3 datasets found
  1. TSd5.RDS - CD40 inhibiton in AMI on d5, seq on d7 and d14

    • zenodo.org
    Updated Oct 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Lang; Alexander Lang (2023). TSd5.RDS - CD40 inhibiton in AMI on d5, seq on d7 and d14 [Dataset]. http://doi.org/10.5281/zenodo.10015471
    Explore at:
    Dataset updated
    Oct 17, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexander Lang; Alexander Lang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ##### CD40 inhibiton in AMI on d5, seq on d7 and d14

    # Load necessary libraries for data manipulation, analysis, and visualization

    library(dplyr)

    library(Seurat)

    library(patchwork)

    library(plyr)

    # Set the working directory to the folder containing the data

    setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/01_TS_d5_paper/03_CD40 inhibition on day 5, seq on day 7 and 14/938-2_cellranger_count/outs")

    # Read the M0 dataset from the 10X Genomics format

    pbmc.data <- Read10X(data.dir = "filtered_feature_bc_matrix/")

    RNA <- pbmc.data$`Gene Expression`

    ADT <- pbmc.data$`Antibody Capture`

    HST <- pbmc.data$`Multiplexing Capture`

    # Load the Matrix package

    library(Matrix)

    # Hashtag 1, 2 and 3 are marking the mouse replicates per condition

    # Subset the rows based on row names

    subsetted_rows <- c("TotalSeq-B0301", "TotalSeq-B0302", "TotalSeq-B0303")

    animals_data <- HST[subsetted_rows, , drop = FALSE]

    # Hashtag 4, 5, 6, 7 are representing DMSO d7, TS d7, DMSO d14 and TS d14

    subsetted_rows <- c(""TotalSeq-B0304", "TotalSeq-B0305", "TotalSeq-B0306", "TotalSeq-B0307")

    treatment_data <- HST[subsetted_rows, , drop = FALSE]

    #Create a Seurat obeject and more assays to combine later

    RNA <- CreateSeuratObject(counts = RNA)

    ADT <- CreateAssayObject(counts = ADT)

    Mice <- CreateAssayObject(counts = animals_data)

    Treatment <- CreateAssayObject(counts = treatment_data)

    seurat <- RNA

    #Add the Assays

    seurat[["ADT"]] <- ADT

    seurat[["HST_Mice"]] <- Mice

    seurat[["HST_Treatment"]] <- Treatment

    #Check for AK Names

    rownames(seurat[["ADT"]])

    #Cluster cells on the basis of their scRNA-seq profiles

    # perform visualization and clustering steps

    DefaultAssay(seurat) <- "RNA"

    seurat <- NormalizeData(seurat)

    seurat <- FindVariableFeatures(seurat)

    seurat <- ScaleData(seurat)

    seurat <- RunPCA(seurat, verbose = FALSE)

    seurat <- FindNeighbors(seurat, dims = 1:30)

    seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)

    seurat <- RunUMAP(seurat, dims = 1:30)

    DimPlot(seurat, label = TRUE)

    FeaturePlot(seurat, features = "Col1a1", order = T)

    # Normalize ADT data,

    DefaultAssay(seurat) <- "ADT"

    seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)

    #Demultiplex cells based on Mouse_Hashtag Enrichment

    seurat <- NormalizeData(seurat, assay = "HST_Mice", normalization.method = "CLR")

    seurat <- HTODemux(seurat, assay = "HST_Mice", positive.quantile = 0.60)

    #Visualize demultiplexing results

    # Global classification results

    table(seurat$HST_Mice_classification.global)

    DimPlot(seurat, group.by = "HST_Mice_classification")

    #Demultiplex cells based on Treatment_Hashtag Enrichment

    seurat <- NormalizeData(seurat, assay = "HST_Treatment", normalization.method = "CLR")

    seurat <- HTODemux(seurat, assay = "HST_Treatment", positive.quantile = 0.60)

    #Visualize demultiplexing results

    # Global classification results

    table(seurat$HST_Treatment_classification.global)

    DimPlot(seurat, group.by = "HST_Treatment_classification")

    Idents(seurat) <- seurat$HST_Treatment_classification

    pbmc.singlet <- subset(seurat, idents = "Negative", invert = T)

    Idents(pbmc.singlet) <- pbmc.singlet$HST_Mice_classification

    pbmc.singlet <- subset(pbmc.singlet, idents = "Negative", invert = T)

    DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")

    #Redo the clssification to remove the doublettes

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.99)

    table(pbmc.singlet$HST_Treatment_classification.global)

    DimPlot(pbmc.singlet, group.by = "HST_Treatment_classification")

    pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.99)

    table(pbmc.singlet$HST_Mice_classification.global)

    pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.60)

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.60)

    DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")

    DimPlot(pbmc.singlet, group.by = "HST_Mice_maxID")

    seurat <- pbmc.singlet

    seurat$mice <- seurat$HST_Mice_maxID

    seurat$treatment <- seurat$HST_Treatment_maxID

    library(plyr)

    seurat$treatment <- revalue(seurat$treatment, c(

    "TotalSeq-B0304" = "DMSO_d7",

    "TotalSeq-B0305" = "TS_d7",

    "TotalSeq-B0306" = "DMSO_d14",

    "TotalSeq-B0307" = "TS_d14"

    ))

    library(plyr)

    seurat$mice <- revalue(seurat$mice, c(

    "TotalSeq-B0301" = "1",

    "TotalSeq-B0302" = "2",

    "TotalSeq-B0303" = "3"

    ))

    #Cluster cells on the basis of their scRNA-seq profiles without doublettes

    # perform visualization and clustering steps

    DefaultAssay(seurat) <- "RNA"

    seurat <- NormalizeData(seurat)

    seurat <- FindVariableFeatures(seurat)

    seurat <- ScaleData(seurat)

    seurat <- RunPCA(seurat, verbose = FALSE)

    seurat <- FindNeighbors(seurat, dims = 1:30)

    seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)

    seurat <- RunUMAP(seurat, dims = 1:30)

    DimPlot(seurat, label = TRUE)

    DefaultAssay(seurat) <- "ADT"

    seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)

    setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/01_TS_d5_paper/03_CD40 inhibition on day 5, seq on day 7 and 14/Analyse")

    saveRDS(seurat, file= "TSd5.v0.1.RDS")

  2. CD40 activation and the effect on Neutrophils

    • zenodo.org
    Updated Oct 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Lang; Alexander Lang (2023). CD40 activation and the effect on Neutrophils [Dataset]. http://doi.org/10.5281/zenodo.10019624
    Explore at:
    Dataset updated
    Oct 18, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexander Lang; Alexander Lang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ##### CD40 activation and the effect on Neutrophils

    # Load necessary libraries for data manipulation, analysis, and visualization

    library(dplyr)

    library(Seurat)

    library(patchwork)

    library(plyr)

    # Set the working directory to the folder containing the data

    setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/05_FGK45 Wirkung auf Neutros - scRNAseq/938-1_cellranger_count/outs")

    # Read the M0 dataset from the 10X Genomics format

    pbmc.data <- Read10X(data.dir = "filtered_feature_bc_matrix/")

    RNA <- pbmc.data$`Gene Expression`

    ADT <- pbmc.data$`Antibody Capture`

    HST <- pbmc.data$`Multiplexing Capture`

    # Load the Matrix package

    library(Matrix)

    # Hashtag 1, 2 and 3 are marking the organs (heart, blood, spleen)

    # Subset the rows based on row names

    subsetted_rows <- c("TotalSeq-B0301", "TotalSeq-B0302", "TotalSeq-B0303")

    animals_data <- HST[subsetted_rows, , drop = FALSE]

    # Hashtag 4, 5, 6, 7 are representing IgG_1, IgG_1, FGK45_1 and FGK45_1

    subsetted_rows <- c("TotalSeq-B0304", "TotalSeq-B0305", "TotalSeq-B0306", "TotalSeq-B0307")

    treatment_data <- HST[subsetted_rows, , drop = FALSE]

    #Create a Seurat obeject and more assays to combine later

    RNA <- CreateSeuratObject(counts = RNA)

    ADT <- CreateAssayObject(counts = ADT)

    Organ <- CreateAssayObject(counts = animals_data)

    Treatment <- CreateAssayObject(counts = treatment_data)

    seurat <- RNA

    #Add the Assays

    seurat[["ADT"]] <- ADT

    seurat[["HST_Mice"]] <- Organ

    seurat[["HST_Treatment"]] <- Treatment

    #Check for AK Names

    rownames(seurat[["ADT"]])

    #Cluster cells on the basis of their scRNA-seq profiles

    # perform visualization and clustering steps

    DefaultAssay(seurat) <- "RNA"

    seurat <- NormalizeData(seurat)

    seurat <- FindVariableFeatures(seurat)

    seurat <- ScaleData(seurat)

    seurat <- RunPCA(seurat, verbose = FALSE)

    seurat <- FindNeighbors(seurat, dims = 1:30)

    seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)

    seurat <- RunUMAP(seurat, dims = 1:30)

    DimPlot(seurat, label = TRUE)

    FeaturePlot(seurat, features = "S100a9", order = T)

    # Normalize ADT data,

    DefaultAssay(seurat) <- "ADT"

    seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)

    #Demultiplex cells based on Mouse_Hashtag Enrichment

    seurat <- NormalizeData(seurat, assay = "HST_Mice", normalization.method = "CLR")

    seurat <- HTODemux(seurat, assay = "HST_Mice", positive.quantile = 0.99)

    #Visualize demultiplexing results

    # Global classification results

    table(seurat$HST_Mice_classification.global)

    DimPlot(seurat, group.by = "HST_Mice_classification")

    #Demultiplex cells based on Treatment_Hashtag Enrichment

    seurat <- NormalizeData(seurat, assay = "HST_Treatment", normalization.method = "CLR")

    seurat <- HTODemux(seurat, assay = "HST_Treatment", positive.quantile = 0.99)

    #Visualize demultiplexing results

    # Global classification results

    table(seurat$HST_Treatment_classification.global)

    DimPlot(seurat, group.by = "HST_Treatment_classification")

    Idents(seurat) <- seurat$HST_Treatment_classification

    pbmc.singlet <- subset(seurat, idents = "Negative", invert = T)

    Idents(pbmc.singlet) <- pbmc.singlet$HST_Mice_classification

    pbmc.singlet <- subset(pbmc.singlet, idents = "Negative", invert = T)

    DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")

    #Redo the clssification to remove the doublettes

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.99)

    table(pbmc.singlet$HST_Treatment_classification.global)

    DimPlot(pbmc.singlet, group.by = "HST_Treatment_classification")

    pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.99)

    table(pbmc.singlet$HST_Mice_classification.global)

    pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.60)

    pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.60)

    DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")

    DimPlot(pbmc.singlet, group.by = "HST_Mice_maxID")

    seurat <- pbmc.singlet

    seurat$organ <- seurat$HST_Mice_maxID

    seurat$mouse <- seurat$HST_Treatment_maxID

    seurat$treatment <- seurat$HST_Treatment_maxID

    library(plyr)

    seurat$treatment <- revalue(seurat$treatment, c(

    "TotalSeq-B0304" = "IgG",

    "TotalSeq-B0305" = "IgG",

    "TotalSeq-B0306" = "FGK45",

    "TotalSeq-B0307" = "FGK45"

    ))

    library(plyr)

    seurat$organ <- revalue(seurat$organ, c(

    "TotalSeq-B0301" = "heart",

    "TotalSeq-B0302" = "blood",

    "TotalSeq-B0303" = "spleen"

    ))

    seurat$mouse <- revalue(seurat$mouse, c(

    "TotalSeq-B0304" = "1",

    "TotalSeq-B0305" = "2",

    "TotalSeq-B0306" = "3",

    "TotalSeq-B0307" = "4"

    ))

    #Cluster cells on the basis of their scRNA-seq profiles without doublettes

    # perform visualization and clustering steps

    DefaultAssay(seurat) <- "RNA"

    seurat <- NormalizeData(seurat)

    seurat <- FindVariableFeatures(seurat)

    seurat <- ScaleData(seurat)

    seurat <- RunPCA(seurat, verbose = FALSE)

    seurat <- FindNeighbors(seurat, dims = 1:30)

    seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)

    seurat <- RunUMAP(seurat, dims = 1:30)

    DimPlot(seurat, label = TRUE)

    DefaultAssay(seurat) <- "ADT"

    seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)

    setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/05_FGK45 Wirkung auf Neutros - scRNAseq/Analyse")

    saveRDS(seurat, file = "FGK45_heart_blood_spleen.v0.1.RDS")

  3. Cite-Seq mit Aorten und Myokardinfarkt - Analysen

    • zenodo.org
    Updated Sep 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Lang; Alexander Lang (2022). Cite-Seq mit Aorten und Myokardinfarkt - Analysen [Dataset]. http://doi.org/10.5281/zenodo.7009082
    Explore at:
    Dataset updated
    Sep 5, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexander Lang; Alexander Lang
    Description

    #R Skript

    library(Seurat)
    library(ggplot2)
    library(patchwork)


    setwd("E:/BMFZ Data/671/671-1_cellranger_count/outs")

    data <- Read10X(data.dir ="filtered_feature_bc_matrix/")

    rna <- CreateSeuratObject(counts = data$`Gene Expression`)

    adt_assay <- CreateAssayObject(counts = data$`Antibody Capture`)

    multiplex <- CreateAssayObject(counts = data$`Multiplexing Capture`)


    cbmc <- rna

    cbmc[["ADT"]] <- adt_assay

    cbmc[["HST"]] <- multiplex

    Assays(cbmc)

    rownames(cbmc[["ADT"]])

    #perform visualization and clustering steps
    cbmc <- NormalizeData(cbmc)
    cbmc <- FindVariableFeatures(cbmc)
    cbmc <- ScaleData(cbmc)
    cbmc <- RunPCA(cbmc, verbose = FALSE)
    cbmc <- FindNeighbors(cbmc, dims = 1:30)
    cbmc <- FindClusters(cbmc, resolution = 0.8, verbose = FALSE)
    cbmc <- RunUMAP(cbmc, dims = 1:30)
    DimPlot(cbmc, label = TRUE)


    #Normalize ADT data,
    DefaultAssay(cbmc) <- "ADT"
    cbmc <- NormalizeData(cbmc, normalization.method = "CLR", margin = 2)
    DefaultAssay(cbmc) <- "RNA"

    #Now, we will visualize CD8a levels for RNA and protein By setting the default assay, we can
    #visualize one or the other
    DefaultAssay(cbmc) <- "ADT"
    p1 <- FeaturePlot(cbmc, "Ms.CD8a", cols = c("lightgrey", "darkgreen")) + ggtitle("CD8a protein")
    DefaultAssay(cbmc) <- "RNA"
    p2 <- FeaturePlot(cbmc, "Cd8a") + ggtitle("CD8a RNA")

    #place plots side-by-side
    p1 | p2


    #Now, we will visualize CD40 levels for RNA and protein By setting the default assay, we can
    #visualize one or the other
    DefaultAssay(cbmc) <- "ADT"
    p1 <- FeaturePlot(cbmc, "Ms.CD40", cols = c("lightgrey", "darkgreen")) + ggtitle("CD40 protein")
    DefaultAssay(cbmc) <- "RNA"
    p2 <- FeaturePlot(cbmc, "Cd40") + ggtitle("CD40 RNA")

    #place plots side-by-side
    p1 | p2

    setwd("E:/BMFZ Data/671/Analyse_ALL")
    saveRDS(cbmc, file = "Cite_seq_raw.rds")

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Alexander Lang; Alexander Lang (2023). TSd5.RDS - CD40 inhibiton in AMI on d5, seq on d7 and d14 [Dataset]. http://doi.org/10.5281/zenodo.10015471
Organization logo

TSd5.RDS - CD40 inhibiton in AMI on d5, seq on d7 and d14

Explore at:
Dataset updated
Oct 17, 2023
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Alexander Lang; Alexander Lang
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

##### CD40 inhibiton in AMI on d5, seq on d7 and d14

# Load necessary libraries for data manipulation, analysis, and visualization

library(dplyr)

library(Seurat)

library(patchwork)

library(plyr)

# Set the working directory to the folder containing the data

setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/01_TS_d5_paper/03_CD40 inhibition on day 5, seq on day 7 and 14/938-2_cellranger_count/outs")

# Read the M0 dataset from the 10X Genomics format

pbmc.data <- Read10X(data.dir = "filtered_feature_bc_matrix/")

RNA <- pbmc.data$`Gene Expression`

ADT <- pbmc.data$`Antibody Capture`

HST <- pbmc.data$`Multiplexing Capture`

# Load the Matrix package

library(Matrix)

# Hashtag 1, 2 and 3 are marking the mouse replicates per condition

# Subset the rows based on row names

subsetted_rows <- c("TotalSeq-B0301", "TotalSeq-B0302", "TotalSeq-B0303")

animals_data <- HST[subsetted_rows, , drop = FALSE]

# Hashtag 4, 5, 6, 7 are representing DMSO d7, TS d7, DMSO d14 and TS d14

subsetted_rows <- c(""TotalSeq-B0304", "TotalSeq-B0305", "TotalSeq-B0306", "TotalSeq-B0307")

treatment_data <- HST[subsetted_rows, , drop = FALSE]

#Create a Seurat obeject and more assays to combine later

RNA <- CreateSeuratObject(counts = RNA)

ADT <- CreateAssayObject(counts = ADT)

Mice <- CreateAssayObject(counts = animals_data)

Treatment <- CreateAssayObject(counts = treatment_data)

seurat <- RNA

#Add the Assays

seurat[["ADT"]] <- ADT

seurat[["HST_Mice"]] <- Mice

seurat[["HST_Treatment"]] <- Treatment

#Check for AK Names

rownames(seurat[["ADT"]])

#Cluster cells on the basis of their scRNA-seq profiles

# perform visualization and clustering steps

DefaultAssay(seurat) <- "RNA"

seurat <- NormalizeData(seurat)

seurat <- FindVariableFeatures(seurat)

seurat <- ScaleData(seurat)

seurat <- RunPCA(seurat, verbose = FALSE)

seurat <- FindNeighbors(seurat, dims = 1:30)

seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)

seurat <- RunUMAP(seurat, dims = 1:30)

DimPlot(seurat, label = TRUE)

FeaturePlot(seurat, features = "Col1a1", order = T)

# Normalize ADT data,

DefaultAssay(seurat) <- "ADT"

seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)

#Demultiplex cells based on Mouse_Hashtag Enrichment

seurat <- NormalizeData(seurat, assay = "HST_Mice", normalization.method = "CLR")

seurat <- HTODemux(seurat, assay = "HST_Mice", positive.quantile = 0.60)

#Visualize demultiplexing results

# Global classification results

table(seurat$HST_Mice_classification.global)

DimPlot(seurat, group.by = "HST_Mice_classification")

#Demultiplex cells based on Treatment_Hashtag Enrichment

seurat <- NormalizeData(seurat, assay = "HST_Treatment", normalization.method = "CLR")

seurat <- HTODemux(seurat, assay = "HST_Treatment", positive.quantile = 0.60)

#Visualize demultiplexing results

# Global classification results

table(seurat$HST_Treatment_classification.global)

DimPlot(seurat, group.by = "HST_Treatment_classification")

Idents(seurat) <- seurat$HST_Treatment_classification

pbmc.singlet <- subset(seurat, idents = "Negative", invert = T)

Idents(pbmc.singlet) <- pbmc.singlet$HST_Mice_classification

pbmc.singlet <- subset(pbmc.singlet, idents = "Negative", invert = T)

DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")

#Redo the clssification to remove the doublettes

pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.99)

table(pbmc.singlet$HST_Treatment_classification.global)

DimPlot(pbmc.singlet, group.by = "HST_Treatment_classification")

pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)

pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.99)

table(pbmc.singlet$HST_Mice_classification.global)

pbmc.singlet <- subset(pbmc.singlet, idents = "Doublet", invert = T)

pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Mice", positive.quantile = 0.60)

pbmc.singlet <- HTODemux(pbmc.singlet, assay = "HST_Treatment", positive.quantile = 0.60)

DimPlot(pbmc.singlet, group.by = "HST_Treatment_maxID")

DimPlot(pbmc.singlet, group.by = "HST_Mice_maxID")

seurat <- pbmc.singlet

seurat$mice <- seurat$HST_Mice_maxID

seurat$treatment <- seurat$HST_Treatment_maxID

library(plyr)

seurat$treatment <- revalue(seurat$treatment, c(

"TotalSeq-B0304" = "DMSO_d7",

"TotalSeq-B0305" = "TS_d7",

"TotalSeq-B0306" = "DMSO_d14",

"TotalSeq-B0307" = "TS_d14"

))

library(plyr)

seurat$mice <- revalue(seurat$mice, c(

"TotalSeq-B0301" = "1",

"TotalSeq-B0302" = "2",

"TotalSeq-B0303" = "3"

))

#Cluster cells on the basis of their scRNA-seq profiles without doublettes

# perform visualization and clustering steps

DefaultAssay(seurat) <- "RNA"

seurat <- NormalizeData(seurat)

seurat <- FindVariableFeatures(seurat)

seurat <- ScaleData(seurat)

seurat <- RunPCA(seurat, verbose = FALSE)

seurat <- FindNeighbors(seurat, dims = 1:30)

seurat <- FindClusters(seurat, resolution = 0.8, verbose = FALSE)

seurat <- RunUMAP(seurat, dims = 1:30)

DimPlot(seurat, label = TRUE)

DefaultAssay(seurat) <- "ADT"

seurat <- NormalizeData(seurat, normalization.method = "CLR", margin = 2)

setwd("C:/Users/ALL/sciebo - Lang, Alexander (allan101@uni-duesseldorf.de)@uni-duesseldorf.sciebo.de/ALL_NGS/scRNAseq/scRNAseq/01_TS_d5_paper/03_CD40 inhibition on day 5, seq on day 7 and 14/Analyse")

saveRDS(seurat, file= "TSd5.v0.1.RDS")

Search
Clear search
Close search
Google apps
Main menu