2 datasets found
  1. Invoices Dataset

    • kaggle.com
    Updated Jan 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cankat Saraç (2022). Invoices Dataset [Dataset]. https://www.kaggle.com/datasets/cankatsrc/invoices/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 18, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Cankat Saraç
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    The invoice dataset provided is a mock dataset generated using the Python Faker library. It has been designed to mimic the format of data collected from an online store. The dataset contains various fields, including first name, last name, email, product ID, quantity, amount, invoice date, address, city, and stock code. All of the data in the dataset is randomly generated and does not represent actual individuals or products. The dataset can be used for various purposes, including testing algorithms or models related to invoice management, e-commerce, or customer behavior analysis. The data in this dataset can be used to identify trends, patterns, or anomalies in online shopping behavior, which can help businesses to optimize their online sales strategies.

  2. w

    Synthetic Data for an Imaginary Country, Sample, 2023 - World

    • microdata.worldbank.org
    • nada-demo.ihsn.org
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Data Group, Data Analytics Unit (2023). Synthetic Data for an Imaginary Country, Sample, 2023 - World [Dataset]. https://microdata.worldbank.org/index.php/catalog/5906
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Development Data Group, Data Analytics Unit
    Time period covered
    2023
    Area covered
    World, World
    Description

    Abstract

    The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.

    The full-population dataset (with about 10 million individuals) is also distributed as open data.

    Geographic coverage

    The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.

    Analysis unit

    Household, Individual

    Universe

    The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.

    Kind of data

    ssd

    Sampling procedure

    The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.

    Mode of data collection

    other

    Research instrument

    The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.

    Cleaning operations

    The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.

    Response rate

    This is a synthetic dataset; the "response rate" is 100%.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Cankat Saraç (2022). Invoices Dataset [Dataset]. https://www.kaggle.com/datasets/cankatsrc/invoices/discussion
Organization logo

Invoices Dataset

Invoices datasets contains randomly generate data using Faker package in Python

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jan 18, 2022
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Cankat Saraç
License

http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

Description

The invoice dataset provided is a mock dataset generated using the Python Faker library. It has been designed to mimic the format of data collected from an online store. The dataset contains various fields, including first name, last name, email, product ID, quantity, amount, invoice date, address, city, and stock code. All of the data in the dataset is randomly generated and does not represent actual individuals or products. The dataset can be used for various purposes, including testing algorithms or models related to invoice management, e-commerce, or customer behavior analysis. The data in this dataset can be used to identify trends, patterns, or anomalies in online shopping behavior, which can help businesses to optimize their online sales strategies.

Search
Clear search
Close search
Google apps
Main menu