9 datasets found
  1. Top 3000+ Cryptocurrency Dataset

    • kaggle.com
    Updated Apr 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sourav Banerjee (2023). Top 3000+ Cryptocurrency Dataset [Dataset]. https://www.kaggle.com/datasets/iamsouravbanerjee/cryptocurrency-dataset-2021-395-types-of-crypto
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 9, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sourav Banerjee
    Description

    Context

    A cryptocurrency, crypto-currency, or crypto is a collection of binary data which is designed to work as a medium of exchange. Individual coin ownership records are stored in a ledger, which is a computerized database using strong cryptography to secure transaction records, to control the creation of additional coins, and to verify the transfer of coin ownership. Cryptocurrencies are generally fiat currencies, as they are not backed by or convertible into a commodity. Some crypto schemes use validators to maintain the cryptocurrency. In a proof-of-stake model, owners put up their tokens as collateral. In return, they get authority over the token in proportion to the amount they stake. Generally, these token stakes get additional ownership in the token overtime via network fees, newly minted tokens, or other such reward mechanisms.

    Cryptocurrency does not exist in physical form (like paper money) and is typically not issued by a central authority. Cryptocurrencies typically use decentralized control as opposed to a central bank digital currency (CBDC). When a cryptocurrency is minted or created prior to issuance or issued by a single issuer, it is generally considered centralized. When implemented with decentralized control, each cryptocurrency works through distributed ledger technology, typically a blockchain, that serves as a public financial transaction database

    A cryptocurrency is a tradable digital asset or digital form of money, built on blockchain technology that only exists online. Cryptocurrencies use encryption to authenticate and protect transactions, hence their name. There are currently over a thousand different cryptocurrencies in the world, and many see them as the key to a fairer future economy.

    Bitcoin, first released as open-source software in 2009, is the first decentralized cryptocurrency. Since the release of bitcoin, many other cryptocurrencies have been created.

    Content

    This Dataset is a collection of records of 3000+ Different Cryptocurrencies. * Top 395+ from 2021 * Top 3000+ from 2023

    Structure of the Dataset

    https://i.imgur.com/qGVJaHl.png" alt="">

    Acknowledgements

    This Data is collected from: https://finance.yahoo.com/. If you want to learn more, you can visit the Website.

    Cover Photo by Worldspectrum: https://www.pexels.com/photo/ripple-etehereum-and-bitcoin-and-micro-sdhc-card-844124/

  2. R

    Custom Yolov7 On Kaggle On Custom Dataset

    • universe.roboflow.com
    zip
    Updated Jan 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Owais Ahmad (2023). Custom Yolov7 On Kaggle On Custom Dataset [Dataset]. https://universe.roboflow.com/owais-ahmad/custom-yolov7-on-kaggle-on-custom-dataset-rakiq/dataset/2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 29, 2023
    Dataset authored and provided by
    Owais Ahmad
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Person Car Bounding Boxes
    Description

    Custom Training with YOLOv7 🔥

    Some Important links

    Contact Information

    Objective

    To Showcase custom Object Detection on the Given Dataset to train and Infer the Model using newly launched YoloV7.

    Data Acquisition

    The goal of this task is to train a model that can localize and classify each instance of Person and Car as accurately as possible.

    from IPython.display import Markdown, display
    
    display(Markdown("../input/Car-Person-v2-Roboflow/README.roboflow.txt"))
    

    Custom Training with YOLOv7 🔥

    In this Notebook, I have processed the images with RoboFlow because in COCO formatted dataset was having different dimensions of image and Also data set was not splitted into different Format. To train a custom YOLOv7 model we need to recognize the objects in the dataset. To do so I have taken the following steps:

    • Export the dataset to YOLOv7
    • Train YOLOv7 to recognize the objects in our dataset
    • Evaluate our YOLOv7 model's performance
    • Run test inference to view performance of YOLOv7 model at work

    📦 YOLOv7

    https://raw.githubusercontent.com/Owaiskhan9654/Yolo-V7-Custom-Dataset-Train-on-Kaggle/main/car-person-2.PNG" width=800>

    Image Credit - jinfagang

    Step 1: Install Requirements

    !git clone https://github.com/WongKinYiu/yolov7 # Downloading YOLOv7 repository and installing requirements
    %cd yolov7
    !pip install -qr requirements.txt
    !pip install -q roboflow
    

    Downloading YOLOV7 starting checkpoint

    !wget "https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt"
    
    import os
    import glob
    import wandb
    import torch
    from roboflow import Roboflow
    from kaggle_secrets import UserSecretsClient
    from IPython.display import Image, clear_output, display # to display images
    
    
    
    print(f"Setup complete. Using torch {torch._version_} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})")
    

    https://camo.githubusercontent.com/dd842f7b0be57140e68b2ab9cb007992acd131c48284eaf6b1aca758bfea358b/68747470733a2f2f692e696d6775722e636f6d2f52557469567a482e706e67">

    I will be integrating W&B for visualizations and logging artifacts and comparisons of different models!

    YOLOv7-Car-Person-Custom

    try:
      user_secrets = UserSecretsClient()
      wandb_api_key = user_secrets.get_secret("wandb_api")
      wandb.login(key=wandb_api_key)
      anonymous = None
    except:
      wandb.login(anonymous='must')
      print('To use your W&B account,
    Go to Add-ons -> Secrets and provide your W&B access token. Use the Label name as WANDB. 
    Get your W&B access token from here: https://wandb.ai/authorize')
      
      
      
    wandb.init(project="YOLOvR",name=f"7. YOLOv7-Car-Person-Custom-Run-7")
    

    Step 2: Assemble Our Dataset

    https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615627e5824c9c6195abfda9_computer-vision-cycle.png" alt="">

    In order to train our custom model, we need to assemble a dataset of representative images with bounding box annotations around the objects that we want to detect. And we need our dataset to be in YOLOv7 format.

    In Roboflow, We can choose between two paths:

    Version v2 Aug 12, 2022 Looks like this.

    https://raw.githubusercontent.com/Owaiskhan9654/Yolo-V7-Custom-Dataset-Train-on-Kaggle/main/Roboflow.PNG" alt="">

    user_secrets = UserSecretsClient()
    roboflow_api_key = user_secrets.get_secret("roboflow_api")
    
    rf = Roboflow(api_key=roboflow_api_key)
    project = rf.workspace("owais-ahmad").project("custom-yolov7-on-kaggle-on-custom-dataset-rakiq")
    dataset = project.version(2).download("yolov7")
    

    Step 3: Training Custom pretrained YOLOv7 model

    Here, I am able to pass a number of arguments: - img: define input image size - batch: determine

  3. Metaverse Crypto Tokens Historical data 📊 📓

    • kaggle.com
    Updated Jul 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kash (2022). Metaverse Crypto Tokens Historical data 📊 📓 [Dataset]. https://www.kaggle.com/datasets/kaushiksuresh147/metaverse-cryptos-historical-data/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 12, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kash
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://i2.wp.com/www.mon-livret.fr/wp-content/uploads/2021/10/crypto-Metaverse-696x392.png?resize=696%2C392&ssl=1" alt="">

    Context

    • The metaverse, a living and breathing space that blends physical and digital, is quickly evolving from a science fiction dream into a reality with endless possibilities. A world where people can interact virtually, create and exchange digital assets for real-world value, own digital land, engage with digitized real-world products and services, and much more.

    • Major tech giants are beginning to recognize the viability and potential of metaverses, following Facebook’s groundbreaking Meta rebrand announcement. In addition to tech companies, entertainment brands like Disney have also announced plans to take the leap into virtual reality.

    • While the media hype is deafening, your average netizen isn’t fully aware of what a metaverse is, how it operates and, most importantly—what benefits and opportunities it can offer them as a user.

    https://cdn.images.express.co.uk/img/dynamic/22/590x/Metaverse-tokens-cryptocurrency-explained-ethereum-killers-new-coins-digital-currency-meta-news-1518777.jpg?r=1638256864800" alt="">

    What Is The Metaverse?

    • In its digital iteration, a metaverse is a virtual world based on blockchain technology. This all-encompassing space allows users to work and play in a virtual reflection of real-life and fantasy scenarios, an online reality, ranging from sci-fi and dragons to more practical and familiar settings like shopping centers, offices, and even homes.

    • Users can access metaverses via computer, handheld device, or complete immersion with a VR headset. Those entering the metaverse get to experience living in a digital realm, where they will be able to work, play, shop, exercise, and socialize. Users will be able to create their own avatars based on face recognition, set up their own businesses of any kind, buy real estate, create in-world content and asset,s and attend concerts from real-world superstars—all in one virtual environment,

    • With that said, a metaverse is a virtual world with a virtual economy. In most cases, it is an online reality powered by decentralized finance (DeFi), where users exchange value and assets via cryptocurrencies and Non-Fungible Tokens.

    What Are Metaverse Tokens?

    • Metaverse tokens are a unit of virtual currency used to make digital transactions within the metaverse. Since metaverses are built on the blockchain, transactions on underlying networks are near-instant. Blockchains are designed to ensure trust and security, making the metaverse the perfect environment for an economy free of corruption and financial fraud.

    • Holders of metaverse tokens can access multiple services and applications inside the virtual space. Some tokens give special in-game abilities. Other tokens represent unique items, like clothing for virtual avatars or membership for a community. If you’ve played MMO games like World of Warcraft, the concept of in-game items and currencies are very familiar. However, unlike your traditional virtual world games, metaverse tokens have value inside and outside the virtual worlds. Metaverse tokens in the form of cryptocurrency can be exchanged for fiat currencies. Or if they’re an NFT, they can be used to authenticate ownership to tethered real-world assets like collectibles, works or art, or even cups of coffee.

    • Some examples of metaverse tokens include SAND of the immensely popular Sandbox metaverse. In The Sandbox, users can create a virtual world driven by NFTs. Another token is MANA of the Decentraland project, where users can use MANA to purchase plots of digital real estate called “LAND”. It is even possible to monetize the plots of LAND purchased by renting them to other users for fixed fees. The ENJ token of the Enjin metaverse is the native asset of an ecosystem with the world’s largest game/app NFT networks.

    Dataset Information

    • The dataset brings 198 metaverse cryptos. Pls refer to the file Metaverse coins.csv to find the list of metaverse crypto coins.

    • The dataset will be updated on a weekly basis with more and more additional metaverse tokens, Stay tuned ⏳

  4. bert2bert-weights_192_br

    • kaggle.com
    Updated Feb 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dmitry Vorobiev (2021). bert2bert-weights_192_br [Dataset]. https://www.kaggle.com/dvorobiev/bert2bertweights-192-br/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 7, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Dmitry Vorobiev
    Description

    Dataset

    This dataset was created by Dmitry Vorobiev

    Contents

  5. 🚴🗃️ BCN Bike Sharing Dataset - Bicing Stations

    • kaggle.com
    Updated Apr 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Enric Domingo (2024). 🚴🗃️ BCN Bike Sharing Dataset - Bicing Stations [Dataset]. https://www.kaggle.com/datasets/edomingo/bicing-stations-dataset-bcn-bike-sharing/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 21, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Enric Domingo
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This dataset contains 250 million rows of information from the ~500 bike stations of the Barcelona public bicycle sharing service. The data consists in time series information of the electric and mechanical bicycles available every 4 minutes aprox., from March 2019 to March 2024 (latest available csv file, with the idea of being updated with every new month's file). This data could inspire many different use cases, from geographical data analysis to hierarchical ML time series models or Graph Neural Networks among others. Feel free to create a New Notebook from this page to use it and share your ideas with everyone!

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3317928%2F64409b5bd3c220993e05f5e155fd8c25%2Fstations_map_2024.png?generation=1713725887609128&alt=media" alt="">

    Every month's information is separated in a different file as {year}_{month}_STATIONS.csv. Then the metadata info of every station has been simplified and compressed in the {year}_INFO.csv files where there is a single entry for every station and day, separated in a different file for every year.

    The original data has some different errors, few of them have been already corrected but there are still some missing values, columns with wrong data types and other fewer artifacts or missing data. From time to time I may be manually correcting more of those.

    The data is collected from the public BCN Open Data website, which is available for everyone (some resources need from creating a free account and token): - Stations data: https://opendata-ajuntament.barcelona.cat/data/en/dataset/estat-estacions-bicing - Stations info: https://opendata-ajuntament.barcelona.cat/data/en/dataset/informacio-estacions-bicing

    You can find more information in them.

    Please, consider upvoting this dataset if you find it interesting! 🤗

    Some observations:
    The historical data for June '19 does not have data for the 20th between 7:40 am and 2:00 pm.
    The historical data for July '19 does not have data from the 26th at 1:30 pm until the 29th at 10:40 am.
    The historical data for November '19 may not have some data from 10:00 pm on the 26th to 11:00 am on the 27th.
    The historical data for August '20 does not have data from the 7th at 2:25 am until the 10th at 10:40 am.
    The historical data for November '20 does not have data on the following days/times: 4th from 1:45 am to 11:05 am 20th from 7:50 pm to the 21st at 10:50 am 27th from 2:50 am to the 30th at 9:50 am.
    The historical data for August '23 does not have data from the 22nd to the 31st due to a technical incident.
    The historical data for September '23 does not have data from the 1st to the 5th due to a technical incident.
    The historical data for February '24 does not have data on the 5th between 12:50 pm and 1:05 pm.
    Others: Due to COVID-19 measures, the Bicing service was temporarily stopped, reflecting this situation in the historical data.

    Field Description:

    Array of data for each station:

    station_id: Identifier of the station
    num_bikes_available: Number of available bikes
    num_bikes_available_types: Array of types of available bikes
    mechanical: Number of available mechanical bikes
    ebike: Number of available electric bikes
    num_docks_available: Number of available docks
    is_installed: The station is properly installed (0-NO,1-YES)
    is_renting: The station is providing bikes correctly
    is_returning: The station is docking bikes correctly
    last_reported: Timestamp of the station information
    is_charging_station: The station has electric bike charging capacity
    status: Status of the station (IN_SERVICE=In service, CLOSED=Closed)

  6. Ethereum Blockchain

    • kaggle.com
    zip
    Updated Mar 4, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 4, 2019
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Bitcoin and other cryptocurrencies have captured the imagination of technologists, financiers, and economists. Digital currencies are only one application of the underlying blockchain technology. Like its predecessor, Bitcoin, the Ethereum blockchain can be described as an immutable distributed ledger. However, creator Vitalik Buterin also extended the set of capabilities by including a virtual machine that can execute arbitrary code stored on the blockchain as smart contracts.

    Both Bitcoin and Ethereum are essentially OLTP databases, and provide little in the way of OLAP (analytics) functionality. However the Ethereum dataset is notably distinct from the Bitcoin dataset:

    • The Ethereum blockchain has as its primary unit of value Ether, while the Bitcoin blockchain has Bitcoin. However, the majority of value transfer on the Ethereum blockchain is composed of so-called tokens. Tokens are created and managed by smart contracts.

    • Ether value transfers are precise and direct, resembling accounting ledger debits and credits. This is in contrast to the Bitcoin value transfer mechanism, for which it can be difficult to determine the balance of a given wallet address.

    • Addresses can be not only wallets that hold balances, but can also contain smart contract bytecode that allows the programmatic creation of agreements and automatic triggering of their execution. An aggregate of coordinated smart contracts could be used to build a decentralized autonomous organization.

    Content

    The Ethereum blockchain data are now available for exploration with BigQuery. All historical data are in the ethereum_blockchain dataset, which updates daily.

    Our hope is that by making the data on public blockchain systems more readily available it promotes technological innovation and increases societal benefits.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.crypto_ethereum.[TABLENAME]. Fork this kernel to get started.

    Acknowledgements

    Cover photo by Thought Catalog on Unsplash

    Inspiration

    • What are the most popularly exchanged digital tokens, represented by ERC-721 and ERC-20 smart contracts?
    • Compare transaction volume and transaction networks over time
    • Compare transaction volume to historical prices by joining with other available data sources like Bitcoin Historical Data
  7. Skillbox VK posts

    • kaggle.com
    Updated Apr 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caerno (2022). Skillbox VK posts [Dataset]. https://www.kaggle.com/datasets/caerno/skillbox-vk-posts
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 6, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Caerno
    Description

    By API from vk.com/skillbox_education from 2016 to 2020, almost 4 thousand of posts.

    Code inside, to get token you need to go here, add standalone app with mode "ON and visible to all".

    You will see id there - in that link use it as client_id instead of 1. Then you will use it, you will get temporarily access_token to use API.

  8. Unstructured Text Language Data

    • kaggle.com
    Updated Jul 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rahul Anand (2020). Unstructured Text Language Data [Dataset]. https://www.kaggle.com/ranand60/unstructured-text-language-data/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 15, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Rahul Anand
    Description

    Perform this analysis on 2 excel files ‘Unstructured Data English.xlsx’ and ‘Unstructured Data Japanese.xls

    Task: 1. Generate code for data cleansing in Python 2. Write a SQL Query/python to generate top 10 frequently occurring meaningful phrases in the data set 3. Using above cleansed data create a term document matrix for the given unstructured data. Use Python 3.7. The output should be in excel format explained as below,

       S.no. (Unique identifier of a comment)                
    

    Token 1 2 3 4 so on…….. Unique identifier of each comment
    Fire 0 0 3 0 ………. Token
    Bad 2 0 1 8 ………. Number of times a token appears in a comment Hate 5 2 2 0 ……….
    Shine 1 1 2 3 ……….

    1. Extract primary theme tags using NLP models in python.
  9. CrunchDAO Competition Unified Dataset

    • kaggle.com
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joakim Arvidsson (2023). CrunchDAO Competition Unified Dataset [Dataset]. https://www.kaggle.com/datasets/joebeachcapital/crunchdao-competition-unified-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Joakim Arvidsson
    Description

    This data set is for creating predictive models for the CrunchDAO tournament. Registration is required in order to participate in the competition, and to be eligible to earn $CRUNCH tokens.

    See notebooks (Code tab) for how to import and explore the data, and build predictive models.

    See Terms of Use for data license.

  10. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Sourav Banerjee (2023). Top 3000+ Cryptocurrency Dataset [Dataset]. https://www.kaggle.com/datasets/iamsouravbanerjee/cryptocurrency-dataset-2021-395-types-of-crypto
Organization logo

Top 3000+ Cryptocurrency Dataset

Cryptocurrency Cosmos: A Comprehensive Dataset of 3000+ Digital Currencies

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Apr 9, 2023
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Sourav Banerjee
Description

Context

A cryptocurrency, crypto-currency, or crypto is a collection of binary data which is designed to work as a medium of exchange. Individual coin ownership records are stored in a ledger, which is a computerized database using strong cryptography to secure transaction records, to control the creation of additional coins, and to verify the transfer of coin ownership. Cryptocurrencies are generally fiat currencies, as they are not backed by or convertible into a commodity. Some crypto schemes use validators to maintain the cryptocurrency. In a proof-of-stake model, owners put up their tokens as collateral. In return, they get authority over the token in proportion to the amount they stake. Generally, these token stakes get additional ownership in the token overtime via network fees, newly minted tokens, or other such reward mechanisms.

Cryptocurrency does not exist in physical form (like paper money) and is typically not issued by a central authority. Cryptocurrencies typically use decentralized control as opposed to a central bank digital currency (CBDC). When a cryptocurrency is minted or created prior to issuance or issued by a single issuer, it is generally considered centralized. When implemented with decentralized control, each cryptocurrency works through distributed ledger technology, typically a blockchain, that serves as a public financial transaction database

A cryptocurrency is a tradable digital asset or digital form of money, built on blockchain technology that only exists online. Cryptocurrencies use encryption to authenticate and protect transactions, hence their name. There are currently over a thousand different cryptocurrencies in the world, and many see them as the key to a fairer future economy.

Bitcoin, first released as open-source software in 2009, is the first decentralized cryptocurrency. Since the release of bitcoin, many other cryptocurrencies have been created.

Content

This Dataset is a collection of records of 3000+ Different Cryptocurrencies. * Top 395+ from 2021 * Top 3000+ from 2023

Structure of the Dataset

https://i.imgur.com/qGVJaHl.png" alt="">

Acknowledgements

This Data is collected from: https://finance.yahoo.com/. If you want to learn more, you can visit the Website.

Cover Photo by Worldspectrum: https://www.pexels.com/photo/ripple-etehereum-and-bitcoin-and-micro-sdhc-card-844124/

Search
Clear search
Close search
Google apps
Main menu