77 datasets found
  1. Locator toevoegen in Portal for ArcGIS

    • support-esrinl-support.hub.arcgis.com
    Updated Dec 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Nederland Support (2023). Locator toevoegen in Portal for ArcGIS [Dataset]. https://support-esrinl-support.hub.arcgis.com/items/b5536f4b4dfc48ddabaeee4d92a65b4c
    Explore at:
    Dataset updated
    Dec 7, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Nederland Support
    Description

    Laatste update: 07 december 2023Een locator kan helpen om een specifieke locatie op de kaart te vinden, of om een tabel met adressen of plaatsen om te zetten naar punten op de kaart. Het kan gebruikt worden in meerdere onderdelen van het ArcGIS-platform. Een locator bevat de referentiedata die gebruikt wordt om te geocoderen, en daarnaast ook indices, regels, configuratie en regionale kennis over de weergave van adressen. Daarom kan een locator een beter zoekresultaat geven dan een eenvoudige database query.Een locator kan worden gemaakt binnen ArcGIS Pro (zie Create a locator—ArcGIS Pro | Documentation) en lokaal worden gebruikt. Het voordeel van het ArcGIS-platform is dat een locator ook op eenvoudige wijze kan worden gedeeld binnen de organisatie of met het publiek. Een locator kan gedeeld worden als een service in ArcGIS Enterprise. De locator kan up to date gehouden worden, zonder dat de eindgebruiker hinder ondervindt van eventuele updates.

  2. a

    AZGeo Address Locator

    • azgeo-open-data-agic.hub.arcgis.com
    Updated Oct 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AZGeo Data Hub (2021). AZGeo Address Locator [Dataset]. https://azgeo-open-data-agic.hub.arcgis.com/content/967cb7db90934c6cab2fc4c51181d3aa
    Explore at:
    Dataset updated
    Oct 6, 2021
    Dataset authored and provided by
    AZGeo Data Hub
    Area covered
    Description

    Arizona composite geocoding service using NextGen 9-1-1 address points and road centerlines datasets. The source data used in creating this web service provides updated information from Arizona local governments based on quarterly, biannual, or annual submission scheduling. ArcGIS desktop or applications can use the geocoding service depending on the intent of use. By default, the input data sources reside in the NAD83 UTM Zone 12N projection but can be translated upon output by desktop software or application settings. Each locator element uses a result hierarchy from the most granular result provided as an output first (Address Points) to the least granular last (Road Centerline). Data is limited to Arizona and cannot guarantee results in other states. For more information about the Arizona geocoder, please visit https://azgeo-data-hub-agic.hub.arcgis.com/If you are using the AZGeo Address Locator in ArcGIS Desktop or ArcGIS Pro you can connect to the AZGeo server via: https://azgeo.az.gov/arcgis/rest/services/ and then look in the 'geocoders' folder and use AZGeo_Address_Locator.

  3. B

    Residential Schools Locations Dataset (Geodatabase)

    • borealisdata.ca
    • search.dataone.org
    Updated May 31, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rosa Orlandini (2019). Residential Schools Locations Dataset (Geodatabase) [Dataset]. http://doi.org/10.5683/SP2/JFQ1SZ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 31, 2019
    Dataset provided by
    Borealis
    Authors
    Rosa Orlandini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1863 - Jun 30, 1998
    Area covered
    Canada
    Description

    The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.

  4. v

    VGIN Composite Geocoding Service

    • vgin.vdem.virginia.gov
    Updated Sep 3, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia Geographic Information Network (2013). VGIN Composite Geocoding Service [Dataset]. https://vgin.vdem.virginia.gov/datasets/vgin-composite-geocoding-service
    Explore at:
    Dataset updated
    Sep 3, 2013
    Dataset authored and provided by
    Virginia Geographic Information Network
    Area covered
    Description

    The VGIN Composite Geocoding service is a cascading locator consisting of Virginia Address Points, Virginia RCL (Road Centerlines), Virginia Community Anchor Institutions (CAI), and several other data layers that supply the end user with returned XY coordinates based on input address number or address name. The source data used in creating this REST service provides updated information from Virginia local governments based on quarterly, biannual, or annual submission scheduling. ESRI applications can use the geocoding service depending on intent of use. By default, the input data sources reside in the Virginia Lambert Conformal Conic projection but can be translated upon output by desktop software or application settings. Each locator element uses a result hierarchy from the most granular result provided as an output first (Address Points) to the least granular last (Jurisdictions). Data is limited to the Commonwealth of Virginia and cannot guarantee results in other states. Underlying locator files within the service for Address Points and RCL are updated quarterly.General use within ArcGIS Desktop and ArcGIS Pro:https://vgin.vdem.virginia.gov/documents/VGIN::about-the-vgin-composite-geocoding-service/exploreDevelopers:https://developers.arcgis.com/rest/geocode/api-reference/geocoding-geocode-addresses.htmFrequently asked question about applications that need Spatial Reference adjustment on output. Search (control+f) web page using outSR. VGIN Base Map REST services utilize WGS Web Mercator (ID 102100) while the VGIN Composite Locator is WGS standard (ID 4269).Individual Address Locator Downloads (ArcGIS Pro 3.3):Address PointsRoad Centerlines

  5. OpenStreetMap (Blueprint)

    • data.baltimorecity.gov
    • noveladata.com
    • +14more
    Updated Jan 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). OpenStreetMap (Blueprint) [Dataset]. https://data.baltimorecity.gov/maps/45a1aeaff6c649a688163701297c592a
    Explore at:
    Dataset updated
    Jan 30, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.

  6. a

    USNG Map Book Template for ArcGIS Pro

    • hub.arcgis.com
    • gis-fema.hub.arcgis.com
    Updated May 25, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2018). USNG Map Book Template for ArcGIS Pro [Dataset]. https://hub.arcgis.com/content/f93ebd6933cb4679a62ce4f71a2a9615
    Explore at:
    Dataset updated
    May 25, 2018
    Dataset authored and provided by
    NAPSG Foundation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Contents: This is an ArcGIS Pro zip file that you can download and use for creating map books based on United States National Grid (USNG). It contains a geodatabase, layouts, and tasks designed to teach you how to create a basic map book.Version 1.0.0 Uploaded on May 24th and created with ArcGIS Pro 2.1.3 - Please see the README below before getting started!Updated to 1.1.0 on August 20thUpdated to 1.2.0 on September 7thUpdated to 2.0.0 on October 12thUpdate to 2.1.0 on December 29thBack to 1.2.0 due to breaking changes in the templateBack to 1.0.0 due to breaking changes in the template as of June 11th 2019Updated to 2.1.1 on October 8th 2019Audience: GIS Professionals and new users of ArcGIS Pro who support Public Safety agencies with map books. If you are looking for apps that can be used by any public safety professional, see the USNG Lookup Viewer.Purpose: To teach you how to make a map book with critical infrastructure and a basemap, based on USNG. You NEED to follow the steps in the task and not try to take shortcuts the first time you use this task in order to receive the full benefits. Background: This ArcGIS Pro template is meant to be a starting point for your map book projects and is based on best practices by the USNG National Implementation Center (TUNIC) at Delta State University and is hosted by the NAPSG Foundation. This does not replace previous templates created in ArcMap, but is a new experimental approach to making map books. We will continue to refine this template and work with other organizations to make improvements over time. So please send us your feedback admin@publicsafetygis.org and comments below. Instructions: Download the zip file by clicking on the thumbnail or the Download button.Unzip the file to an appropriate location on your computer (C:\Users\YourUsername\Documents\ArcGIS\Projects is a common location for ArcGIS Pro Projects).Open the USNG Map book Project File (APRX).If the Task is not already open by default, navigate to Catalog > Tasks > and open 'Create a US National Grid Map Book' Follow the instructions! This task will have some automated processes and models that run in the background but you should pay close attention to the instructions so you also learn all of the steps. This will allow you to innovate and customize the template for your own use.FAQsWhat is US National Grid? The US National Grid (USNG) is a point and area reference system that provides for actionable location information in a uniform format. Its use helps achieve consistent situational awareness across all levels of government, disciplines, and threats & hazards – regardless of your role in an incident.One of the key resources NAPSG makes available to support emergency responders is a basic USNG situational awareness application. See the NAPSG Foundation and USNG Center websites for more information.What is an ArcGIS Pro Task? A task is a set of preconfigured steps that guide you and others through a workflow or business process. A task can be used to implement a best-practice workflow, improve the efficiency of a workflow, or create a series of interactive tutorial steps. See "What is a Task?" for more information.Do I need to be proficient in ArcGIS Pro to use this template? We feel that this is a good starting point if you have already taken the ArcGIS Pro QuickStart Tutorials. While the task will automate many steps, you will want to get comfortable with the map layouts and other new features in ArcGIS Pro.Is this template free? This resources is provided at no-cost, but also with no guarantees of quality assurance or support at this time. Can't I just use ArcMap? Ok - here you go. USNG 1:24K Map Template for ArcMapKnown Limitations and BugsZoom To: It appears there may be a bug or limitation with automatically zooming the map to the proper extent, so get comfortable with navigation or zoom to feature via the attribute table.FGDC Compliance: We are seeking feedback from experts in the field to make sure that this meets minimum requirements. At this point in time we do not claim to have any official endorsement of standardization. File Size: Highly detailed basemaps can really add up and contribute to your overall file size, especially over a large area / many pages. Consider making a simple "Basemap" of street centerlines and building footprints.We will do the best we can to address limitations and are very open to feedback!

  7. M

    DNR QuickLayers for ArcGIS Pro 3

    • gisdata.mn.gov
    esri_addin
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2025). DNR QuickLayers for ArcGIS Pro 3 [Dataset]. https://gisdata.mn.gov/dataset/quick-layers-pro3
    Explore at:
    esri_addinAvailable download formats
    Dataset updated
    Jun 14, 2025
    Dataset provided by
    Natural Resources Department
    Description

    The way to access Layers Quickly.

    Quick Layers is an Add-In for ArcGIS Pro 3 that allows rapid access to the DNR's Geospatial Data Resource Site (GDRS). The GDRS is a data structure that serves core geospatial dataset and applications for not only DNR, but many state agencies, and supports the Minnesota Geospatial Commons. Data added from Quick Layers is pre-symbolized, helping to standardize visualization and map production. Current version: 3.11

    To use Quick Layers with the GDRS, there's no need to download QuickLayers from this location. Instead, download a full copy or a custom subset of the public GDRS (including Quick Layers for ArcGIS Pro 3) using GDRS Manager.

    Quick Layers also allows users to save and share their own pre-symbolized layers, thus increasing efficiency and consistency across the enterprise.

    Installation:

    After using GDRS Manager to create a GDRS, including Quick Layers, add the path to the Quick Layers addin to the list of shared folders:
    1. Open ArcGIS Pro
    2. Project -> Add-In Manager -> Options
    3. Click add folder, and enter the location of the Quick Layers Pro app. For example, if your GDRS is mapped to the V drive, the path would be V:\gdrs\apps\pub\us_mn_state_dnr\quick_layers_pro3
    4. After you do this, the Quick Layers ribbon will be available. To also add Quick Layers to the Quick Access Toolbar at the top, right click Quick Layers, and select Add to Quick Access Toolbar

    The link below is only for those who are using Quick Layers without a GDRS. To get the most functionality out of Quick Layers, don't install it separately, but instead download it as part of a GDRS build using GDRS Manager.

  8. Imhof style for ArcGIS Pro

    • cacgeoportal.com
    Updated Aug 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2018). Imhof style for ArcGIS Pro [Dataset]. https://www.cacgeoportal.com/content/1f25b31793cd4e7391b0cd51b9b79783
    Explore at:
    Dataset updated
    Aug 28, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    Created to honor the impressionistic atmospheric quality of the work of Swiss topographic painter and cartographer, Eduard Imhof. These symbols and palettes allow for the application of an homage aesthetic when applied to layered hillshades and digital elevation models. An accompanying how-to resource is forthcoming.In the meantime, the Hillshade color scheme is intended to be applied to a traditional hillshade layer and a multidirectional hillshade layer. The Mist color scheme is intended to be applied to a DEM layer. When viewed in concert with an imagery basemap, the hues and opacities combine to create a distinctive quality.Here it is at a broader scale...Here is a map that uses the Area of Interest, Mask, and Locator layers...Contents:Alternatively, you can download an ArcGIS Pro project with the data and styles already implemented, and you can just start cranking away at Imhofs.Happy Topographic Painting! John Nelson

  9. World Soils 250m Percent Sand

    • cacgeoportal.com
    Updated Oct 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). World Soils 250m Percent Sand [Dataset]. https://www.cacgeoportal.com/maps/84fb10f8fc914e6193a6f80b8f56fbbd
    Explore at:
    Dataset updated
    Oct 25, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the physical soil variable percent sand (sand).Within the subset of soil that is smaller than 2mm in size, also known as the fine earth portion, sand is defined as the particles that are greater than 0.05mm. Sand provides excellent aeration and drainage, but has a low capacity for holding water and nutrients.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for sand are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Proportion of sand particles (> 0.05 mm) in the fine earth fraction in g/100g (%).Cell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for sand were used to create this layer. You may access the percent sand in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.

  10. o

    OregonAddress

    • geohub.oregon.gov
    • data.oregon.gov
    • +2more
    Updated Sep 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2023). OregonAddress [Dataset]. https://geohub.oregon.gov/content/d52415395ceb4b0faea09b59cec5277f
    Explore at:
    Dataset updated
    Sep 12, 2023
    Dataset authored and provided by
    State of Oregon
    Description

    The new Oregon Address Geocoder is used to find the location coordinates for street addresses in the State of Oregon. This service is:FreePublicUpdated regularlyOutputs location coordinates in Oregon Lambert, feet (SRID 2992)Uses over 2 million address points and 288,000 streets for referenceIt is an ArcGIS multirole locator with two roles:Point Address - Generally more accurate results from rooftop location points. Includes a Subaddress if a unit number is located.Street Address - Less accurate results from an estimated distance along a street centerline address range if a Point Address was not found.Instructions for using the Geocoder via ArcGIS Pro, ArcGIS Online, and REST Services are below:ArcGIS ProWeb ServicesArcGIS Online

  11. d

    Density raster of caves in Monroe County, West Virginia

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Density raster of caves in Monroe County, West Virginia [Dataset]. https://catalog.data.gov/dataset/density-raster-of-caves-in-monroe-county-west-virginia
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Monroe County, West Virginia
    Description

    Monroe County, in southeastern West Virginia, hosts world-class karst within carbonate units of Mississippian and Ordovician age. There are at least 412 known caves in the county. Location data for these caves were collected from the West Virginia Speleological Survey (WVASS) Bulletin 22 (Dasher, 2019). Point features were created in ArcGIS Pro for each cave location and were used to make a point density raster. This raster displays the number of cave points per square kilometer.

  12. a

    Connecticut 3D Lidar Viewer

    • gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com
    • hub.arcgis.com
    Updated Jan 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UConn Center for Land use Education and Research (2020). Connecticut 3D Lidar Viewer [Dataset]. https://gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com/maps/788d121c4a1f4980b529f914c8df19f4
    Explore at:
    Dataset updated
    Jan 7, 2020
    Dataset authored and provided by
    UConn Center for Land use Education and Research
    Description

    Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm

  13. Viewshed

    • cartong-esriaiddev.opendata.arcgis.com
    • africageoportal.com
    • +1more
    Updated Jul 4, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Viewshed [Dataset]. https://cartong-esriaiddev.opendata.arcgis.com/items/1ff463dbeac14b619b9edbd7a9437037
    Explore at:
    Dataset updated
    Jul 4, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Viewshed analysis layer is used to identify visible areas. You specify the places you are interested in, either from a file or interactively, and the Viewshed service combines this with Esri-curated elevation data to create output polygons of visible areas. Some questions you can answer with the Viewshed task include:What areas can I see from this location? What areas can see me?Can I see the proposed wind farm?What areas can be seen from the proposed fire tower?The maximum number of input features is 1000.Viewshed has the following optional parameters:Maximum Distance: The maximum distance to calculate the viewshed.Maximum Distance Units: The units for the Maximum Distance parameter. The default is meters.DEM Resolution: The source elevation data; the default is 90m resolution SRTM. Other options include 30m, 24m, 10m, and Finest.Observer Height: The height above the surface of the observer. The default value of 1.75 meters is an average height of a person. If you are looking from an elevation location such as an observation tower or a tall building, use that height instead.Observer Height Units: The units for the Observer Height parameter. The default is meters.Surface Offset: The height above the surface of the object you are trying to see. The default value is 0. If you are trying to see buildings or wind turbines add their height here.Surface Offset Units: The units for the Surface Offset parameter. The default is meters.Generalize Viewshed Polygons: Determine if the viewshed polygons are to be generalized or not. The viewshed calculation is based upon a raster elevation model which creates a result with stair-stepped edges. To create a more pleasing appearance, and improve performance, the default behavior is to generalize the polygons. This generalization will not change the accuracy of the result for any location more than one half of the DEM's resolution.By default, this tool currently works worldwide between 60 degrees north and 56 degrees south based on the 3 arc-second (approximately 90 meter) resolution SRTM dataset. Depending upon the DEM resolution pick by the user, different data sources will be used by the tool. For 24m, tool will use global dataset WorldDEM4Ortho (excluding the counties of Azerbaijan, DR Congo and Ukraine) 0.8 arc-second (approximately 24 meter) from Airbus Defence and Space GmbH. For 30m, tool will use 1 arc-second resolution data in North America (Canada, United States, and Mexico) from the USGS National Elevation Dataset (NED), SRTM DEM-S dataset from Geoscience Australia in Australia and SRTM data between 60 degrees north and 56 degrees south in the remaining parts of the world (Africa, South America, most of Europe and continental Asia, the East Indies, New Zealand, and islands of the western Pacific). For 10m, tool will use 1/3 arc-second resolution data in the continental United States from USGS National Elevation Dataset (NED) and approximately 10 meter data covering Netherlands, Norway, Finland, Denmark, Austria, Spain, Japan Estonia, Latvia, Lithuania, Slovakia, Italy, Northern Ireland, Switzerland and Liechtenstein from various authoritative sources.To learn more, read the developer documentation for Viewshed or follow the Learn ArcGIS exercise called I Can See for Miles and Miles. To use this Geoprocessing service in ArcGIS Desktop 10.2.1 and higher, you can either connect to the Ready-to-Use Services, or create an ArcGIS Server connection. Connect to the Ready-to-Use Services by first signing in to your ArcGIS Online Organizational Account:Once you are signed in, the Ready-to-Use Services will appear in the Ready-to-Use Services folder or the Catalog window:If you would like to add a direct connection to the Elevation ArcGIS Server in ArcGIS for Desktop or ArcGIS Pro, use this URL to connect: https://elevation.arcgis.com/arcgis/services. You will also need to provide your account credentials. ArcGIS for Desktop:ArcGIS Pro:The ArcGIS help has additional information about how to do this:Learn how to make a ArcGIS Server Connection in ArcGIS Desktop. Learn more about using geoprocessing services in ArcGIS Desktop.This tool is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  14. M

    Middle East Geospatial Analytics Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Middle East Geospatial Analytics Market Report [Dataset]. https://www.marketreportanalytics.com/reports/middle-east-geospatial-analytics-market-88141
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 21, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Middle East
    Variables measured
    Market Size
    Description

    The Middle East Geospatial Analytics market, valued at $1.16 billion in 2025, is projected to experience robust growth, driven by significant investments in infrastructure development, smart city initiatives, and the burgeoning need for precise location intelligence across various sectors. A Compound Annual Growth Rate (CAGR) of 8.15% from 2025 to 2033 indicates a substantial expansion, with the market expected to surpass $2 billion by 2033. Key drivers include increasing adoption of advanced technologies like AI and machine learning within geospatial analytics, coupled with growing government initiatives promoting digital transformation and data-driven decision-making. The demand for accurate land management, resource optimization, and efficient urban planning is further fueling market expansion. Segmentation reveals strong growth in surface analysis and network analysis within the ‘By Type’ category, while the ‘By End-user Vertical’ segment is witnessing significant contributions from the Agriculture, Utility & Communication, and Defense & Intelligence sectors. The presence of established players like Esri, Bentley Systems, and Autodesk, alongside emerging specialized firms, ensures a competitive and dynamic market landscape. However, challenges like data security concerns, high implementation costs, and the need for skilled professionals could potentially restrain market growth. The Middle East's unique geopolitical landscape and rapid urbanization present both opportunities and challenges. Government initiatives focused on national infrastructure projects and sustainable development are creating substantial demand for geospatial analytics solutions. The region's focus on diversification beyond oil and gas is further stimulating adoption across sectors like agriculture, tourism, and transportation. However, regulatory hurdles and data privacy concerns, especially within the defense and intelligence sectors, need careful consideration. The high cost of sophisticated geospatial analytics technology and the need for specialized expertise might limit penetration in certain segments. Nevertheless, the long-term outlook remains optimistic, driven by the region's commitment to technological advancement and the increasing recognition of the value of data-driven insights for improved decision-making. Recent developments include: June 2023: Autodesk and Esri's partnership accelerated innovations in AEC. Autodesk's InfoWater Pro and Esri's ArcGIS Pro were integrated to make this possible, and there are many more examples of how their partnership with Esri enables BIM and GIS data to flow between respective solutions seamlessly. The result is that project stakeholders can now visualize, understand, and analyze infrastructure within its real-world context., February 2023: Mercedes-Benz and Google announced a long-term strategic partnership to accelerate auto innovation and create the industry's next-generation digital luxury car experience. With this partnership, Mercedes-Benz will be the first automaker to build its branded navigation experience based on new in-car data and navigation capabilities from the Google Maps Platform. This will give the luxury automaker access to Google's leading geospatial offering, including detailed information about places, real-time and predictive traffic information, automatic rerouting, and more.. Key drivers for this market are: Increasing in Demand for Location Intelligence, Advancements of Big Data Analytics. Potential restraints include: Increasing in Demand for Location Intelligence, Advancements of Big Data Analytics. Notable trends are: Surface Analysis is Expected to Hold Significant Share of the Market.

  15. f

    fegn2021 shapefile for ArcGISPro

    • geodata.fnai.org
    • hub.arcgis.com
    • +1more
    Updated Sep 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cossppgis (2021). fegn2021 shapefile for ArcGISPro [Dataset]. https://geodata.fnai.org/content/832b16d8f6504ea7bc80665861c0932a
    Explore at:
    Dataset updated
    Sep 30, 2021
    Dataset authored and provided by
    Cossppgis
    Area covered
    Description

    Florida Ecological Greenways Network 2021 (layer name fegn2021_polygon): This vector layer was created from the original raster grid version (fegn2021) created by the University of Florida Center for Landscape Conservation Planning to provide an ecological component to the Statewide Greenways System plan developed by the Department of Environmental Protection, Office of Greenways and Trails (OGT). The FEGN guides OGT ecological greenway conservation efforts and promotes public awareness of the need for and benefits of a statewide ecological greenways network. It is also used as the primary data layer to inform the Florida Forever and other state and regional land acquisition programs regarding the location of the most important wildlife and ecological corridors and large, intact landscapes in the state. The FEGN identifies areas of opportunity for protecting a statewide network of ecological hubs (large areas of ecological significance) and linkages designed to maintain large landscape-scale ecological functions including priority species habitat and ecosystem services throughout the state. Inclusion in the FEGN means the area is either part of a large landscape-scale “hub”, or an ecological corridor connecting two or more hubs. Hubs indicate core landscapes that are large enough to maintain populations of wide-ranging or fragmentation-sensitive species including black bear or panther and areas that are more likely to support functional ecosystem services. Highest priorities indicate the most significant hubs and corridors in relation to completing a functionally connected statewide ecological network, but all priority levels have conservation value. FEGN Priorities 1, 2, and 3 are the most important for protecting a ecologically functional connected statewide network of public and private conservation lands, and these three priority levels (P1, P2, and P3) are now called the Florida Wildlife Corridor as per the Florida Wildlife Corridor legislation passed and signed into law by the Florida Legislature and Governor and 2021, which makes protection of these wildlife and ecological hubs and corridors a high priority as part of a strategic plan for Florida’s future. To accomplish this goal, we need robust state, federal, and local conservation land protection program funding for Florida Forever, Rural and Family Lands Protection Program, Natural Resources Conservation Service easements and incentives, federal Land and Waters Conservation Fund, payments for ecosystem services, etc.For more information http://conservation.dcp.ufl.edu/fegnproject/

  16. OpenStreetMap 3D Trees (Realistic)

    • hub.arcgis.com
    • cacgeoportal.com
    • +1more
    Updated Jun 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). OpenStreetMap 3D Trees (Realistic) [Dataset]. https://hub.arcgis.com/maps/33383da8a75f4d24b4b6a0d0532abe6e
    Explore at:
    Dataset updated
    Jun 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of December 2024. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) trees data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.

  17. World Soils 250m Nitrogen

    • cacgeoportal.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Oct 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). World Soils 250m Nitrogen [Dataset]. https://www.cacgeoportal.com/maps/9d097b7fa0ae40ca8aef757f163d5f75
    Explore at:
    Dataset updated
    Oct 25, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the chemical soil variable nitrogen (nitrogen).Nitrogen is an essential nutrient for sustaining life on Earth. Nitrogen is a core component of amino acids, which are the building blocks of proteins, and of nucleic acids, which are the building blocks of genetic material (RNA and DNA).This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for nitrogen are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Total nitrogen (N) in g/kgCell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for nitrogen were used to create this layer. You may access nitrogen values in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.

  18. c

    World Soils 250m Organic Carbon Density

    • cacgeoportal.com
    • climate.esri.ca
    • +2more
    Updated Oct 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). World Soils 250m Organic Carbon Density [Dataset]. https://www.cacgeoportal.com/maps/efd491203720432d893f3dedf9eedf3d
    Explore at:
    Dataset updated
    Oct 25, 2023
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the chemical soil variable organic carbon density (ocd) which measures carbon mass in proportion to volume of soil (mass divided by volume.)From Agriculture Victoria: Soil carbon provides a source of nutrients through mineralisation, helps to aggregate soil particles (structure) to provide resilience to physical degradation, increases microbial activity, increases water storage and availability to plants, and protects soil from erosion.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for organic carbon density are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Organic carbon density in kg/m³Cell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for ocd were used to create this layer. You may access organic carbon density values in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.

  19. Use Deep Learning to Assess Palm Tree Health

    • hub.arcgis.com
    Updated Mar 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Tutorials (2019). Use Deep Learning to Assess Palm Tree Health [Dataset]. https://hub.arcgis.com/documents/d50cea3d161542b681333f1bc265029a
    Explore at:
    Dataset updated
    Mar 14, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Tutorials
    Description

    Coconuts and coconut products are an important commodity in the Tongan economy. Plantations, such as the one in the town of Kolovai, have thousands of trees. Inventorying each of these trees by hand would require lots of time and manpower. Alternatively, tree health and location can be surveyed using remote sensing and deep learning. In this lesson, you'll use the Deep Learning tools in ArcGIS Pro to create training samples and run a deep learning model to identify the trees on the plantation. Then, you'll estimate tree health using a Visible Atmospherically Resistant Index (VARI) calculation to determine which trees may need inspection or maintenance.

    To detect palm trees and calculate vegetation health, you only need ArcGIS Pro with the Image Analyst extension. To publish the palm tree health data as a feature service, you need ArcGIS Online and the Spatial Analyst extension.

    In this lesson you will build skills in these areas:

    • Creating training schema
    • Digitizing training samples
    • Using deep learning tools in ArcGIS Pro
    • Calculating VARI
    • Extracting data to points

    Learn ArcGIS is a hands-on, problem-based learning website using real-world scenarios. Our mission is to encourage critical thinking, and to develop resources that support STEM education.

  20. USGS Historical Topographic Map Explorer

    • data.amerigeoss.org
    • amerigeo.org
    • +2more
    Updated Oct 10, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USGS Historical Topographic Map Explorer [Dataset]. https://data.amerigeoss.org/dataset/usgs-historical-topographic-map-explorer1
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Oct 10, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Description

    The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:

    • Find a location of interest.
    • View the maps.
    • Compare the maps.
    • Download and share the maps or open them in ArcGIS Desktop (ArcGIS Pro or ArcMap) where places will appear in their correct geographic location.
    • Save the maps in an ArcGIS Online web map.

    Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.


    Once signed in, users can create a web map with the current map view and any maps they have selected. The web map will open in ArcGIS Online. The title of the web map will be the same as the top map on the side panel of the app. All historical maps that were selected in the app will appear in the Contents section of the web map with the earliest at the top and the latest at the bottom. Turning the historical maps on and off or setting the transparency on the layers allows users to compare the historical maps over time. Also, the web map can be opened in ArcGIS Desktop (ArcGIS Pro or ArcMap) and used for exploration or data capture.

    Users can find out more about the USGS topograhic map collection and the app by clicking on the information button at the upper right. This opens a pop-up with information about the maps and app. The pop-up includes a useful link to a USGS web page that provides access to documents with keys explaining the symbols on historic and current USGS topographic maps. The pop-up also has a link to send Esri questions or comments about the map collection or the app.

    We have shared the updated app on GitHub, so users can download it and configure it to work with their own map collections.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Nederland Support (2023). Locator toevoegen in Portal for ArcGIS [Dataset]. https://support-esrinl-support.hub.arcgis.com/items/b5536f4b4dfc48ddabaeee4d92a65b4c
Organization logo

Locator toevoegen in Portal for ArcGIS

Explore at:
Dataset updated
Dec 7, 2023
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Nederland Support
Description

Laatste update: 07 december 2023Een locator kan helpen om een specifieke locatie op de kaart te vinden, of om een tabel met adressen of plaatsen om te zetten naar punten op de kaart. Het kan gebruikt worden in meerdere onderdelen van het ArcGIS-platform. Een locator bevat de referentiedata die gebruikt wordt om te geocoderen, en daarnaast ook indices, regels, configuratie en regionale kennis over de weergave van adressen. Daarom kan een locator een beter zoekresultaat geven dan een eenvoudige database query.Een locator kan worden gemaakt binnen ArcGIS Pro (zie Create a locator—ArcGIS Pro | Documentation) en lokaal worden gebruikt. Het voordeel van het ArcGIS-platform is dat een locator ook op eenvoudige wijze kan worden gedeeld binnen de organisatie of met het publiek. Een locator kan gedeeld worden als een service in ArcGIS Enterprise. De locator kan up to date gehouden worden, zonder dat de eindgebruiker hinder ondervindt van eventuele updates.

Search
Clear search
Close search
Google apps
Main menu