Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
##### CD40 inhibiton in AMI on d5, seq on d7 and d14
# Load necessary libraries for data manipulation, analysis, and visualization
library(dplyr)
library(Seurat)
library(patchwork)
library(plyr)
# Set the working directory to the folder containing the data
setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/01_TS_d5_paper/03_CD40 inhibition on day 5, seq on day 7 and 14/938-2_cellranger_count/outs")
# Read the M0 dataset from the 10X Genomics format
pbmc.data <- Read10X(data.dir = "filtered_feature_bc_matrix/")
RNA <- pbmc.data$`Gene Expression`
ADT <- pbmc.data$`Antibody Capture`
HST <- pbmc.data$`Multiplexing Capture`
# Load the Matrix package
library(Matrix)
# Hashtag 1, 2 and 3 are marking the mouse replicates per condition
# Subset the rows based on row names
subsetted_rows <- c("TotalSeq-B0301", "TotalSeq-B0302", "TotalSeq-B0303")
animals_data <- HST[subsetted_rows, , drop = FALSE]
# Hashtag 4, 5, 6, 7 are representing DMSO d7, TS d7, DMSO d14 and TS d14
subsetted_rows <- c(""TotalSeq-B0304", "TotalSeq-B0305", "TotalSeq-B0306", "TotalSeq-B0307")
treatment_data <- HST[subsetted_rows, , drop = FALSE]
#Create a Seurat obeject and more assays to combine later
RNA <- CreateSeuratObject(counts = RNA)
ADT <- CreateAssayObject(counts = ADT)
Mice <- CreateAssayObject(counts = animals_data)
Treatment <- CreateAssayObject(counts = treatment_data)
seurat <- RNA
#Add the Assays
seurat[["ADT"]] <- ADT
seurat[["HST_Mice"]] <- Mice
seurat[["HST_Treatment"]] <- Treatment
#Check for AK Names
rownames(seurat[["ADT"]])
#Cluster cells on the basis of their scRNA-seq profiles
# perform visualization and clustering steps
DefaultAssay(seurat) <- "RNA"
seurat <- NormalizeData(seurat)
seurat <- FindVariableFeatures(seurat)
seurat <- ScaleData(seurat)
seurat <- RunPCA(seurat, verbose = FALSE)
seurat <- FindNeighbors(seurat, dims = 1:30)
seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)
seurat <- RunUMAP(seurat, dims = 1:30)
DimPlot(seurat, label = TRUE)
FeaturePlot(seurat, features = "Col1a1", order = T)
# Normalize ADT data,
DefaultAssay(seurat) <- "ADT"
seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)
#Demultiplex cells based on Mouse_Hashtag Enrichment
seurat <- NormalizeData(seurat, assay = "HST_Mice", normalization.method = "CLR")
seurat <- HTODemux(seurat, assay = "HST_Mice", positive.quantile = 0.60)
#Visualize demultiplexing results
# Global classification results
table(seurat$HST_Mice_classification.global)
DimPlot(seurat, group.by = "HST_Mice_classification")
#Demultiplex cells based on Treatment_Hashtag Enrichment
seurat <- NormalizeData(seurat, assay = "HST_Treatment", normalization.method = "CLR")
seurat <- HTODemux(seurat, assay = "HST_Treatment", positive.quantile = 0.60)
#Visualize demultiplexing results
# Global classification results
table(seurat$HST_Treatment_classification.global)
DimPlot(seurat, group.by = "HST_Treatment_classification")
Idents(seurat) <- seurat$HST_Treatment_classification
pbmc.singlet <- subset(seurat, idents = "Negative", invert = T)
Idents(pbmc.singlet) <- pbmc.singlet$HST_Mice_classification
pbmc.singlet <- subset(pbmc.singlet, idents = "Negative", invert = T)
DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")
#Redo the clssification to remove the doublettes
pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.99)
table(pbmc.singlet$HST_Treatment_classification.global)
DimPlot(pbmc.singlet, group.by = "HST_Treatment_classification")
pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)
pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.99)
table(pbmc.singlet$HST_Mice_classification.global)
pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)
pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.60)
pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.60)
DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")
DimPlot(pbmc.singlet, group.by = "HST_Mice_maxID")
seurat <- pbmc.singlet
seurat$mice <- seurat$HST_Mice_maxID
seurat$treatment <- seurat$HST_Treatment_maxID
library(plyr)
seurat$treatment <- revalue(seurat$treatment, c(
"TotalSeq-B0304" = "DMSO_d7",
"TotalSeq-B0305" = "TS_d7",
"TotalSeq-B0306" = "DMSO_d14",
"TotalSeq-B0307" = "TS_d14"
))
library(plyr)
seurat$mice <- revalue(seurat$mice, c(
"TotalSeq-B0301" = "1",
"TotalSeq-B0302" = "2",
"TotalSeq-B0303" = "3"
))
#Cluster cells on the basis of their scRNA-seq profiles without doublettes
# perform visualization and clustering steps
DefaultAssay(seurat) <- "RNA"
seurat <- NormalizeData(seurat)
seurat <- FindVariableFeatures(seurat)
seurat <- ScaleData(seurat)
seurat <- RunPCA(seurat, verbose = FALSE)
seurat <- FindNeighbors(seurat, dims = 1:30)
seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)
seurat <- RunUMAP(seurat, dims = 1:30)
DimPlot(seurat, label = TRUE)
DefaultAssay(seurat) <- "ADT"
seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)
setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/01_TS_d5_paper/03_CD40 inhibition on day 5, seq on day 7 and 14/Analyse")
saveRDS(seurat, file= "TSd5.v0.1.RDS")
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
##### CD40 activation and the effect on Neutrophils
# Load necessary libraries for data manipulation, analysis, and visualization
library(dplyr)
library(Seurat)
library(patchwork)
library(plyr)
# Set the working directory to the folder containing the data
setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/05_FGK45 Wirkung auf Neutros - scRNAseq/938-1_cellranger_count/outs")
# Read the M0 dataset from the 10X Genomics format
pbmc.data <- Read10X(data.dir = "filtered_feature_bc_matrix/")
RNA <- pbmc.data$`Gene Expression`
ADT <- pbmc.data$`Antibody Capture`
HST <- pbmc.data$`Multiplexing Capture`
# Load the Matrix package
library(Matrix)
# Hashtag 1, 2 and 3 are marking the organs (heart, blood, spleen)
# Subset the rows based on row names
subsetted_rows <- c("TotalSeq-B0301", "TotalSeq-B0302", "TotalSeq-B0303")
animals_data <- HST[subsetted_rows, , drop = FALSE]
# Hashtag 4, 5, 6, 7 are representing IgG_1, IgG_1, FGK45_1 and FGK45_1
subsetted_rows <- c("TotalSeq-B0304", "TotalSeq-B0305", "TotalSeq-B0306", "TotalSeq-B0307")
treatment_data <- HST[subsetted_rows, , drop = FALSE]
#Create a Seurat obeject and more assays to combine later
RNA <- CreateSeuratObject(counts = RNA)
ADT <- CreateAssayObject(counts = ADT)
Organ <- CreateAssayObject(counts = animals_data)
Treatment <- CreateAssayObject(counts = treatment_data)
seurat <- RNA
#Add the Assays
seurat[["ADT"]] <- ADT
seurat[["HST_Mice"]] <- Organ
seurat[["HST_Treatment"]] <- Treatment
#Check for AK Names
rownames(seurat[["ADT"]])
#Cluster cells on the basis of their scRNA-seq profiles
# perform visualization and clustering steps
DefaultAssay(seurat) <- "RNA"
seurat <- NormalizeData(seurat)
seurat <- FindVariableFeatures(seurat)
seurat <- ScaleData(seurat)
seurat <- RunPCA(seurat, verbose = FALSE)
seurat <- FindNeighbors(seurat, dims = 1:30)
seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)
seurat <- RunUMAP(seurat, dims = 1:30)
DimPlot(seurat, label = TRUE)
FeaturePlot(seurat, features = "S100a9", order = T)
# Normalize ADT data,
DefaultAssay(seurat) <- "ADT"
seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)
#Demultiplex cells based on Mouse_Hashtag Enrichment
seurat <- NormalizeData(seurat, assay = "HST_Mice", normalization.method = "CLR")
seurat <- HTODemux(seurat, assay = "HST_Mice", positive.quantile = 0.99)
#Visualize demultiplexing results
# Global classification results
table(seurat$HST_Mice_classification.global)
DimPlot(seurat, group.by = "HST_Mice_classification")
#Demultiplex cells based on Treatment_Hashtag Enrichment
seurat <- NormalizeData(seurat, assay = "HST_Treatment", normalization.method = "CLR")
seurat <- HTODemux(seurat, assay = "HST_Treatment", positive.quantile = 0.99)
#Visualize demultiplexing results
# Global classification results
table(seurat$HST_Treatment_classification.global)
DimPlot(seurat, group.by = "HST_Treatment_classification")
Idents(seurat) <- seurat$HST_Treatment_classification
pbmc.singlet <- subset(seurat, idents = "Negative", invert = T)
Idents(pbmc.singlet) <- pbmc.singlet$HST_Mice_classification
pbmc.singlet <- subset(pbmc.singlet, idents = "Negative", invert = T)
DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")
#Redo the clssification to remove the doublettes
pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.99)
table(pbmc.singlet$HST_Treatment_classification.global)
DimPlot(pbmc.singlet, group.by = "HST_Treatment_classification")
pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)
pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.99)
table(pbmc.singlet$HST_Mice_classification.global)
pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)
pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.60)
pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.60)
DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")
DimPlot(pbmc.singlet, group.by = "HST_Mice_maxID")
seurat <- pbmc.singlet
seurat$organ <- seurat$HST_Mice_maxID
seurat$mouse <- seurat$HST_Treatment_maxID
seurat$treatment <- seurat$HST_Treatment_maxID
library(plyr)
seurat$treatment <- revalue(seurat$treatment, c(
"TotalSeq-B0304" = "IgG",
"TotalSeq-B0305" = "IgG",
"TotalSeq-B0306" = "FGK45",
"TotalSeq-B0307" = "FGK45"
))
library(plyr)
seurat$organ <- revalue(seurat$organ, c(
"TotalSeq-B0301" = "heart",
"TotalSeq-B0302" = "blood",
"TotalSeq-B0303" = "spleen"
))
seurat$mouse <- revalue(seurat$mouse, c(
"TotalSeq-B0304" = "1",
"TotalSeq-B0305" = "2",
"TotalSeq-B0306" = "3",
"TotalSeq-B0307" = "4"
))
#Cluster cells on the basis of their scRNA-seq profiles without doublettes
# perform visualization and clustering steps
DefaultAssay(seurat) <- "RNA"
seurat <- NormalizeData(seurat)
seurat <- FindVariableFeatures(seurat)
seurat <- ScaleData(seurat)
seurat <- RunPCA(seurat, verbose = FALSE)
seurat <- FindNeighbors(seurat, dims = 1:30)
seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)
seurat <- RunUMAP(seurat, dims = 1:30)
DimPlot(seurat, label = TRUE)
DefaultAssay(seurat) <- "ADT"
seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)
setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/05_FGK45 Wirkung auf Neutros - scRNAseq/Analyse")
saveRDS(seurat, file = "FGK45_heart_blood_spleen.v0.1.RDS")
#R Skript
library(Seurat)
library(ggplot2)
library(patchwork)
setwd("E:/BMFZ Data/671/671-1_cellranger_count/outs")
data <- Read10X(data.dir ="filtered_feature_bc_matrix/")
rna <- CreateSeuratObject(counts = data$`Gene Expression`)
adt_assay <- CreateAssayObject(counts = data$`Antibody Capture`)
multiplex <- CreateAssayObject(counts = data$`Multiplexing Capture`)
cbmc <- rna
cbmc[["ADT"]] <- adt_assay
cbmc[["HST"]] <- multiplex
Assays(cbmc)
rownames(cbmc[["ADT"]])
#perform visualization and clustering steps
cbmc <- NormalizeData(cbmc)
cbmc <- FindVariableFeatures(cbmc)
cbmc <- ScaleData(cbmc)
cbmc <- RunPCA(cbmc, verbose = FALSE)
cbmc <- FindNeighbors(cbmc, dims = 1:30)
cbmc <- FindClusters(cbmc, resolution = 0.8, verbose = FALSE)
cbmc <- RunUMAP(cbmc, dims = 1:30)
DimPlot(cbmc, label = TRUE)
#Normalize ADT data,
DefaultAssay(cbmc) <- "ADT"
cbmc <- NormalizeData(cbmc, normalization.method = "CLR", margin = 2)
DefaultAssay(cbmc) <- "RNA"
#Now, we will visualize CD8a levels for RNA and protein By setting the default assay, we can
#visualize one or the other
DefaultAssay(cbmc) <- "ADT"
p1 <- FeaturePlot(cbmc, "Ms.CD8a", cols = c("lightgrey", "darkgreen")) + ggtitle("CD8a protein")
DefaultAssay(cbmc) <- "RNA"
p2 <- FeaturePlot(cbmc, "Cd8a") + ggtitle("CD8a RNA")
#place plots side-by-side
p1 | p2
#Now, we will visualize CD40 levels for RNA and protein By setting the default assay, we can
#visualize one or the other
DefaultAssay(cbmc) <- "ADT"
p1 <- FeaturePlot(cbmc, "Ms.CD40", cols = c("lightgrey", "darkgreen")) + ggtitle("CD40 protein")
DefaultAssay(cbmc) <- "RNA"
p2 <- FeaturePlot(cbmc, "Cd40") + ggtitle("CD40 RNA")
#place plots side-by-side
p1 | p2
setwd("E:/BMFZ Data/671/Analyse_ALL")
saveRDS(cbmc, file = "Cite_seq_raw.rds")
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
##### CD40 inhibiton in AMI on d5, seq on d7 and d14
# Load necessary libraries for data manipulation, analysis, and visualization
library(dplyr)
library(Seurat)
library(patchwork)
library(plyr)
# Set the working directory to the folder containing the data
setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/01_TS_d5_paper/03_CD40 inhibition on day 5, seq on day 7 and 14/938-2_cellranger_count/outs")
# Read the M0 dataset from the 10X Genomics format
pbmc.data <- Read10X(data.dir = "filtered_feature_bc_matrix/")
RNA <- pbmc.data$`Gene Expression`
ADT <- pbmc.data$`Antibody Capture`
HST <- pbmc.data$`Multiplexing Capture`
# Load the Matrix package
library(Matrix)
# Hashtag 1, 2 and 3 are marking the mouse replicates per condition
# Subset the rows based on row names
subsetted_rows <- c("TotalSeq-B0301", "TotalSeq-B0302", "TotalSeq-B0303")
animals_data <- HST[subsetted_rows, , drop = FALSE]
# Hashtag 4, 5, 6, 7 are representing DMSO d7, TS d7, DMSO d14 and TS d14
subsetted_rows <- c(""TotalSeq-B0304", "TotalSeq-B0305", "TotalSeq-B0306", "TotalSeq-B0307")
treatment_data <- HST[subsetted_rows, , drop = FALSE]
#Create a Seurat obeject and more assays to combine later
RNA <- CreateSeuratObject(counts = RNA)
ADT <- CreateAssayObject(counts = ADT)
Mice <- CreateAssayObject(counts = animals_data)
Treatment <- CreateAssayObject(counts = treatment_data)
seurat <- RNA
#Add the Assays
seurat[["ADT"]] <- ADT
seurat[["HST_Mice"]] <- Mice
seurat[["HST_Treatment"]] <- Treatment
#Check for AK Names
rownames(seurat[["ADT"]])
#Cluster cells on the basis of their scRNA-seq profiles
# perform visualization and clustering steps
DefaultAssay(seurat) <- "RNA"
seurat <- NormalizeData(seurat)
seurat <- FindVariableFeatures(seurat)
seurat <- ScaleData(seurat)
seurat <- RunPCA(seurat, verbose = FALSE)
seurat <- FindNeighbors(seurat, dims = 1:30)
seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)
seurat <- RunUMAP(seurat, dims = 1:30)
DimPlot(seurat, label = TRUE)
FeaturePlot(seurat, features = "Col1a1", order = T)
# Normalize ADT data,
DefaultAssay(seurat) <- "ADT"
seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)
#Demultiplex cells based on Mouse_Hashtag Enrichment
seurat <- NormalizeData(seurat, assay = "HST_Mice", normalization.method = "CLR")
seurat <- HTODemux(seurat, assay = "HST_Mice", positive.quantile = 0.60)
#Visualize demultiplexing results
# Global classification results
table(seurat$HST_Mice_classification.global)
DimPlot(seurat, group.by = "HST_Mice_classification")
#Demultiplex cells based on Treatment_Hashtag Enrichment
seurat <- NormalizeData(seurat, assay = "HST_Treatment", normalization.method = "CLR")
seurat <- HTODemux(seurat, assay = "HST_Treatment", positive.quantile = 0.60)
#Visualize demultiplexing results
# Global classification results
table(seurat$HST_Treatment_classification.global)
DimPlot(seurat, group.by = "HST_Treatment_classification")
Idents(seurat) <- seurat$HST_Treatment_classification
pbmc.singlet <- subset(seurat, idents = "Negative", invert = T)
Idents(pbmc.singlet) <- pbmc.singlet$HST_Mice_classification
pbmc.singlet <- subset(pbmc.singlet, idents = "Negative", invert = T)
DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")
#Redo the clssification to remove the doublettes
pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.99)
table(pbmc.singlet$HST_Treatment_classification.global)
DimPlot(pbmc.singlet, group.by = "HST_Treatment_classification")
pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)
pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.99)
table(pbmc.singlet$HST_Mice_classification.global)
pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)
pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.60)
pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.60)
DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")
DimPlot(pbmc.singlet, group.by = "HST_Mice_maxID")
seurat <- pbmc.singlet
seurat$mice <- seurat$HST_Mice_maxID
seurat$treatment <- seurat$HST_Treatment_maxID
library(plyr)
seurat$treatment <- revalue(seurat$treatment, c(
"TotalSeq-B0304" = "DMSO_d7",
"TotalSeq-B0305" = "TS_d7",
"TotalSeq-B0306" = "DMSO_d14",
"TotalSeq-B0307" = "TS_d14"
))
library(plyr)
seurat$mice <- revalue(seurat$mice, c(
"TotalSeq-B0301" = "1",
"TotalSeq-B0302" = "2",
"TotalSeq-B0303" = "3"
))
#Cluster cells on the basis of their scRNA-seq profiles without doublettes
# perform visualization and clustering steps
DefaultAssay(seurat) <- "RNA"
seurat <- NormalizeData(seurat)
seurat <- FindVariableFeatures(seurat)
seurat <- ScaleData(seurat)
seurat <- RunPCA(seurat, verbose = FALSE)
seurat <- FindNeighbors(seurat, dims = 1:30)
seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)
seurat <- RunUMAP(seurat, dims = 1:30)
DimPlot(seurat, label = TRUE)
DefaultAssay(seurat) <- "ADT"
seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)
setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/01_TS_d5_paper/03_CD40 inhibition on day 5, seq on day 7 and 14/Analyse")
saveRDS(seurat, file= "TSd5.v0.1.RDS")