45 datasets found
  1. a

    Terrain: Slope Map

    • uidaho.hub.arcgis.com
    Updated Jun 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho (2021). Terrain: Slope Map [Dataset]. https://uidaho.hub.arcgis.com/datasets/351fe62891814ccb8bd577f334253265
    Explore at:
    Dataset updated
    Jun 30, 2021
    Dataset authored and provided by
    University of Idaho
    Area covered
    Description

    This map provides a colorized representation of slope, generated dynamically using server-side slope function on Terrain service. The degree of slope steepness is depicted by light to dark colors - flat surfaces as gray, shallow slopes as light yellow, moderate slopes as light orange and steep slopes as red-brown. A scaling is applied to slope values to generate appropriate visualization at each map scale. This service should only be used for visualization, such as a base layer in applications or maps. If access to non-scaled slope values is required, use the Slope Degrees or Slope percent functions, which return values from 0 to 90 degrees, or 0 to 1000%, respectively.What can you do with this layer?Use for Visualization: Yes. This colorized slope is appropriate for visualizing the steepness of the terrain at all map scales. This layer can be added to applications or maps to enhance contextual understanding. Use for Analysis: No. 8 bit color values returned by this service represent scaled slope values. For analysis with non-scaled values, use the Slope Degrees or Slope percent functions.For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  2. USA Soils Map Units

    • v3-api-demo-dcdev.opendata.arcgis.com
    • historic-cemeteries.lthp.org
    • +11more
    Updated Apr 5, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USA Soils Map Units [Dataset]. https://v3-api-demo-dcdev.opendata.arcgis.com/maps/06e5fd61bdb6453fb16534c676e1c9b9
    Explore at:
    Dataset updated
    Apr 5, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations. Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from thegSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset Summary Phenomenon Mapped:Soils of the United States and associated territoriesGeographic Extent:The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System:Web Mercator Auxiliary SphereVisible Scale:1:144,000 to 1:1,000Source:USDA Natural Resources Conservation Service Update Frequency:AnnualPublication Date:December 2024 What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS Online Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-upArcGIS Pro Add this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units. Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field. Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field. Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields. Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - Presence Rating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r). Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -

  3. a

    India: Slope GMTED

    • goa-state-gis-esriindia1.hub.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Jan 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online (2022). India: Slope GMTED [Dataset]. https://goa-state-gis-esriindia1.hub.arcgis.com/datasets/india-slope-gmted
    Explore at:
    Dataset updated
    Jan 31, 2022
    Dataset authored and provided by
    GIS Online
    Area covered
    Description

    This layer provides slope values calculated from elevation data. The values are integer and represent the angle of the downward sloping terrain from 0 (flat) to 90 degrees (vertical). The layer is designed for use in landscape-scale analysis.Dataset SummaryThis layer provides access to a 250m cell-sized raster of slope in degrees. The layer was created with the ArcGIS Slope Tool using the GMTED elevation layer as an input. The layer was created in 2014 by Esri.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  4. E

    SRTM Slope DEM for Great Britain

    • find.data.gov.scot
    • finddatagovscot.dtechtive.com
    • +1more
    xml, zip
    Updated Feb 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Edinburgh (2017). SRTM Slope DEM for Great Britain [Dataset]. http://doi.org/10.7488/ds/1720
    Explore at:
    zip(98.53 MB), xml(0.0041 MB)Available download formats
    Dataset updated
    Feb 20, 2017
    Dataset provided by
    University of Edinburgh
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Great Britain, UK
    Description

    This SRTM Slope Map was created from level 1 SRTM NASA data which was cleaned and had holes patched. The slope map was created in ArcMap (presumably using the simple 3x3 nearest neighbour method). The data does not include the Shetland Islands as SRTM data becomes unreliable at 60N. The cell size is close to 90m. Data was acquired between the 11th - 20th Feb 2000. SRTM Slope Map was created from level 1 SRTM NASA data, slope map generated in ArcGIS using a basic nearest neighbour approach. Digital Terrain Model. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2010-06-30 and migrated to Edinburgh DataShare on 2017-02-20.

  5. l

    Slope

    • geohub.lacity.org
    • visionzero.geohub.lacity.org
    • +2more
    Updated Mar 10, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LA Sanitation (2021). Slope [Dataset]. https://geohub.lacity.org/datasets/labos::slope
    Explore at:
    Dataset updated
    Mar 10, 2021
    Dataset authored and provided by
    LA Sanitation
    Area covered
    Description

    This is a slope raster that was initially created from a 10-foot resolution digital elevation model (DEM) of the Los Angeles County area and resampled to a 50-foot resolution image.Data source: 2006 10-foot Digital Elevation Model (DEM) – LARIAC – Public Domain

  6. d

    CGS Map Sheet 58: Deep-Seated Landslide Susceptibility

    • catalog.data.gov
    • data.ca.gov
    • +9more
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Conservation (2025). CGS Map Sheet 58: Deep-Seated Landslide Susceptibility [Dataset]. https://catalog.data.gov/dataset/cgs-map-sheet-58-deep-seated-landslide-susceptibility-7b33a
    Explore at:
    Dataset updated
    Jul 23, 2025
    Dataset provided by
    California Department of Conservation
    Description

    The Susceptibility to Deep-Seated Landslides map covers the entire state of California and was originally published in May of 2011 as CGS Map Sheet 58. It made use of several data layers of varying scales and formats, such as Landslide Inventory, Geology, Rock Strength, and Slope. For the statewide analysis of landslide susceptibility, the methodology of Wilson and Keefer (1985) was used in combining the rock strength and slope data layers as implemented by Ponti, el al. (2008) to create classes of landslide susceptibility (0 to 10, low to high). These classes express the generalization that on very low slopes, landslide susceptibility is low even in weak materials, and that landslide susceptibility increases with slope and in weak rocks.For downloads of the raster data, please visit: MS58 Downloads.

  7. a

    Indiana 2016-2020 DEM (Slope Degrees)

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • indianamap-inmap.hub.arcgis.com
    • +1more
    Updated May 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndianaMap (2025). Indiana 2016-2020 DEM (Slope Degrees) [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/f134dacad72e45e4a325dbf1ce26afe2
    Explore at:
    Dataset updated
    May 29, 2025
    Dataset authored and provided by
    IndianaMap
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    In addition to this statewide 3DEP hydro-flattened base-earth DEM, the IGIO has also published this data as an Esri Imagery Service, allowing users to conveniently visualize the DEM data by applying visual enhancements to create dynamic hillshade, shaded relief, slope, and aspect-ratio raster maps.This image service has a series of image processing templates (or raster functions) integrated and ready to use out of the box. By default, the DEM is symbolized as a shaded relief - a hillshade with an elevation color ramp applied on top of it. If users would like to view the data differently in ArcGIS Online or desktop applications, they can select from one of the other raster functions. These raster functions include the bare-earth DEM, grayscale hillshade, slope (RGB), slope (degrees), aspect (RGB), and aspect (numeric values).

  8. Hachure style for ArcGIS Pro

    • cacgeoportal.com
    Updated May 29, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2018). Hachure style for ArcGIS Pro [Dataset]. https://www.cacgeoportal.com/content/87abe491604e45629e562903450947b7
    Explore at:
    Dataset updated
    May 29, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    The hachure cartographic technique sketches downhill lines along bands of equal elevation to create a topographic effect. This is a rather vintage technique, giving way in the digital age to hillshading. But, shoot, there is just something wonderful about a hachured map. It has a wonderful textural quality and effectively and efficiently conveys topographic aspect and slope. This style is in a manner in keeping with that retro hand-drawn aesthetic, with inky colors, wavy-hand linework, and grainy sketchy downhill strokes.The hachures themselves are available in a few flavors ranging from simple sketched contour lines to densely packed hachures for an almost fur-like surface. Eh, why not? Also available are a handful of tuft-like point features and a few vintage polygon fills like parchment and foxed atlas paper.Let your inner cARRRRRRtographer run wild.Thanks to cartographer Jared Fischer, of the Dept. of the Interior, for his collaboration and inspiration along the way.Find more, larger, examples here.Happy Hachure Mapping! John Nelson

  9. e

    Combined slope and aspect map of the swath sonar bathymetry in Gakkel Ridge...

    • b2find.eudat.eu
    Updated Dec 3, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Combined slope and aspect map of the swath sonar bathymetry in Gakkel Ridge during the POLARSTERN cruise PS101 (ARK-XXX/3), created using ArcGIS - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/c0a9973d-d03f-51f1-84e4-50110f03d2c2
    Explore at:
    Dataset updated
    Dec 3, 2017
    Description

    Graphing topological features of the ocean seafloor provides insight for diverse scientific disciplines. Here, we provide visual representation of the combined slope and aspect of the swath sonar bathymetry during the POLARSTERN cruise PS101 (ARK-XXX/3). This dataset contains two raster grids in GeoTiff format (color-rgb type and value type), a symbology classification layer file, and an overview map with legend. The value-type GeoTIFF has an accompanying symbology layer file that can be applied in ArcGIS. Each pixel value has an associated color (aspect) and hue (slope) classification. This combination of aspect and slope makes this layer uniquely informative and indended for visualization purposes; see "PS101_aspect_slope_map.png (hdl:10013/epic.51997.d001)" for a map preview. The orientation aspect values are from 0 to 359 degrees and the slope values are 5, 15, 30, and 45 percent rise. Values less than 5 percent are flat areas and have no associated orientation values. The GeoTiff has a pixel size of 100 m x 100 m and was created using ArcGIS 10.5 software, in stereographic polar projection, datum WGS 84.The zip file contains:1. PS101_aspect_slope.tif2. PS101_aspect_slope_value.tif3. PS101_aspect_slope_symbology.lyr4. PS101_aspect_slope_map.png (hdl:10013/epic.51997.d001)

  10. Geospatial data for the Vegetation Mapping Inventory Project of El Morro...

    • catalog.data.gov
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of El Morro National Monument [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-el-morro-national-monument
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. were derived from the NVC. NatureServe developed a preliminary list of potential vegetation types. These data were combined with existing plot data (Cully 2002) to derive an initial list of potential types. Additional data and information were gleaned from a field visit and incorporated into the final list of map units. Because of the park’s small size and the large amount of field data, the map units are equivalent to existing vegetation associations or local associations/descriptions (e.g., Prairie Dog Colony). In addition to vegetation type, vegetation structures were described using three attributes: height, coverage density, and coverage pattern. In addition to vegetation structure and context, a number of attributes for each polygon were stored in the associated table within the GIS database. Many of these attributes were derived from the photointerpretation; others were calculated or crosswalked from other classifications. Table 2.7.2 shows all of the attributes and their sources. Anderson Level 1 and 2 codes are also included (Anderson et al. 1976). These codes should allow for a more regional perspective on the vegetation types. Look-up tables for the names associated with the codes is included within the geodatabase and in Appendix D. The look-up tables contain all the NVC formation information as well as alliance names, unique IDs, and the ecological system codes (El_Code) for the associations. These El_Codes often represent a one-to-many relationship; that is, one association may be related to more than one ecological system. The NatureServe conservation status is included as a separate item. Finally, slope (degrees), aspect, and elevation were calculated for each polygon label point using a digital elevation model and an ArcView script. The slope figure will vary if one uses a TIN (triangulated irregular network) versus a GRID (grid-referenced information display) for the calculation (Jenness 2005). A grid was used for the slope figure in this dataset. Acres and hectares were calculated using XTools Pro for ArcGIS Desktop.

  11. Terrain

    • smart-forestry-gis-ej.hub.arcgis.com
    • opendata.rcmrd.org
    • +6more
    Updated Jul 5, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Terrain [Dataset]. https://smart-forestry-gis-ej.hub.arcgis.com/datasets/58a541efc59545e6b7137f961d7de883
    Explore at:
    Dataset updated
    Jul 5, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This dynamic World Elevation Terrain layer returns float values representing ground heights in meters and compiles multi-resolution data from many authoritative data providers from across the globe. Heights are orthometric (sea level = 0), and water bodies that are above sea level have approximated nominal water heights.Height units: MetersUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select from numerous additional functions, applied on the server, that return rendered data. For visualizations such as multi-directional hillshade, hillshade, elevation tinted hillshade, and slope, consider using the appropriate server-side function defined on this service.Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. There is a limit of 5000 rows x 5000 columns.Note: This layer combine data from different sources and resamples the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, it is recommended to filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool. The extent is factor of cell size and rows/columns limit. e.g. if cell size is 10 m, the extent for analysis would be less than 50,000 m x 50,000 m.Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates.

    Slope Degrees Slope Percent Aspect Ellipsoidal height Hillshade Multi-Directional Hillshade Dark Multi-Directional Hillshade Elevation Tinted Hillshade Slope Map Aspect Map Mosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: Accuracy will vary as a function of location and data source. Please refer to the metadata available in the layer, and follow the links to the original sources for further details. An estimate of CE90 and LE90 are included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  12. 5. André Oliveira

    • hub.arcgis.com
    Updated Apr 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). 5. André Oliveira [Dataset]. https://hub.arcgis.com/documents/aa3734f37eaa4311ac17fd31645c5722
    Explore at:
    Dataset updated
    Apr 2, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    The goal of this project is to create a map of the planet Mars, by using ESRI software. For this, a 3D project was developed using ArcGIS Pro, considering a global scene, to be published in an online platform. All the various data from Mars will be available in a single website, where everyone can visualize and interact. The Red Planet has been studied for many decades and this year marks the launch of a new rover, Mars2020, which will happen on the 17th of July. This new rover will be continuing the on-going work of the Curiosity Rover, launched in 2012. The main objective for these rovers is to determine if Mars could have supported life, by studying its water, climate and geology. Currently, the only operational rover in Mars is Curiosity and with that in mind, this project will have a strong focus on the path taken by this rover, during almost 8 years of exploration. In the web application, the user will be able to see the course taken by Curiosity in Mars’ Gale Crater, from its landing until January 2020. The map highlights several points of interest, such as the location after each year passed on MarsEarth year and every kilometer, which can be interacted with as well as browse through photos taken at each of the locations, through a pop-up window. Additionally, the application also supports global data of Mars. The two main pieces, used as basemaps, are the global imagery, with a pixel size of 925 meters and the Digital Elevation Model (DEM), with 200 meters per pixel. The DEM represents the topography of Mars and was also used to develop Relief and Slope Maps. Furthermore, the application also includes data regarding the geology of the planet and nomenclature to identify regions, areas of interest and craters of Mars. This project wouldn’t have been possible without NASA’s open-source philosophy, working alongside other entities, such as the European Space Agency, the International Astronomical Union and the Working Group for Planetary System Nomenclature. All the data related to Imagery, DEM raster files, Mars geology and nomenclature was obtained on USGS Astrogeology Science Center database. Finally, the data related to the Curiosity Rover was obtained on the portal of The Planetary Society. Working with global datasets means working with very large files, so selecting the right approach is crucial and there isn’t much margin for experiments. In fact, a wrong step means losing several hours of computing time. All the data that was downloaded came in Mars Coordinate Reference Systems (CRS) and luckily, ESRI handles that format well. This not only allowed the development of accurate analysis of the planet, but also modelling the data around a globe. One limitation, however, is that ESRI only has the celestial body for planet Earth, so this meant that the Mars imagery and elevation was wrapped around Earth. ArcGIS Pro allows CRS transformation on the fly, but rendering times were not efficient, so the workaround was to project all data into WGS84. The slope map and respective reclassification and hillshading was developed in the original CRS. This process was done twice: one globally and another considering the Gale Crater. The results show that the crater’s slope characteristics are quite different from the global panorama of Mars. The crater has a depression that is approximately 5000 meters deep, but at the top it’s possible to identify an elevation of 750 meters, according to the altitude system of Mars. These discrepancies in a relatively small area result in very high slope values. Globally, 88% of the area has slopes less than 2 degrees, while in the Gale Crater this value is only 36%. Slopes between 2 and 10 degrees represent almost 60% of the area of the crater. On the other hand, they only represent 10% of the area globally. A considerable area with more than 10 degrees of slope can also be found within the crater, but globally the value is less than 1%. By combining Curiosity’s track path with the DEM, a profile graph of the path was obtained. It is possible to observe that Curiosity landed in a flat area and has been exploring in a “steady path”. However, in the last few years (since the 12th km), the rover has been more adventurous and is starting to climb the crater. In the last 10 km of its journey, Curiosity “climbed” around 300 meters, whereas in the first 11 km it never went above 100 meters. With the data processed in the WGS84 system, all was ready to start modelling Mars, which was firstly done in ArcGIS Pro. When the data was loaded, symbology and pop-ups configured, the project was exported to ArcGIS Online. Both the imagery and elevation layer were exported as “hosted tile service”. This was a key step, since keeping the same level of detail online and offline would have a steep increase in imagery size, to hundreds of Terabytes, thus a lot of work was put into balancing tile cache size and the intended quality of imagery. For the remaining data, it was a straight-forward step, exporting these files as vectors. Once all the data was in the Online Portal, a Global Web Scene was developed. This is an on-going project with an outlook to develop the global scene into an application with ESRI’s AppBuilder, allowing the addition of more information. In the future, there is also interest to increment the displayed data, like adding the paths taken by other rovers in the past, alongside detailed imagery of other areas beyond the Gale Crater. Finally, with 2021 being the year when the new rover Mars2020 will land on the Red Planet, we might be looking into adding it to this project.https://arcg.is/KuS4r

  13. Data from: Geospatial based model for malaria risk prediction in Kilombero...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephen Mwangungulu; Emmanuel Kaindoa; Dorothea Deus; Zakaria Ngereja (2023). Geospatial based model for malaria risk prediction in Kilombero Valley, south-eastern Tanzania [Dataset]. http://doi.org/10.5061/dryad.d51c5b081
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 7, 2023
    Dataset provided by
    Ifakara Health Institutehttp://www.ihi.or.tz/
    Ardhi University
    Authors
    Stephen Mwangungulu; Emmanuel Kaindoa; Dorothea Deus; Zakaria Ngereja
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Tanzania
    Description

    Background: Malaria continues to pose a major public health challenge in tropical regions. Despite significant efforts to control malaria in Tanzania, there are still residual transmission cases. Unfortunately, little is known about where these residual malaria transmission cases occur and how they spread. In Tanzania, for example, the transmission is heterogeneously distributed. In order to effectively control and prevent the spread of malaria, it is essential to understand the spatial distribution and transmission patterns of the disease. This study seeks to predict areas that are at high risk of malaria transmission so that intervention measures can be developed to accelerate malaria elimination efforts.

    Methods: This study employs a geospatial-based model to predict and map out malaria risk area in Kilombero Valley. Environmental factors related to malaria transmission were considered and assigned valuable weights in the Analytic Hierarchy Process (AHP), an online system using a pairwise comparison technique. The malaria hazard map was generated by a weighted overlay of the altitude, slope, curvature, aspect, rainfall distribution, and distance to streams in Geographic Information Systems (GIS). Finally, the risk map was created by overlaying components of malaria risk including hazards, elements at risk, and vulnerability. Results: The study demonstrates that the majority of the study area falls under the moderate-risk level (61%), followed by the low-risk level (31%), while the high-malaria risk area covers a small area, which occupies only 8% of the total area. Conclusion: The findings of this study are crucial for developing spatially targeted interventions against malaria transmission in residual transmission settings. Predicted areas prone to malaria risk provide information that will inform decision-makers and policymakers for proper planning, monitoring, and deployment of interventions. Methods Data acquisition and description The study employed both primary and secondary data, which were collected from numerous sources based on the input required for the implementation of the predictive model. Data collected includes the locations of all public and private health centers that were downloaded free from the health portal of the United Republic of Tanzania, Ministry of Health, Community Development, Gender, Elderly, and Children, through the universal resource locator (URL) (http://moh.go.tz/hfrportal/). Human population data was collected from the 2012 population housing census (PHC) for the United Republic of Tanzania report. Rainfall data were obtained from two local offices; Kilombero Agricultural Training and Research Institute (KATRIN) and Kilombero Valley Teak Company (KVTC). These offices collect meteorological data for agricultural purposes. Monthly data from 2012 to 2017 provided from thirteen (13) weather stations. Road and stream network shapefiles were downloaded free from the MapCruzin website via URL (https://mapcruzin.com/free-tanzania-arcgis-maps-shapefiles.htm). With respect to the size of the study area, five neighboring scenes of the Landsat 8 OLI/TIRS images (path/row: 167/65, 167/66, 167/67, 168/66 and 168/67) were downloaded freely from the United States Geological Survey (USGS) website via URL: http://earthexplorer.usgs.gov. From July to November 2017, the images were selected and downloaded from the USGS Earth Explorer archive based on the lowest amount of cloud cover coverage as viewed from the archive before downloading. Finally, the digital elevation data with a spatial resolution of three arc-seconds (90m by 90m) using WGS 84 datum and the Geographic Coordinate System were downloaded free from the Shuttle Radar Topography Mission (SRTM) via URL (https://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Africa/). Only six tiles that fall in the study area were downloaded, coded tiles as S08E035, S09E035, S10E035, S08E036, S09E036, S10E036, S08E037, S09E037 and S10E037. Preparation and Creation of Model Factor Parameters Creation of Elevation Factor All six coded tiles were imported into the GIS environment for further analysis. Data management tools, with raster/raster data set/mosaic to new raster feature, were used to join the tiles and form an elevation map layer. Using the spatial analyst tool/reclassify feature, the generated elevation map was then classified into five classes as 109–358, 359–530, 531–747, 748–1017 and >1018 m.a.s.l. and new values were assigned for each class as 1, 2, 3, 4 and 5, respectively, with regards to the relationship with mosquito distribution and malaria risk. Finally, the elevation map based on malaria risk level is levelled as very high, high, moderate, low and very low respectively. Creation of Slope Factor A slope map was created from the generated elevation map layer, using a spatial analysis tool/surface/slope feature. Also, the slope raster layer was further reclassified into five subgroups based on predefined slope classes using standard classification schemes, namely quantiles as 0–0.58, 0.59–2.90, 2.91–6.40, 6.41–14.54 and >14.54. This classification scheme divides the range of attribute values into equal-sized sub-ranges, which allow specifying the number of the intervals while the system determines where the breaks should be. The reclassified slope raster layer subgroups were ranked 1, 2, 3, 4 and 5 according to the degree of suitability for malaria incidence in the locality. To elaborate, the steeper slope values are related to lesser malaria hazards, and the gentler slopes are highly susceptible to malaria incidences. Finally, the slope map based on malaria risk level is leveled as very high, high, moderate, low and very low respectively. Creation of Curvature Factor Curvature is another topographical factor that was created from the generated elevation map using the spatial analysis tool/surface/curvature feature. The curvature raster layer was further reclassified into five subgroups based on predefined curvature class. The reclassified curvature raster layer subgroups were ranked to 1, 2, 3, 4 and 5 according to their degree of suitability for malaria occurrence. To explain, this affects the acceleration and deceleration of flow across the surface. A negative value indicates that the surface is upwardly convex, and flow will be decelerated, which is related to being highly susceptible to malaria incidences. A positive profile indicates that the surface is upwardly concave and the flow will be accelerated which is related to a lesser malaria hazard, while a value of zero indicates that the surface is linear and related to a moderate malaria hazard. Lastly, the curvature map based on malaria risk level is leveled as very high, high, moderate, low, and very low respectively.
    Creation of Aspect Factor As a topographic factor associated with mosquito larval habitat formation, aspect determines the amount of sunlight an area receives. The more sunlight received the stronger the influence on temperature, which may affect mosquito larval survival. The aspect of the study area also was generated from the elevation map using spatial analyst tools/ raster /surface /aspect feature. The aspect raster layer was further reclassified into five subgroups based on predefined aspect class. The reclassified aspect raster layer subgroups were ranked as 1, 2, 3, 4 and 5 according to the degree of suitability for malaria incidence, and new values were re-assigned in order of malaria hazard rating. Finally, the aspect map based on malaria risk level is leveled as very high, high, moderate, low, and very low, respectively. Creation of Human Population Distribution Factor Human population data was used to generate a population distribution map related to malaria occurrence. Kilombero Valley has a total of 42 wards, the data was organized in Ms excel 2016 and imported into the GIS environment for the analysis, Inverse Distance Weighted (IDW) interpolation in the spatial analyst tool was applied to interpolate the population distribution map. The population distribution map was further reclassified into five subgroups based on potential to malaria risk. The reclassified map layer subgroups were ranked according to the vulnerability to malaria incidence in the locality such as areas having high population having the highest vulnerability and the less population having less vulnerable, and the new value was assigned as 1, 2, 3, 4 and 5, and then leveled as very high, high, moderate, low and very low malaria risk level, respectively. Creation of Proximity to Health Facilities Factor The distribution of health facilities has a significant impact on the malaria vulnerability of the population dwellings in the Kilombero Valley. The health facility layer was created by computing distance analysis using proximity multiple ring buffer features in spatial analyst tool/multiple ring buffer. Then the map layer was reclassified into five sub-layers such as within (0–5) km, (5.1–10) km, (10.1–20) km, (20.1–50) km and >50km. According to a WHO report, it is indicated that the human population who live nearby or easily accessible to health facilities is less vulnerable to malaria incidence than the ones who are very far from the health facilities due to the distance limitation for the health services. Later on, the new values were assigned as 1, 2, 3, 4 and 5, and then reclassified as very high, high, moderate, low and very low malaria risk levels, respectively. Creation of Proximity to Road Network Factor The distance to the road network is also a significant factor, as it can be used as an estimation of the access to present healthcare facilities in the area. Buffer zones were calculated on the path of the road to determine the effect of the road on malaria prevalence. The road shapefile of the study area was inputted into GIS environment and spatial analyst tools / multiple ring buffer feature were used to generate five buffer zones with the

  14. Monterey, California 1/3 arc-second NAVD 88 Coastal Digital Elevation Model

    • datadiscoverystudio.org
    • data.cnra.ca.gov
    • +5more
    netcdf v.4 classic
    Updated Jan 13, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce (2012). Monterey, California 1/3 arc-second NAVD 88 Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/e2010bdda8d54767986360e16123a354/html
    Explore at:
    netcdf v.4 classicAvailable download formats
    Dataset updated
    Jan 13, 2012
    Dataset provided by
    United States Department of Commercehttp://commerce.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Environmental Satellite, Data, and Information Service
    Authors
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (NAVD88). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.

  15. Port San Luis, California 1/3 arc-second NAVD 88 Coastal Digital Elevation...

    • datadiscoverystudio.org
    • data.cnra.ca.gov
    • +3more
    netcdf v.4 classic
    Updated May 20, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce (2011). Port San Luis, California 1/3 arc-second NAVD 88 Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/4a779ce755f2435c88d54af9f3d05e2b/html
    Explore at:
    netcdf v.4 classicAvailable download formats
    Dataset updated
    May 20, 2011
    Dataset provided by
    United States Department of Commercehttp://commerce.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Environmental Satellite, Data, and Information Service
    Authors
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and warning efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (NAVD88). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.

  16. Trees on Registered Man made Slopes Maintained by Architectural Services...

    • opendata.esrichina.hk
    • hub.arcgis.com
    Updated Sep 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri China (Hong Kong) Ltd. (2023). Trees on Registered Man made Slopes Maintained by Architectural Services Department [Dataset]. https://opendata.esrichina.hk/datasets/trees-on-registered-man-made-slopes-maintained-by-architectural-services-department
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri China (Hong Kong) Ltd.
    Area covered
    Description

    This web map shows the trees on Registered Man-made Slopes Maintained by Architectural Services Department in 2022. It is created by Architectural Services Department under the Government of Hong Kong Special Administrative Region (the "Government") at https://portal.csdi.gov.hk ("CSDI Portal"). The source data is in CSV format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of CSDI Portal at https://portal.csdi.gov.hk.

  17. Northern Gulf 1 arc-second NAVD 88 Coastal Digital Elevation Model

    • datadiscoverystudio.org
    • gimi9.com
    • +4more
    netcdf v.4 classic
    Updated Dec 31, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce (2010). Northern Gulf 1 arc-second NAVD 88 Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/467926f6b4394c33b2f7a77cf98df74d/html
    Explore at:
    netcdf v.4 classicAvailable download formats
    Dataset updated
    Dec 31, 2010
    Dataset provided by
    United States Department of Commercehttp://commerce.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Environmental Satellite, Data, and Information Service
    Authors
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico. These integrated bathymetric-topographic DEMs were developed for NOAA Coastal Survey Development Laboratory (CSDL) through the American Recovery and Reinvestment Act (ARRA) of 2009 to evaluate the utility of the Vertical Datum Transformation tool (VDatum), developed jointly by NOAA's Office of Coast Survey (OCS), National Geodetic Survey (NGS), and Center for Operational Oceanographic Products and Services (CO-OPS). Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. Coastal Services Center (CSC), the U.S. Office of Coast Survey (OCS), the U.S. Army Corps of Engineers (USACE), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of North American Vertical Datum of 1988 (NAVD 88), Mean High Water (MHW) or Mean Lower Low Water (MLLW) and horizontal datum of North American Datum of 1983 (NAD 83). Cell size ranges from 1/3 arc-second (~10 meters) to 1 arc-second (~30 meters). The NOAA VDatum DEM Project was funded by the American Recovery and Reinvestment Act (ARRA) of 2009 (http://www.recovery.gov/).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (NAVD88). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.

  18. a

    Steep Slopes (zipped file geodatabase)

    • hub.arcgis.com
    • chester-county-s-gis-hub-chesco.hub.arcgis.com
    Updated Apr 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ChescoMaps - Chester County, PA (2021). Steep Slopes (zipped file geodatabase) [Dataset]. https://hub.arcgis.com/datasets/320ee5c1144445f5803267ff3c5d0492
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    ChescoMaps - Chester County, PA
    Description

    Areas of steep slope (percent) that fall within 2 categories: 1) Moderate (15-24%) and 2) Steep (greater than 25%) slopes within Chester County. The slope information is derived from a digital elevation terrain (DEM) that was created using Year 2000 elevation data.Steep Slopes were generated from a DEM created for Chester County by BAE Systems ADR (ADR)

  19. a

    Slopes 25% or greater (LiDAR)

    • gis-pdx.opendata.arcgis.com
    • hub.arcgis.com
    Updated Sep 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Portland, Oregon (2023). Slopes 25% or greater (LiDAR) [Dataset]. https://gis-pdx.opendata.arcgis.com/datasets/slopes-25-or-greater-lidar/about
    Explore at:
    Dataset updated
    Sep 5, 2023
    Dataset authored and provided by
    City of Portland, Oregon
    Area covered
    Description

    Polygons representing slopes greater than or equal to 25% in the Portland urban services boundary area. Derived from 2014 3' resolution LiDAR bare-earth digital elevation model (DEM). All slopes average over a horizontal distance of 15'. Minimum area of contiguous slope is approximately 1/2 acre. Polygons were created, generalized and smoothed in ArcGIS 10.3.1.-- Additional Information: Category: Land Purpose: For identifying steeply-slope areas within Portland. Update Frequency: None Planned-- Metadata Link: https://www.portlandmaps.com/metadata/index.cfm?&action=DisplayLayer&LayerID=52978

  20. a

    Data from: Steep Slopes

    • hub.arcgis.com
    Updated Jul 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Portland, Oregon (2013). Steep Slopes [Dataset]. https://hub.arcgis.com/maps/PDX::steep-slopes/explore?location=45.510670%2C-122.632150%2C11.21
    Explore at:
    Dataset updated
    Jul 30, 2013
    Dataset authored and provided by
    City of Portland, Oregon
    Area covered
    Description

    Derived from 2014, reclassified, 1' resolution LiDAR bare-earth digital elevation model (DEM). All slopes average over a horizontal distance of 15'. Minimum area of contiguous slope is approximately 1/2 acre. Polygons were created, generalized and smoothed in ArcGIS 10.3.1 and ArcGIS Pro.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
University of Idaho (2021). Terrain: Slope Map [Dataset]. https://uidaho.hub.arcgis.com/datasets/351fe62891814ccb8bd577f334253265

Terrain: Slope Map

Explore at:
180 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 30, 2021
Dataset authored and provided by
University of Idaho
Area covered
Description

This map provides a colorized representation of slope, generated dynamically using server-side slope function on Terrain service. The degree of slope steepness is depicted by light to dark colors - flat surfaces as gray, shallow slopes as light yellow, moderate slopes as light orange and steep slopes as red-brown. A scaling is applied to slope values to generate appropriate visualization at each map scale. This service should only be used for visualization, such as a base layer in applications or maps. If access to non-scaled slope values is required, use the Slope Degrees or Slope percent functions, which return values from 0 to 90 degrees, or 0 to 1000%, respectively.What can you do with this layer?Use for Visualization: Yes. This colorized slope is appropriate for visualizing the steepness of the terrain at all map scales. This layer can be added to applications or maps to enhance contextual understanding. Use for Analysis: No. 8 bit color values returned by this service represent scaled slope values. For analysis with non-scaled values, use the Slope Degrees or Slope percent functions.For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

Search
Clear search
Close search
Google apps
Main menu