal units are in U.S. Survey Feet, Vertical units are in U.S. Survey Feet.Geiod Model: Geoid12B (Geoid 12B) was used to convert ellipsoid heights to orthometric heights).

  18. Hachure style for ArcGIS Pro

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated May 29, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2018). Hachure style for ArcGIS Pro [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/content/87abe491604e45629e562903450947b7
    Explore at:
    Dataset updated
    May 29, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    The hachure cartographic technique sketches downhill lines along bands of equal elevation to create a topographic effect. This is a rather vintage technique, giving way in the digital age to hillshading. But, shoot, there is just something wonderful about a hachured map. It has a wonderful textural quality and effectively and efficiently conveys topographic aspect and slope. This style is in a manner in keeping with that retro hand-drawn aesthetic, with inky colors, wavy-hand linework, and grainy sketchy downhill strokes.The hachures themselves are available in a few flavors ranging from simple sketched contour lines to densely packed hachures for an almost fur-like surface. Eh, why not? Also available are a handful of tuft-like point features and a few vintage polygon fills like parchment and foxed atlas paper.Let your inner cARRRRRRtographer run wild.Thanks to cartographer Jared Fischer, of the Dept. of the Interior, for his collaboration and inspiration along the way.Find more, larger, examples here.Happy Hachure Mapping! John Nelson

  19. Santa Clara County Hillshade

    • opendata-mrosd.hub.arcgis.com
    Updated Jun 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Midpeninsula Regional Open Space District (2021). Santa Clara County Hillshade [Dataset]. https://opendata-mrosd.hub.arcgis.com/maps/142787e645be44cba7650e3308f537ba
    Explore at:
    Dataset updated
    Jun 22, 2021
    Dataset authored and provided by
    Midpeninsula Regional Open Space District
    Area covered
    Santa Clara County
    Description

    Methods:This lidar derivative provides information about the bare surface of the earth. The 2-foot resolution hillshade raster was produced from the 2020 Digital Terrain Model using the hillshade geoprocessing tool in ArcGIS Pro.QL1 airborne lidar point cloud collected countywide (Sanborn)Point cloud classification to assign ground points (Sanborn)Ground points were used to create over 8,000 1-foot resolution hydro-flattened Raster DSM tiles. Using automated scripting routines within LP360, a GeoTIFF file was created for each tile. Each 2,500 x 2,500 foot tile was reviewed using Global Mapper to check for any surface anomalies or incorrect elevations found within the surface. (Sanborn)1-foot hydroflattened DTM tiles mosaicked together into a 1-foot resolution mosaiced hydroflattened DTM geotiff (Tukman Geospatial)1-foot hydroflattened DTM (geotiff) resampled to 2-foot hydro-flattened DTM using Bilinear interpolation and clipped to county boundary with 250-meter buffer (Tukman Geospatial)2-foot hillshade derived from DTM using the ESRI Spatial Analyst ‘hillshade’ function The data was developed based on a horizontal projection/datum of NAD83 (2011), State Plane, Feet and vertical datum of NAVD88 (GEOID18), Feet. Lidar was collected in early 2020, while no snow was on the ground and rivers were at or below normal levels. To postprocess the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Sanborn Map Company, Inc., utilized a total of 25 ground control points that were used to calibrate the lidar to known ground locations established throughout the project area. An additional 125 independent accuracy checkpoints, 70 in Bare Earth and Urban landcovers (70 NVA points), 55 in Tall Grass and Brushland/Low Trees categories (55 VVA points), were used to assess the vertical accuracy of the data. These check points were not used to calibrate or post process the data.Uses and Limitations: The hillshade provides a raster depiction of the ground returns for each 2x2 foot raster cell across Santa Clara County. The layer is useful for hydrologic and terrain-focused analysis and is a helpful basemap when analyzing spatial data in relief.Related Datasets: This dataset is part of a suite of lidar of derivatives for Santa Clara County. See table 1 for a list of all the derivatives. Table 1. lidar derivatives for Santa Clara CountyDatasetDescriptionLink to DataLink to DatasheetCanopy Height ModelPixel values represent the aboveground height of vegetation and trees.https://vegmap.press/clara_chmhttps://vegmap.press/clara_chm_datasheetCanopy Height Model – Veg Returns OnlySame as canopy height model, but does not include lidar returns labelled as ‘unclassified’ (uses only returns classified as vegetation)https://vegmap.press/clara_chm_veg_returnshttps://vegmap.press/clara_chm_veg_returns_datasheetCanopy CoverPixel values represent the presence or absence of tree canopy or vegetation greater than or equal to 15 feet tall.https://vegmap.press/clara_coverhttps://vegmap.press/clara_cover_datasheetCanopy Cover – Veg Returns OnlySame as canopy height model, but does not include lidar returns labelled as ‘unclassified’ (uses only returns classified as vegetation)https://vegmap.press/clara_cover_veg_returnshttps://vegmap.press/clara_cover_veg_returns_datasheet HillshadeThis depicts shaded relief based on the Hillshade. Hillshades are useful for visual reference when mapping features such as roads and drainages and for visualizing physical geography. https://vegmap.press/clara_hillshadehttps://vegmap.press/clara_hillshade_datasheetDigital Terrain ModelPixel values represent the elevation above sea level of the bare earth, with all above-ground features, such as trees and buildings, removed. The vertical datum is NAVD88 (GEOID18).https://vegmap.press/clara_dtmhttps://vegmap.press/clara_dtm_datasheetDigital Surface ModelPixel values represent the elevation above sea level of the highest surface, whether that surface for a given pixel is the bare earth, the top of vegetation, or the top of a building.https://vegmap.press/clara_dsmhttps://vegmap.press/clara_dsm_datasheet

  20. a

    Devils Tower National Monument (DETO) 3D Climbing Route Viewer

    • hub.arcgis.com
    • imr-nps.opendata.arcgis.com
    Updated Nov 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2018). Devils Tower National Monument (DETO) 3D Climbing Route Viewer [Dataset]. https://hub.arcgis.com/maps/nps::devils-tower-national-monument-deto-3d-climbing-route-viewer
    Explore at:
    Dataset updated
    Nov 16, 2018
    Dataset authored and provided by
    National Park Service
    Area covered
    Description

    This Web Scene Viewer was created to show climbing routes, climbing anchors, rappel routes, and approach trails in Devils Tower National Monument (DETO). It was created in ArcGIS Pro Scene 2.2, using an integrated approach, combining literature review and collaboration with technical climbing staff. Routes were heads-up digitized over a 3D model of Devils Tower with derived triangulated irregular network (TIN) surfaces created from the DETO Unmanned Aircraft Systems (UAV) Digital Elevation Model (DEM). This dataset utilizes the updated NPS Core Spatial Data Standard Implementation Plan Template dated August 31, 2016. Description last updated November 2018.These data are a representation and are for visual display only. For more information, please visit the Devils Tower National Monument Climbing web page. IRMA Reference

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2025). Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 [Dataset]. https://catalog.data.gov/dataset/contour-dataset-of-the-potentiometric-surface-of-groundwater-level-altitudes-near-the-plan

Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017

Explore at:
Dataset updated
Nov 27, 2025
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Area covered
Hot Springs, Arkansas
Description

This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.

Search
Clear search
Close search
Google apps
Main menu