Facebook
Twitteranalyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
Facebook
TwitterThis dataset is designed for beginners to practice regression problems, particularly in the context of predicting house prices. It contains 1000 rows, with each row representing a house and various attributes that influence its price. The dataset is well-suited for learning basic to intermediate-level regression modeling techniques.
Beginner Regression Projects: This dataset can be used to practice building regression models such as Linear Regression, Decision Trees, or Random Forests. The target variable (house price) is continuous, making this an ideal problem for supervised learning techniques.
Feature Engineering Practice: Learners can create new features by combining existing ones, such as the price per square foot or age of the house, providing an opportunity to experiment with feature transformations.
Exploratory Data Analysis (EDA): You can explore how different features (e.g., square footage, number of bedrooms) correlate with the target variable, making it a great dataset for learning about data visualization and summary statistics.
Model Evaluation: The dataset allows for various model evaluation techniques such as cross-validation, R-squared, and Mean Absolute Error (MAE). These metrics can be used to compare the effectiveness of different models.
The dataset is highly versatile for a range of machine learning tasks. You can apply simple linear models to predict house prices based on one or two features, or use more complex models like Random Forest or Gradient Boosting Machines to understand interactions between variables.
It can also be used for dimensionality reduction techniques like PCA or to practice handling categorical variables (e.g., neighborhood quality) through encoding techniques like one-hot encoding.
This dataset is ideal for anyone wanting to gain practical experience in building regression models while working with real-world features.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete dataset of “Film Circulation on the International Film Festival Network and the Impact on Global Film Culture”
A peer-reviewed data paper for this dataset is in review to be published in NECSUS_European Journal of Media Studies - an open access journal aiming at enhancing data transparency and reusability, and will be available from https://necsus-ejms.org/ and https://mediarep.org
Please cite this when using the dataset.
Detailed description of the dataset:
1 Film Dataset: Festival Programs
The Film Dataset consists a data scheme image file, a codebook and two dataset tables in csv format.
The codebook (csv file “1_codebook_film-dataset_festival-program”) offers a detailed description of all variables within the Film Dataset. Along with the definition of variables it lists explanations for the units of measurement, data sources, coding and information on missing data.
The csv file “1_film-dataset_festival-program_long” comprises a dataset of all films and the festivals, festival sections, and the year of the festival edition that they were sampled from. The dataset is structured in the long format, i.e. the same film can appear in several rows when it appeared in more than one sample festival. However, films are identifiable via their unique ID.
The csv file “1_film-dataset_festival-program_wide” consists of the dataset listing only unique films (n=9,348). The dataset is in the wide format, i.e. each row corresponds to a unique film, identifiable via its unique ID. For easy analysis, and since the overlap is only six percent, in this dataset the variable sample festival (fest) corresponds to the first sample festival where the film appeared. For instance, if a film was first shown at Berlinale (in February) and then at Frameline (in June of the same year), the sample festival will list “Berlinale”. This file includes information on unique and IMDb IDs, the film title, production year, length, categorization in length, production countries, regional attribution, director names, genre attribution, the festival, festival section and festival edition the film was sampled from, and information whether there is festival run information available through the IMDb data.
2 Survey Dataset
The Survey Dataset consists of a data scheme image file, a codebook and two dataset tables in csv format.
The codebook “2_codebook_survey-dataset” includes coding information for both survey datasets. It lists the definition of the variables or survey questions (corresponding to Samoilova/Loist 2019), units of measurement, data source, variable type, range and coding, and information on missing data.
The csv file “2_survey-dataset_long-festivals_shared-consent” consists of a subset (n=161) of the original survey dataset (n=454), where respondents provided festival run data for films (n=206) and gave consent to share their data for research purposes. This dataset consists of the festival data in a long format, so that each row corresponds to the festival appearance of a film.
The csv file “2_survey-dataset_wide-no-festivals_shared-consent” consists of a subset (n=372) of the original dataset (n=454) of survey responses corresponding to sample films. It includes data only for those films for which respondents provided consent to share their data for research purposes. This dataset is shown in wide format of the survey data, i.e. information for each response corresponding to a film is listed in one row. This includes data on film IDs, film title, survey questions regarding completeness and availability of provided information, information on number of festival screenings, screening fees, budgets, marketing costs, market screenings, and distribution. As the file name suggests, no data on festival screenings is included in the wide format dataset.
3 IMDb & Scripts
The IMDb dataset consists of a data scheme image file, one codebook and eight datasets, all in csv format. It also includes the R scripts that we used for scraping and matching.
The codebook “3_codebook_imdb-dataset” includes information for all IMDb datasets. This includes ID information and their data source, coding and value ranges, and information on missing data.
The csv file “3_imdb-dataset_aka-titles_long” contains film title data in different languages scraped from IMDb in a long format, i.e. each row corresponds to a title in a given language.
The csv file “3_imdb-dataset_awards_long” contains film award data in a long format, i.e. each row corresponds to an award of a given film.
The csv file “3_imdb-dataset_companies_long” contains data on production and distribution companies of films. The dataset is in a long format, so that each row corresponds to a particular company of a particular film.
The csv file “3_imdb-dataset_crew_long” contains data on names and roles of crew members in a long format, i.e. each row corresponds to each crew member. The file also contains binary gender assigned to directors based on their first names using the GenderizeR application.
The csv file “3_imdb-dataset_festival-runs_long” contains festival run data scraped from IMDb in a long format, i.e. each row corresponds to the festival appearance of a given film. The dataset does not include each film screening, but the first screening of a film at a festival within a given year. The data includes festival runs up to 2019.
The csv file “3_imdb-dataset_general-info_wide” contains general information about films such as genre as defined by IMDb, languages in which a film was shown, ratings, and budget. The dataset is in wide format, so that each row corresponds to a unique film.
The csv file “3_imdb-dataset_release-info_long” contains data about non-festival release (e.g., theatrical, digital, tv, dvd/blueray). The dataset is in a long format, so that each row corresponds to a particular release of a particular film.
The csv file “3_imdb-dataset_websites_long” contains data on available websites (official websites, miscellaneous, photos, video clips). The dataset is in a long format, so that each row corresponds to a website of a particular film.
The dataset includes 8 text files containing the script for webscraping. They were written using the R-3.6.3 version for Windows.
The R script “r_1_unite_data” demonstrates the structure of the dataset, that we use in the following steps to identify, scrape, and match the film data.
The R script “r_2_scrape_matches” reads in the dataset with the film characteristics described in the “r_1_unite_data” and uses various R packages to create a search URL for each film from the core dataset on the IMDb website. The script attempts to match each film from the core dataset to IMDb records by first conducting an advanced search based on the movie title and year, and then potentially using an alternative title and a basic search if no matches are found in the advanced search. The script scrapes the title, release year, directors, running time, genre, and IMDb film URL from the first page of the suggested records from the IMDb website. The script then defines a loop that matches (including matching scores) each film in the core dataset with suggested films on the IMDb search page. Matching was done using data on directors, production year (+/- one year), and title, a fuzzy matching approach with two methods: “cosine” and “osa.” where the cosine similarity is used to match titles with a high degree of similarity, and the OSA algorithm is used to match titles that may have typos or minor variations.
The script “r_3_matching” creates a dataset with the matches for a manual check. Each pair of films (original film from the core dataset and the suggested match from the IMDb website was categorized in the following five categories: a) 100% match: perfect match on title, year, and director; b) likely good match; c) maybe match; d) unlikely match; and e) no match). The script also checks for possible doubles in the dataset and identifies them for a manual check.
The script “r_4_scraping_functions” creates a function for scraping the data from the identified matches (based on the scripts described above and manually checked). These functions are used for scraping the data in the next script.
The script “r_5a_extracting_info_sample” uses the function defined in the “r_4_scraping_functions”, in order to scrape the IMDb data for the identified matches. This script does that for the first 100 films, to check, if everything works. Scraping for the entire dataset took a few hours. Therefore, a test with a subsample of 100 films is advisable.
The script “r_5b_extracting_info_all” extracts the data for the entire dataset of the identified matches.
The script “r_5c_extracting_info_skipped” checks the films with missing data (where data was not scraped) and tried to extract data one more time to make sure that the errors were not caused by disruptions in the internet connection or other technical issues.
The script “r_check_logs” is used for troubleshooting and tracking the progress of all of the R scripts used. It gives information on the amount of missing values and errors.
4 Festival Library Dataset
The Festival Library Dataset consists of a data scheme image file, one codebook and one dataset, all in csv format.
The codebook (csv file “4_codebook_festival-library_dataset”) offers a detailed description of all variables within the Library Dataset. It lists the definition of variables, such as location and festival name, and festival categories, units of measurement, data sources and coding and missing data.
The csv file “4_festival-library_dataset_imdb-and-survey” contains data on all unique festivals collected from both IMDb and survey sources. This dataset appears in wide format, all information for each festival is listed in one row. This
Facebook
TwitterThe dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.
The full-population dataset (with about 10 million individuals) is also distributed as open data.
The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.
Household, Individual
The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.
ssd
The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.
other
The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.
The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.
This is a synthetic dataset; the "response rate" is 100%.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview
This dataset is the repository for the following paper submitted to Data in Brief:
Kempf, M. A dataset to model Levantine landcover and land-use change connected to climate change, the Arab Spring and COVID-19. Data in Brief (submitted: December 2023).
The Data in Brief article contains the supplement information and is the related data paper to:
Kempf, M. Climate change, the Arab Spring, and COVID-19 - Impacts on landcover transformations in the Levant. Journal of Arid Environments (revision submitted: December 2023).
Description/abstract
The Levant region is highly vulnerable to climate change, experiencing prolonged heat waves that have led to societal crises and population displacement. Since 2010, the area has been marked by socio-political turmoil, including the Syrian civil war and currently the escalation of the so-called Israeli-Palestinian Conflict, which strained neighbouring countries like Jordan due to the influx of Syrian refugees and increases population vulnerability to governmental decision-making. Jordan, in particular, has seen rapid population growth and significant changes in land-use and infrastructure, leading to over-exploitation of the landscape through irrigation and construction. This dataset uses climate data, satellite imagery, and land cover information to illustrate the substantial increase in construction activity and highlights the intricate relationship between climate change predictions and current socio-political developments in the Levant.
Folder structure
The main folder after download contains all data, in which the following subfolders are stored are stored as zipped files:
“code” stores the above described 9 code chunks to read, extract, process, analyse, and visualize the data.
“MODIS_merged” contains the 16-days, 250 m resolution NDVI imagery merged from three tiles (h20v05, h21v05, h21v06) and cropped to the study area, n=510, covering January 2001 to December 2022 and including January and February 2023.
“mask” contains a single shapefile, which is the merged product of administrative boundaries, including Jordan, Lebanon, Israel, Syria, and Palestine (“MERGED_LEVANT.shp”).
“yield_productivity” contains .csv files of yield information for all countries listed above.
“population” contains two files with the same name but different format. The .csv file is for processing and plotting in R. The .ods file is for enhanced visualization of population dynamics in the Levant (Socio_cultural_political_development_database_FAO2023.ods).
“GLDAS” stores the raw data of the NASA Global Land Data Assimilation System datasets that can be read, extracted (variable name), and processed using code “8_GLDAS_read_extract_trend” from the respective folder. One folder contains data from 1975-2022 and a second the additional January and February 2023 data.
“built_up” contains the landcover and built-up change data from 1975 to 2022. This folder is subdivided into two subfolder which contain the raw data and the already processed data. “raw_data” contains the unprocessed datasets and “derived_data” stores the cropped built_up datasets at 5 year intervals, e.g., “Levant_built_up_1975.tif”.
Code structure
1_MODIS_NDVI_hdf_file_extraction.R
This is the first code chunk that refers to the extraction of MODIS data from .hdf file format. The following packages must be installed and the raw data must be downloaded using a simple mass downloader, e.g., from google chrome. Packages: terra. Download MODIS data from after registration from: https://lpdaac.usgs.gov/products/mod13q1v061/ or https://search.earthdata.nasa.gov/search (MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061, last accessed, 09th of October 2023). The code reads a list of files, extracts the NDVI, and saves each file to a single .tif-file with the indication “NDVI”. Because the study area is quite large, we have to load three different (spatially) time series and merge them later. Note that the time series are temporally consistent.
2_MERGE_MODIS_tiles.R
In this code, we load and merge the three different stacks to produce large and consistent time series of NDVI imagery across the study area. We further use the package gtools to load the files in (1, 2, 3, 4, 5, 6, etc.). Here, we have three stacks from which we merge the first two (stack 1, stack 2) and store them. We then merge this stack with stack 3. We produce single files named NDVI_final_*consecutivenumber*.tif. Before saving the final output of single merged files, create a folder called “merged” and set the working directory to this folder, e.g., setwd("your directory_MODIS/merged").
3_CROP_MODIS_merged_tiles.R
Now we want to crop the derived MODIS tiles to our study area. We are using a mask, which is provided as .shp file in the repository, named "MERGED_LEVANT.shp". We load the merged .tif files and crop the stack with the vector. Saving to individual files, we name them “NDVI_merged_clip_*consecutivenumber*.tif. We now produced single cropped NDVI time series data from MODIS.
The repository provides the already clipped and merged NDVI datasets.
4_TREND_analysis_NDVI.R
Now, we want to perform trend analysis from the derived data. The data we load is tricky as it contains 16-days return period across a year for the period of 22 years. Growing season sums contain MAM (March-May), JJA (June-August), and SON (September-November). December is represented as a single file, which means that the period DJF (December-February) is represented by 5 images instead of 6. For the last DJF period (December 2022), the data from January and February 2023 can be added. The code selects the respective images from the stack, depending on which period is under consideration. From these stacks, individual annually resolved growing season sums are generated and the slope is calculated. We can then extract the p-values of the trend and characterize all values with high confidence level (0.05). Using the ggplot2 package and the melt function from reshape2 package, we can create a plot of the reclassified NDVI trends together with a local smoother (LOESS) of value 0.3.
To increase comparability and understand the amplitude of the trends, z-scores were calculated and plotted, which show the deviation of the values from the mean. This has been done for the NDVI values as well as the GLDAS climate variables as a normalization technique.
5_BUILT_UP_change_raster.R
Let us look at the landcover changes now. We are working with the terra package and get raster data from here: https://ghsl.jrc.ec.europa.eu/download.php?ds=bu (last accessed 03. March 2023, 100 m resolution, global coverage). Here, one can download the temporal coverage that is aimed for and reclassify it using the code after cropping to the individual study area. Here, I summed up different raster to characterize the built-up change in continuous values between 1975 and 2022.
6_POPULATION_numbers_plot.R
For this plot, one needs to load the .csv-file “Socio_cultural_political_development_database_FAO2023.csv” from the repository. The ggplot script provided produces the desired plot with all countries under consideration.
7_YIELD_plot.R
In this section, we are using the country productivity from the supplement in the repository “yield_productivity” (e.g., "Jordan_yield.csv". Each of the single country yield datasets is plotted in a ggplot and combined using the patchwork package in R.
8_GLDAS_read_extract_trend
The last code provides the basis for the trend analysis of the climate variables used in the paper. The raw data can be accessed https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS%20Noah%20Land%20Surface%20Model%20L4%20monthly&page=1 (last accessed 9th of October 2023). The raw data comes in .nc file format and various variables can be extracted using the [“^a variable name”] command from the spatraster collection. Each time you run the code, this variable name must be adjusted to meet the requirements for the variables (see this link for abbreviations: https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_D_2.0/summary, last accessed 09th of October 2023; or the respective code chunk when reading a .nc file with the ncdf4 package in R) or run print(nc) from the code or use names(the spatraster collection).
Choosing one variable, the code uses the MERGED_LEVANT.shp mask from the repository to crop and mask the data to the outline of the study area.
From the processed data, trend analysis are conducted and z-scores were calculated following the code described above. However, annual trends require the frequency of the time series analysis to be set to value = 12. Regarding, e.g., rainfall, which is measured as annual sums and not means, the chunk r.sum=r.sum/12 has to be removed or set to r.sum=r.sum/1 to avoid calculating annual mean values (see other variables). Seasonal subset can be calculated as described in the code. Here, 3-month subsets were chosen for growing seasons, e.g. March-May (MAM), June-July (JJA), September-November (SON), and DJF (December-February, including Jan/Feb of the consecutive year).
From the data, mean values of 48 consecutive years are calculated and trend analysis are performed as describe above. In the same way, p-values are extracted and 95 % confidence level values are marked with dots on the raster plot. This analysis can be performed with a much longer time series, other variables, ad different spatial extent across the globe due to the availability of the GLDAS variables.
Facebook
TwitterThis dataverse contains the data referenced in Rieth et al. (2017). Issues and Advances in Anomaly Detection Evaluation for Joint Human-Automated Systems. To be presented at Applied Human Factors and Ergonomics 2017.
Each .RData file is an external representation of an R dataframe that can be read into an R environment with the 'load' function. The variables loaded are named ‘fault_free_training’, ‘fault_free_testing’, ‘faulty_testing’, and ‘faulty_training’, corresponding to the RData files.
Each dataframe contains 55 columns:
Column 1 ('faultNumber') ranges from 1 to 20 in the “Faulty” datasets and represents the fault type in the TEP. The “FaultFree” datasets only contain fault 0 (i.e. normal operating conditions).
Column 2 ('simulationRun') ranges from 1 to 500 and represents a different random number generator state from which a full TEP dataset was generated (Note: the actual seeds used to generate training and testing datasets were non-overlapping).
Column 3 ('sample') ranges either from 1 to 500 (“Training” datasets) or 1 to 960 (“Testing” datasets). The TEP variables (columns 4 to 55) were sampled every 3 minutes for a total duration of 25 hours and 48 hours respectively. Note that the faults were introduced 1 and 8 hours into the Faulty Training and Faulty Testing datasets, respectively.
Columns 4 to 55 contain the process variables; the column names retain the original variable names.
This work was sponsored by the Office of Naval Research, Human & Bioengineered Systems (ONR 341), program officer Dr. Jeffrey G. Morrison under contract N00014-15-C-5003. The views expressed are those of the authors and do not reflect the official policy or position of the Office of Naval Research, Department of Defense, or US Government.
By accessing or downloading the data or work provided here, you, the User, agree that you have read this agreement in full and agree to its terms.
The person who owns, created, or contributed a work to the data or work provided here dedicated the work to the public domain and has waived his or her rights to the work worldwide under copyright law. You can copy, modify, distribute, and perform the work, for any lawful purpose, without asking permission.
In no way are the patent or trademark rights of any person affected by this agreement, nor are the rights that any other person may have in the work or in how the work is used, such as publicity or privacy rights.
Pacific Science & Engineering Group, Inc., its agents and assigns, make no warranties about the work and disclaim all liability for all uses of the work, to the fullest extent permitted by law.
When you use or cite the work, you shall not imply endorsement by Pacific Science & Engineering Group, Inc., its agents or assigns, or by another author or affirmer of the work.
This Agreement may be amended, and the use of the data or work shall be governed by the terms of the Agreement at the time that you access or download the data or work from this Website.
Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/6HPRIGhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/6HPRIG
This dataset contains the data and code necessary to replicate work in the following paper: Narayan, Sneha, Jake Orlowitz, Jonathan Morgan, Benjamin Mako Hill, and Aaron Shaw. 2017. “The Wikipedia Adventure: Field Evaluation of an Interactive Tutorial for New Users.” in Proceedings of the 20th ACM Conference on Computer-Supported Cooperative Work & Social Computing (CSCW '17). New York, New York: ACM Press. http://dx.doi.org/10.1145/2998181.2998307 The published paper contains two studies. Study 1 is a descriptive analysis of a survey of Wikipedia editors who played a gamified tutorial. Study 2 is a field experiment that evaluated the same the tutorial. These data are the data used in the field experiment described in Study 2. Description of Files This dataset contains the following files beyond this README: twa.RData — An RData file that includes all variables used in Study 2. twa_analysis.R — A GNU R script that includes all the code used to generate the tables and plots related to Study 2 in the paper. The RData file contains one variable (d) which is an R dataframe (i.e., table) that includes the following columns: userid (integer): The unique numerical ID representing each user on in our sample. These are 8-digit integers and describe public accounts on Wikipedia. sample.date (date string): The day the user was recruited to the study. Dates are formatted in “YYYY-MM-DD” format. In the case of invitees, it is the date their invitation was sent. For users in the control group, these is the date that they would have been invited to the study. edits.all (integer): The total number of edits made by the user on Wikipedia in the 180 days after they joined the study. Edits to user's user pages, user talk pages and subpages are ignored. edits.ns0 (integer): The total number of edits made by user to article pages on Wikipedia in the 180 days after they joined the study. edits.talk (integer): The total number of edits made by user to talk pages on Wikipedia in the 180 days after they joined the study. Edits to a user's user page, user talk page and subpages are ignored. treat (logical): TRUE if the user was invited, FALSE if the user was in control group. play (logical): TRUE if the user played the game. FALSE if the user did not. All users in control are listed as FALSE because any user who had not been invited to the game but played was removed. twa.level (integer): Takes a value 0 of if the user has not played the game. Ranges from 1 to 7 for those who did, indicating the highest level they reached in the game. quality.score (float). This is the average word persistence (over a 6 revision window) over all edits made by this userid. Our measure of word persistence (persistent word revision per word) is a measure of edit quality developed by Halfaker et al. that tracks how long words in an edit persist after subsequent revisions are made to the wiki-page. For more information on how word persistence is calculated, see the following paper: Halfaker, Aaron, Aniket Kittur, Robert Kraut, and John Riedl. 2009. “A Jury of Your Peers: Quality, Experience and Ownership in Wikipedia.” In Proceedings of the 5th International Symposium on Wikis and Open Collaboration (OpenSym '09), 1–10. New York, New York: ACM Press. doi:10.1145/1641309.1641332. Or this page: https://meta.wikimedia.org/wiki/Research:Content_persistence How we created twa.RData The files twa.RData combines datasets drawn from three places: A dataset created by Wikimedia Foundation staff that tracked the details of the experiment and how far people got in the game. The variables userid, sample.date, treat, play, and twa.level were all generated in a dataset created by WMF staff when The Wikipedia Adventure was deployed. All users in the sample created their accounts within 2 days before the date they were entered into the study. None of them had received a Teahouse invitation, a Level 4 user warning, or been blocked from editing at the time that they entered the study. Additionally, all users made at least one edit after the day they were invited. Users were sorted randomly into treatment and control groups, based on which they either received or did not receive an invite to play The Wikipedia Adventure. Edit and text persistence data drawn from public XML dumps created on May 21st, 2015. We used publicly available XML dumps to generate the outcome variables, namely edits.all, edits.ns0, edits.talk and quality.score. We first extracted all edits made by users in our sample during the six month period since they joined the study, excluding edits made to user pages or user talk pages using. We parsed the XML dumps using the Python based wikiq and MediaWikiUtilities software online at: http://projects.mako.cc/source/?p=mediawiki_dump_tools https://github.com/mediawiki-utilities/python-mediawiki-utilities We obtained the XML dumps from: https://dumps.wikimedia.org/enwiki/ A list of edits made by users in our study that were subsequently deleted, created on...
Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/6C3JR1https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/6C3JR1
User Agreement, Public Domain Dedication, and Disclaimer of Liability. By accessing or downloading the data or work provided here, you, the User, agree that you have read this agreement in full and agree to its terms. The person who owns, created, or contributed a work to the data or work provided here dedicated the work to the public domain and has waived his or her rights to the work worldwide under copyright law. You can copy, modify, distribute, and perform the work, for any lawful purpose, without asking permission. In no way are the patent or trademark rights of any person affected by this agreement, nor are the rights that any other person may have in the work or in how the work is used, such as publicity or privacy rights. Pacific Science & Engineering Group, Inc., its agents and assigns, make no warranties about the work and disclaim all liability for all uses of the work, to the fullest extent permitted by law. When you use or cite the work, you shall not imply endorsement by Pacific Science & Engineering Group, Inc., its agents or assigns, or by another author or affirmer of the work. This Agreement may be amended, and the use of the data or work shall be governed by the terms of the Agreement at the time that you access or download the data or work from this Website. Description This dataverse contains the data referenced in Rieth et al. (2017). Issues and Advances in Anomaly Detection Evaluation for Joint Human-Automated Systems. To be presented at Applied Human Factors and Ergonomics 2017. Each .RData file is an external representation of an R dataframe that can be read into an R environment with the 'load' function. The variables loaded are named ‘fault_free_training’, ‘fault_free_testing’, ‘faulty_testing’, and ‘faulty_training’, corresponding to the RData files. Each dataframe contains 55 columns: Column 1 ('faultNumber') ranges from 1 to 20 in the “Faulty” datasets and represents the fault type in the TEP. The “FaultFree” datasets only contain fault 0 (i.e. normal operating conditions). Column 2 ('simulationRun') ranges from 1 to 500 and represents a different random number generator state from which a full TEP dataset was generated (Note: the actual seeds used to generate training and testing datasets were non-overlapping). Column 3 ('sample') ranges either from 1 to 500 (“Training” datasets) or 1 to 960 (“Testing” datasets). The TEP variables (columns 4 to 55) were sampled every 3 minutes for a total duration of 25 hours and 48 hours respectively. Note that the faults were introduced 1 and 8 hours into the Faulty Training and Faulty Testing datasets, respectively. Columns 4 to 55 contain the process variables; the column names retain the original variable names. Acknowledgments. This work was sponsored by the Office of Naval Research, Human & Bioengineered Systems (ONR 341), program officer Dr. Jeffrey G. Morrison under contract N00014-15-C-5003. The views expressed are those of the authors and do not reflect the official policy or position of the Office of Naval Research, Department of Defense, or US Government.
Facebook
TwitterOpen Access# Data and R code used in: Plant geographic distribution influences chemical defenses in native and introduced Plantago lanceolata populations ## Description of the data and file structure * 00_ReadMe_DescriptonVariables.csv: A list with the description of variables from each file used. * 00_Metadata_Coordinates.csv : A dataset that includes the coordinates of each Plantago lanceolata population used. * 00_Metadata_Climate.csv : A dataset that includes coordinates, bioclimatic parameters, and the results of PCA. The dataset was created based on the script '1_Environmental variables.qmd' * 00_Metadata_Individuals.csv: A dataset that includes general information about each plant individual. Information about root traits and chemistry is missing in four samples since we lost the samples. * 01_Datset_PlantTraits.csv: Size-related and resource allocation traits measured of Plantago lanceolata and herbivore damage. * 02_Dataset_TargetedCompounds.csv: Phytohormones, Iridoid glycosides, Verbascoside and Flavonoids quantification of the leaves and roots of Plantago lanceolata. Data generated from HPLC * 03_Dataset_Volatiles_Area.csv: Area of identified volatile compounds. Data generated from GC-FID * 03_Dataset_Volatiles_Compounds.csv: Information on identified volatile compounds. Data generated from GC-MS. * 04_Dataset_Metabolome_Negative_Metadata.txt: Metadata for files in negative mode * 04_Dataset_Metabolome_Negative_Intensity.xlsx : File with the intensity of the metabolite features in negative mode. The file was generated from Metaboscape and adapted as required for the Notame package. * 04_Dataset_Metabolome_Negative_Intensity_filtered.xlsx: File generated after preprocessing of features in negative mode. During the notadame pacakged preprossesing 0 were converted to na * 04_Dataset_Metabolome_Negative.msmsonly.csv: File with a intensity of the the metabolite features in negative mode with ms/ms data. File generated from Metaboscape. * 04_Results_Metabolome_Negative_canopus_compound_summary.tsv: Feature classification. Results generated from Sirius software. * 04_Results_Metabolome_Negative_compound_identifications.tsv: Feature identification. Results generated from Sirius software. * 05_Dataset_Metabolome_Positive_Metadata.txt: Metadata for files in positive mode * 05_DatasetMetabolome_Positive_Intensity.xlsx : File with a intensity of the the metabolite features in positive mode. File generated from Metaboscape and adapted as required for the Notame package. * 05_Dataset_Metabolome_Positive_Intensity_filtered: File generated after preprocessing of features in positive mode.During the notadame pacakged preprossesing 0 were converted to na ## ## Code/Software * 1_Environmental vairables.qmd: Rscript to Retrieve bioclimatic variables from based on the coordinates of each population and then perform a principal components analysis to reduce the axes variation and included the first principal component as an explanatory variable in our model to estimate trait differences between native and introduced populations. Figure 1b and 1d * 2_PlantTraits_and_Herbivory: Rscript for statistical anaylsis of size-related traits, resource allocation traits and herbivore damage. Figure 2. It needs to source: Model_1_Fucntion.R, Model_2_Fucntion.R, Plot_Function.R * 3_Metabolome: Rscript for statistical anaylsis of Plantago lanceolata metabolome. Figure 3. It needs to source: Metabolome_preprocessing_R, Model_1_Fucntion.R, Model_2_Fucntion.R, Plot_Function.R. * 4_TargetedCompounds: Rscript for statistical anaylsis of Plantago lanceolata targeted compounds. Figure 4. It needs to source: Model_1_Fucntion.R, Model_2_Fucntion.R, Plot_Function.R * 5_Volatilome: Rscript for statistical anaylsis of Plantago lanceolata metabolome. Figure 5. It needs to source: Model_1_Fucntion.R, Model_2_Fucntion.R, Plot_Function.R * Model_1_Function.R : Function to run statistical models * Model_2_Function.R : Function to run statistical models * Plots_Function.R : Function to run plot graphs * Metabolome_prepocessing.R: Script to preprocess features
Facebook
TwitterNote. Pre-HD and symp-HD were combined to create a new variable to explore the relationship between disease characteristics as a continuum. CAG, cytosine-adenine-guanine repeat length; UHDRS-TMS, Unified Huntington’s Disease Rating Scale total motor score; DBS, Disease Burden Score; YTO/YSO, years to onset/ years since onset, expressed as a continuum, pre-HD counting down to 0, symp-HD counting up from 0. r = .10 to .29 small correlation, r = .30 to .49 moderate correlation, r = .50 to 1.0 large correlation (Pallant, 2011). Figures in parentheses are p values.Pearson correlations of significant variables with clinical measures.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This respository includes two datasets, a Document-Term Matrix and associated metadata, for 17,493 New York Times articles covering protest events, both saved as single R objects.
These datasets are based on the original Dynamics of Collective Action (DoCA) dataset (Wang and Soule 2012; Earl, Soule, and McCarthy). The original DoCA datset contains variables for protest events referenced in roughly 19,676 New York Times articles reporting on collective action events occurring in the US between 1960 and 1995. Data were collected as part of the Dynamics of Collective Action Project at Stanford University. Research assistants read every page of all daily issues of the New York Times to find descriptions of 23,624 distinct protest events. The text for the news articles were not included in the original DoCA data.
We attempted to recollect the raw text in a semi-supervised fashion by matching article titles to create the Dynamics of Collective Action Corpus. In addition to hand-checking random samples and hand-collecting some articles (specifically, in the case of false positives), we also used some automated matching processes to ensure the recollected article titles matched their respective titles in the DoCA dataset. The final number of recollected and matched articles is 17,493.
We then subset the original DoCA dataset to include only rows that match a recollected article. The "20231006_dca_metadata_subset.Rdata" contains all of the metadata variables from the original DoCA dataset (see Codebook), with the addition of "pdf_file" (used to link to original article pdfs) and "pub_title" (which is the title of the recollected article and may differ from the "title" variable in the original dataset), for a total of 106 variables and 21,126 rows (noting that a row is a distinct protest events and one article may cover more than one protest event).
Once collected, we prepared these texts using typical preprocessing procedures (and some less typical procedures, which were necessary given that these were OCRed texts). We followed these steps in this order: We removed headers and footers that were consistent across all digitized stories and any web links or HTML; added a single space before an uppercase letter when it was flush against a lowercase letter to its right (e.g., turning "JohnKennedy'' into "John Kennedy''); removed excess whitespace; converted all characters to the broadest range of Latin characters and then transliterated to "Basic Latin'' ASCII characters; replaced curly quotes with their ASCII counterparts; replaced contractions (e.g., turned "it's'' into "it is''); removed punctuation; removed capitalization; removed numbers; fixed word kerning; applied a final extra round of whitespace removal.
We then tokenized them by following the rule that each word is a character string surrounded by a single space. At this step, each document is then a list of tokens. We count each unique token to create a document-term matrix (DTM), where each row is an article, each column is a unique token (occurring at least once in the corpus as a whole), and each cell is the number of times each token occurred in each article. Finally, we removed words (i.e., columns in the DTM) that occurred less than four times in the corpus as a whole or were only a single character in length (likely orphaned characters from the OCRing process). The final DTM has 66,552 unique words, 10,134,304 total tokens and 17,493 documents. The "20231006_dca_dtm.Rdata" is a sparse matrix class object from the Matrix R package.
In R, use the load() function to load the objects `dca_dtm` and `dca_meta`. To associate the `dca_meta` to the `dca_dtm` , match the "pdf_file" variable in`dca_meta` to the rownames of `dca_dtm`.
Facebook
TwitterOverview Supplementary materials for the paper "Comparing Internet experiences and prosociality in Amazon Mechanical Turk and population-based survey samples" by Eszter Hargittai and Aaron Shaw published in Socius in 2020 (https://doi.org/10.1177/2378023119889834). License The materials provided here are issued under the same (Creative Commons Attribution Non-Commercial 4.0) license as the paper. Details and a copy of the license are available at: http://creativecommons.org/licenses/by-nc/4.0/. Manifest The files included are: Hargittai-Shaw-AMT-NORC-2019.rds and Hargittai-Shaw-AMT-NORC-2019.tsv: Two (identical) versions the dataset used for the analysis. The tsv file is provided to facilitate import into software other than R. R analysis code files: 01-import.R - Imports dataset. Creates a mapping of dependent variables and variable names used elsewhere in the figure and analysis. 02-gen_figure.R - Generates Figure 1 in PDF and PNG formats and saves them in the "figures" directory. 03-gendescriptivestats.R - Generates results reported in Table 1. 04-gen_models.R - Fits models reported in Tables 2-4. 05-alternative_specifications.R - Fits models using log-transformed version of the income variable. Makefile: Executes all of the R files in sequence, produces corresponding .log files in the "log" directory that contain the full R session from each file as well as separate error log files (also in the "log" directory) that capture any error messages and warnings generated by R along the way. HargittaiShaw2019Socius-Instrument.pdf: The questions distributed to both the NORC and AMT survey participants used in the analysis reported in this paper. How to reproduce the analysis presented in the paper Depending on your computing environment, reproducing the analysis presented in the paper may be as easy as invoking "make all" or "make" in the directory containing this file on a system that has the appropriate software installed. Once compilation is complete, you can review the log files in a text editor. See below for more on software and dependencies. If calling the makefile fails, the individual R scripts can also be run interactively or in batch mode. Software and dependencies The R and compilation materials provided here were created and tested on a 64-bit laptop pc running Ubuntu 18.04.3 LTS, R version 3.6.1, ggplot2 version 3.2.1, reshape2 version 1.4.3, forcats version 0.4.0, pscl version 1.5.2, and stargazer version 5.2.2 (these last five are R packages called in specific .R files). As with all software, your mileage may vary and the authors provide no warranties. Codebook The dataset consists of 36 variables (columns) and 2,716 participants (rows). The variable names and brief descriptions follow below. Additional details of measurement are provided in the paper and survey instrument. All dichotomous indicators are coded 0/1 where 1 is the affirmative response implied by the variable name: id: Index to identify individual units (participants). svy_raked_wgt: Raked survey weights provided by NORC. amtsample: Data source coded 0 (NORC) or 1 (AMT). age: Participant age in years. female: Participant selected "female" gender. incomecont: Income in USD (continuous) coded from center-points of categories reported in the instruments. incomediv: Income in $1,000s USD (=incomecont/1000). incomesqrt: Square-root of incomecont. lincome: Natural logarithm of incomecont. rural: Participant resides in a rural area. employed: Participant is fully or partially employed. eduhsorless: Highest education level is high school or less. edusc: Highest education level is completed some college. edubaormore: Highest education level is BA or more. white: Race = white. black: Race = black. nativeam: Race = native american. hispanic: Ethnicity = hispanic. asian: Race = asian. raceother: Race = other. skillsmean: Internet use skills index (described in paper). accesssum: Internet use autonomy (described in paper). webweekhrs: Internet use frequency (described in paper). do_sum: Participatory online activities (described in paper). snssumcompare: Social network site activities (described in paper). altru_scale: Generous behaviors (described in paper). trust_scale: Trust scale score (described in paper). pts_give: Points donated in unilateral dictator game (described in paper). std_accesssum: Standardized (z-score) version of accesssum. std_webweekhrs: Standardized (z-score) version of webweekhrs. std_skillsmean: Standardized (z-score) version of skillsmean. std_do_sum: Standardized (z-score) version of do_sum. std_snssumcompare: Standardized (z-score) version of snssumcompare. std_trust_scale: Standardized (z-score) version of trust_scale. std_altru_scale: Standardized (z-score) version of altru_scale. std_pts_give: Standardized (z-score) version of pts_give.
Facebook
TwitterThe Correlates of State Policy Project includes more than 3000 variables, with observations across the 50 U.S. states and across time (1900–2019, approximately). These variables represent policy outputs or political, social, or economic factors that may influence policy differences. The codebook includes the variable name, a short description of the variable, the variable time frame, a longer description of the variable, and the variable source(s) and notes.
See the codebook files for detailed column description
This aggregated dataset is only possible because many scholars and students have spent countless hours creating, collecting, cleaning, and making data publicly available. Thus, if you use the dataset, please cite the original data sources. To quickly generate these citations, see our web application or R package(link is external) - both can export citations for any variable in the dataset. For example, if you use the dataset to examine the relationship between the Policy Innovativeness Score created by Boehmke & Skinner (2012) and the Policy Liberalism Score created by Caughey & Warshaw (2015), you should include the following three citations: - Boehmke, Frederick J., and Paul Skinner. 2012. “State Policy Innovativeness Revisited.” State Politics and Policy Quarterly 12(3):303-29. - Caughey, Devin, and Christopher Warshaw. 2015. “The Dynamics of State Policy Liberalism, 1936–2014.” American Journal of Political Science 60 (4): 899–913. - Grossmann, M., Jordan, M. P. and McCrain, J. (2021) “The Correlates of State Policy and the Structure of State Panel Data,” State Politics & Policy Quarterly. Cambridge University Press, pp. 1–21. doi: 10.1017/spq.2021.17.
Foto von Samuel Branch auf Unsplash
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Derived projected datasets for the eight Australian capital cities in 2016-2045 and 2036-2065, centred around 2030 and 2050, respectively. Projects used eight general circulation models (GCMs) under Representative Concentration Pathway [RCP]2.6, RCP4.5, RCP6.0 and RCP8.5. The scenarios were under Coupled Model Intercomparison Project [CMIP]5. The eight GCM models are ACCESS1-0, CESM1-CAM5, CNRM-CM5, CanESM2, GFDL-ESM2M, HadGEM2-CC, MIROC5 and NorESM1-M, and are described online: https://www.climatechangeinaustralia.gov.au/en/obtain-data/application-ready-data/eight-climate-models-data/. Only data from five GCMs are available for RCP2.6 and four for RCP6.0.
For each city, seven*seven 5 km grids were extracted at grid centroids correlating to the centre of its central business district. These coordinates are in the file "City coordinate." The corresponding datasets for each city, RCP, GCM, time period, and meteorological variable are located in their respective city folder in the folder "future." The meteorological variables are relative humidity ("hurs"), solar radiation ("rsds"), average air temperature ("tas"), maximum air temperature "(tasmax") and minimum air temperature ("tasmin"). These were used to create derived .csv files also stored in the "future" folder, which in turn were used to create derived R datasets ("ccia_future.rda" and "ccia_future2.rda") combining all the datasets into one and creating additional meteorological indices using the available data. The R code used to create these datasets is included "CCiA data manipulation.R". It uses functions stored in the R code file "Climate functions.R". The additional meteorological indices include alternate humidity variables, apparent temperature variables and the Excess Heat Factor (EHF). The heatwave thresholds values used to calculate EHF (the 95th percentile of daily mean temperature from a reference period) per city are included in "barra_ehfr.R" and were calculated from a separate dataset (not included) derived from the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis (BARRA).
The original projected climate datasets were sourced from Climate Change in Australia (CCiA), published by the Commonwealth Science Industrial Research Organisation (CSIRO). The original datasets are available online: https://data-cbr.csiro.au/thredds/catalog/catch_all/oa-aus5km/Climate_Change_in_Australia_User_Data/Application_Ready_Data_Gridded_Daily/catalog.html. The license under which the data were used is available online: https://www.climatechangeinaustralia.gov.au/en/overview/about-site/licences-and-acknowledgements/.
I acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and thank the climate modelling groups (listed at https://www.climatechangeinaustralia.gov.au/en/obtain-data/application-ready-data/eight-climate-models-data/) for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.
Further information regarding these datasets and meteorological variables is listed in the author's PhD thesis, available online: https://digital.library.adelaide.edu.au/dspace/handle/2440/137773. For any queries, please do not hesitate to contact the author: matthew.borg@adelaide.edu.au.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This respository includes two datasets, a Document-Term Matrix and associated metadata, for 17,493 New York Times articles covering protest events, both saved as single R objects.
These datasets are based on the original Dynamics of Collective Action (DoCA) dataset (Wang and Soule 2012; Earl, Soule, and McCarthy). The original DoCA datset contains variables for protest events referenced in roughly 19,676 New York Times articles reporting on collective action events occurring in the US between 1960 and 1995. Data were collected as part of the Dynamics of Collective Action Project at Stanford University. Research assistants read every page of all daily issues of the New York Times to find descriptions of 23,624 distinct protest events. The text for the news articles were not included in the original DoCA data.
We attempted to recollect the raw text in a semi-supervised fashion by matching article titles to create the Dynamics of Collective Action Corpus. In addition to hand-checking random samples and hand-collecting some articles (specifically, in the case of false positives), we also used some automated matching processes to ensure the recollected article titles matched their respective titles in the DoCA dataset. The final number of recollected and matched articles is 17,493.
We then subset the original DoCA dataset to include only rows that match a recollected article. The "20231006_dca_metadata_subset.Rds" contains all of the metadata variables from the original DoCA dataset (see Codebook), with the addition of "pdf_file" and "pub_title" which is the title of the recollected article (and may differ from the "title" variable in the original dataset), for a total of 106 variables and 21,126 rows (noting that a row is a distinct protest events and one article may cover more than one protest event).
Once collected, we prepared these texts using typical preprocessing procedures (and some less typical procedures, which were necessary given that these were OCRed texts). We followed these steps in this order: We removed headers and footers that were consistent across all digitized stories and any web links or HTML; added a single space before an uppercase letter when it was flush against a lowercase letter to its right (e.g., turning "JohnKennedy'' into "John Kennedy''); removed excess whitespace; converted all characters to the broadest range of Latin characters and then transliterated to ``Basic Latin'' ASCII characters; replaced curly quotes with their ASCII counterparts; replaced contractions (e.g., turned "it's'' into "it is''); removed punctuation; removed capitalization; removed numbers; fixed word kerning; applied a final extra round of whitespace removal.
We then tokenized them by following the rule that each word is a character string surrounded by a single space. At this step, each document is then a list of tokens. We count each unique token to create a document-term matrix (DTM), where each row is an article, each column is a unique token (occurring at least once in the corpus as a whole), and each cell is the number of times each token occurred in each article. Finally, we removed words (i.e., columns in the DTM) that occurred less than four times in the corpus as a whole or were only a single character in length (likely orphaned characters from the OCRing process). The final DTM has 66,552 unique words, 10,134,304 total tokens and 17,493. The "20231006_dca_dtm.Rds" is a sparse matrix class object from the Matrix R package.
In R, use the load() function to load the objects dca_dtm and dca_meta. To associate the dca_meta to the dca_dtm , match the "pdf_file" variable indca_meta to the rownames of dca_dtm.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General Info
This data archive contains the updated glacier-cover and glacier regions for the Community Land Model version 5 (CLM5)/Community Terrestrial Systems Model (CTSM). The updated glacier-cover and glacier regions are used for a study on the evaluation of variable-resolution (VR) CESM2 in High Mountain Asia (https://tc.copernicus.org/preprints/tc-2022-256/). The data archive also contains the model scripts and input files that have been used to create the glacier-cover dataset. The global glacier outlines used for the glacier-cover dataset were retrieved from the Randolph Glacier Inventory version 6 (RGI-Consortium, 2017). The vector data for the Greenland and Antarctic ice sheets were retrieved from the masks of Bedmachine version 4 (Morlighem et al., 2017, 2021) and version 2 (Morlighem et al., 2020; Morlighem, 2020), respectively.
Contact
René Wijngaard (r.r.wijngaard.uu@gmail.com / r.r.wijngaard@uu.nl)
Dataset Contents
mksrf_glacier_3x3min_simyr2000.c210708.nc
The updated glacier-cover dataset, encompassing three 3-minute datasets: 1) fractional land ice coverage, including both glaciers and ice sheets (PCT_GLACIER), 2) distributions of areal glacier coverage by elevation (PCT_GLC_GIC), and 3) distributions of areal ice-sheet coverage by elevation (PCT_GLC_ICESHEET).
mksrf_GlacierRegion_10x10min_nomask_c200813.nc
The updated glacier regions, encompassing five different glacier regions (0 - Other regions, 1 - Inside standard CISM grid but outside Greenland itself, 2 - Greenland, 3 - Antarctica, and 4 - High Mountain Asia (new)), used to set the ice melt and runoff behaviour in CLM5/CTSM (more detailed information can be found in the CLM5 Documentation, https://escomp.github.io/ctsm-docs/)
model_scripts.tar
Model scripts used for creating the glacier-cover dataset. A README file is included that lists instructions on how to make the glacier-cover dataset.
glacier_final.tar
Input files used to create the glacier-cover dataset. The following files are included: a global 30-arcsec merged BedMachine/GMTED2010 elevation dataset (gmted_bedmachine_stitched.nc) and land-sea mask (gmted2010_modis-rawdata-lonshift.nc), Antarctica land mask (BedMachineAntarcticaRotate2RotateBack_2020-07-15_v02_lonshift.map_TO_30arcsec.nc), Greenland land mask (BedMachineGreenland-2021-04-20.map_TO_30arcsec.nc), and 30-arcsec datasets encompassing glacier-cover (30arcsec_00_rgi60_World.nc) and ice-sheet cover (30arcsec_00_BM_World.nc).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
This remarkable dataset provides an awe-inspiring collection of over 50,000 books, encompassing the world's best practices in literature, poetry, and authorship. For each book included in the dataset, users can gain access to a wealth of insightful information such as title, author(s), average rating given by readers and critics alike, a brief description highlighting its plot or characteristics; language it is written in; unique ISBN which enables potential buyers to locate their favorite works with ease; genres it belongs to; any awards it has won or characters that inhabit its storyworld.
Additionally, seeking out readers' opinions on exceptional books is made easier due to the availability of bbeScore (best books ever score) alongside details for the most accurate ratings given through well-detailed breakdowns in “ratingsByStars” section. Making sure visibility and recognition are granted fairly – be it a classic novel from time immemorial or merely recently released newcomers - this source also allows us to evaluate new stories based off readers' engagement rate highlighted by likedPercent column (the percentage of readers who liked the book), bbeVotes (number of votes casted) as well as entries related to date published - including showstopping firstPublishDate!
Aspiring literature researchers; literary historians and those seeking hidden literary gems alike would no doubt benefit from delving into this magnificent collection – 25 variables regarding different novels & poets that are presented by Kaggle open source dataset “Best Books Ever: A Comprehensive Historical Collection of Literary Greats”. What worlds awaits you?
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
Whether you are a student, researcher, or enthusiast of literature, this dataset provides a valuable source for exploring literary works from varied time periods and genres. By accessing all 25 variables in the dataset, readers have the opportunity to use them for building visualizations, creating new analysis tools and models, or finding books you might be interested in reading.
First after downloading the dataset into Kaggle Notebooks platform or other programming interfaces of your choice such as R Studio/Python Jupyter Notebooks (Pandas) - make sure that data is arranged into columns with clearly labeled title names. This will help you understand which variable is related to what precise information. Afterwards explore each variable by finding any patterns across particular titles or interesting findings about certain authors/ratings that are available in your research interests.
Utilize the vital columns of Title (title), Author(author), Rating (rating), Description (description), Language (language), Genres (genres) and Characters(characters) - these can assist you in discovering different trends between books according to style of composition or character types etc. Move further down on examining more specific details offered by Book Format(bookFormat), Edition(edition) Pages(pages). Peruse publisher info along with Publish Date(publishDate). Besides these structural elements also take note of Awards column considering recent recognition different titles have received; also observe how much ratings has been collected per text through Numbers Ratings column-(numRatings); analyze reader's feedback according on Ratings By Stars(_ratingsByStars); view LikedPercentage rate provided by readers when analyzing particular book(_likedPercent).
Apart from more accessible factors mentioned previously delve deeper onto more sophisticated data presented: Setting (_setting); Cover Image (_coverImg); BbeScore_bbeScore); BbeVotes_bbeVotes). All those should provide greater insight when trying to explain why certain book has made its way onto GoodReads top selections list! To find value estimate test out Price (_price)) column too - determining if some texts retain large popularity despite rather costly publishing options cost-wise available on market currently?
Finally combine different aspects observed while researching concerning individual titles- create personalized recommendations based upon released comprehensive lists! To achieve that utilize ISUBN code provided; compare publication Vs first publication dates historically recorded; verify awards labeling procedure relied upon give context information on discussed here books progress over years
- Creating a web or mobile...
Facebook
TwitterThis package contains data and codes related to the article: B. Renard, M. Thyer, D. McInerney, D. Kavetski, M. Leonard and S. Westra. A Hidden Climate Indices Modeling Framework for Multi-Variable Space-Time Data. Water Resources Research. R scripts The main computations of the paper have been performed using a computing code named STooDs, which is called using the bash script launchpad.sh. The R scripts in this package only perform pre-processing (create configuration files) and post-processing (analyze results) steps. Funk.R: a set of functions called by other scripts. 1_defineModel.R: define the model to be inferred and create STooDs configuration files in dataset_XXX/runs. 2_analyzeResults.R: analyze the outputs of STooDs runs. 3_crossValidation.R: analyze the outputs of cross-validation experiments in dataset_XV and dataset_XV_1971-1990. Data Data for the 3 cases (full dataset and 2 cross-validation experiments) are located in folders dataset_XXX/data. dat.txt: raw dataset in text format. dataset.RData: dataset in RData format. DMI.txt, NINO.txt, SAM.txt: 3 standard climate indices. spaceP.txt, spaceQ.txt, spaceT.txt: properties of Precipitation (P), Streamflow (Q) and Temperature (T) stations. [only for cross-validation experiments] validation.RData: left-out data used for validation.
Facebook
TwitterWelcome to my Kickstarter case study! In this project I’m trying to understand what the success’s factors for a Kickstarter campaign are, analyzing an available public dataset from Web Robots. The process of analysis will follow the data analysis roadmap: ASK, PREPARE, PROCESS, ANALYZE, SHARE and ACT.
ASK
Different questions will guide my analysis: 1. Is the campaign duration influencing the success of the project? 2. Is it the chosen funding budget? 3. Which category of campaign is the most likely to be successful?
PREPARE
I’m using the Kickstarter Datasets publicly available on Web Robots. Data are scraped using a bot which collects the data in CSV format once a month and all the data are divided into CSV files. Each table contains: - backers_count : number of people that contributed to the campaign - blurb : a captivating text description of the project - category : the label categorizing the campaign (technology, art, etc) - country - created_at : day and time of campaign creation - deadline : day and time of campaign max end - goal : amount to be collected - launched_at : date and time of campaign launch - name : name of campaign - pledged : amount of money collected - state : success or failure of the campaign
Each month scraping produce a huge amount of CSVs, so for an initial analysis I decided to focus on three months: November and December 2023, and January 2024. I’ve downloaded zipped files which once unzipped contained respectively: 7 CSVs (November 2023), 8 CSVs (December 2023), 8 CSVs (January 2024). Each month was divided into a specific folder.
Having a first look at the spreadsheets, it’s clear that there is some need for cleaning and modification: for example, dates and times are shown in Unix code, there are multiple columns that are not helpful for the scope of my analysis, currencies need to be uniformed (some are US$, some GB£, etc). In general, I have all the data that I need to answer my initial questions, identify trends, and make predictions.
PROCESS
I decided to use R to clean and process the data. For each month I started setting a new working environment in its own folder. After loading the necessary libraries:
R
library(tidyverse)
library(lubridate)
library(ggplot2)
library(dplyr)
library(tidyr)
I scripted a general R code that searches for CSVs files in the folder, open them as separate variable and into a single data frame:
csv_files <- list.files(pattern = "\\.csv$")
data_frames <- list()
for (file in csv_files) {
variable_name <- sub("\\.csv$", "", file)
assign(variable_name, read.csv(file))
data_frames[[variable_name]] <- get(variable_name)
}
Next, I converted some columns in numeric values because I was running into types error when trying to merge all the CSVs into a single comprehensive file.
data_frames <- lapply(data_frames, function(df) {
df$converted_pledged_amount <- as.numeric(df$converted_pledged_amount)
return(df)
})
data_frames <- lapply(data_frames, function(df) {
df$usd_exchange_rate <- as.numeric(df$usd_exchange_rate)
return(df)
})
data_frames <- lapply(data_frames, function(df) {
df$usd_pledged <- as.numeric(df$usd_pledged)
return(df)
})
In each folder I then ran a command to merge the CSVs in a single file (one for November 2023, one for December 2023 and one for January 2024):
all_nov_2023 = bind_rows(data_frames)
all_dec_2023 = bind_rows(data_frames)
all_jan_2024 = bind_rows(data_frames)`
After merging I converted the UNIX code datestamp into a readable datetime for the columns “created”, “launched”, “deadline” and deleted all the columns that had these data set to 0. I also filtered the values into the “slug” columns to show only the category of the campaign, without unnecessary information for the scope of my analysis. The final table was then saved.
filtered_dec_2023 <- all_dec_2023 %>% #this was modified according to the considered month
select(blurb, backers_count, category, country, created_at, launched_at, deadline,currency, usd_exchange_rate, goal, pledged, state) %>%
filter(created_at != 0 & deadline != 0 & launched_at != 0) %>%
mutate(category_slug = sub('.*?"slug":"(.*?)".*', '\\1', category)) %>%
mutate(created = as.POSIXct(created_at, origin = "1970-01-01")) %>%
mutate(launched = as.POSIXct(launched_at, origin = "1970-01-01")) %>%
mutate(setted_deadline = as.POSIXct(deadline, origin = "1970-01-01")) %>%
select(-category, -deadline, -launched_at, -created_at) %>%
relocate(created, launched, setted_deadline, .before = goal)
write.csv(filtered_dec_2023, "filtered_dec_2023.csv", row.names = FALSE)
The three generated files were then merged into one comprehensive CSV called "kickstarter_cleaned" which was further modified, converting a...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Clinical Practice Research Datalink (CPRD) is a large and widely used resource of electronic health records from the UK, linking primary care data to hospital data, death registration data, cancer registry data, deprivation data and mental health services data. Extraction and management of CPRD data is a computationally demanding process and requires a significant amount of work, in particular when using R. The rcprd package simplifies the process of extracting and processing CPRD data in order to build datasets ready for statistical analysis. Raw CPRD data is provided in thousands of.txt files, making querying this data cumbersome and inefficient. rcprd saves the relevant information into an SQLite database stored on the hard drive which can then be queried efficiently to extract required information about individuals. rcprd follows a four-stage process: 1) Definition of a cohort, 2) Read in medical/prescription data and save into an SQLite database, 3) Query this SQLite database for specific codes and tests to create variables for each individual in the cohort, 4) Combine extracted variables into a dataset ready for statistical analysis. Functions are available to extract common variable types (e.g., history of a condition, or time until an event occurs, relative to an index date), and more general functions for database queries, allowing users to define their own variables for extraction. The entire process can be done from within R, with no knowledge of SQL required. This manuscript showcases the functionality of rcprd by running through an example using simulated CPRD Aurum data. rcprd will reduce the duplication of time and effort among those using CPRD data for research, allowing more time to be focused on other aspects of research projects.
Facebook
Twitteranalyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D