Payment card fraud - including both credit cards and debit cards - is forecast to grow by over ** billion U.S. dollars between 2022 and 2028. Especially outside the United States, the amount of fraudulent payments almost doubled from 2014 to 2021. In total, fraudulent card payments reached ** billion U.S. dollars in 2021. Card fraud losses across the world increased by more than ** percent between 2020 and 2021, the largest increase since 2018.
Card fraud losses across the world increased by more than ** percent between 2020 and 2021, the largest increase since 2018. It was estimated that merchants and card acquirers lost well over ** billion U.S. dollars, with - so the source adds - roughly ** billion U.S. dollar coming from the United States alone. Note that the figures provided here included both credit card fraud and debit card fraud. The source does not separate between the two, and also did not provide figures on the United States - a country known for its reliance on credit cards.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by @data is life
Released under Apache 2.0
This graph illustrates the distribution of the domestic fraud rate of bank card transactions in France between 2011 and 2018, by type of payment. In 2018, the fraud rate for bank withdrawals in France amounted to 0.02 percent.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global credit card fraud detection platform market is experiencing robust growth, driven by the increasing prevalence of digital transactions and the sophistication of fraudulent activities. The market, estimated at $15 billion in 2025, is projected to maintain a healthy Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $45 billion by 2033. This expansion is fueled by several key factors: the rising adoption of e-commerce and mobile payments, the increasing volume of online transactions, the growing need for robust security measures among businesses to protect customer data and prevent financial losses, and the continuous evolution of fraud techniques necessitating advanced detection capabilities. Furthermore, the increasing regulatory scrutiny and compliance requirements are pushing organizations to invest heavily in sophisticated fraud detection systems. The market is segmented by deployment (cloud-based and on-premise), by organization size (small, medium, and large enterprises), and by industry vertical (banking, financial services, and insurance, retail, healthcare, and others). Key players in this dynamic market include established companies like Kount, ClearSale, Stripe Radar, Riskified, and FICO, alongside emerging technology providers like Akkio and Dataiku. These companies are constantly innovating to improve detection accuracy, reduce false positives, and offer seamless integration with existing payment processing systems. While challenges remain, such as the rising complexity of fraud schemes and the need to balance security with user experience, the market is poised for continued strong growth, driven by technological advancements in machine learning, artificial intelligence, and big data analytics. The increasing adoption of real-time fraud detection and advanced analytics capabilities will further shape the market landscape in the coming years, creating opportunities for both established and emerging players.
U.S. consumers reported about ***million U.S. dollars worth of credit card fraud in the first quarter of 2025, the second increase in a row. This is according to a reporting of the organization that collects such consumer reports submitted to local law enforcement. While credit cards are relatively popular in the United States, the highest value type of fraud is reported with bank transfers or cryptocurrencies. The latter is relatively surprising, as the global size of crypto fraud is reported to be much lower than hacks involving cryptocurrency.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global credit card generator market is projected to experience robust growth with a market size of approximately USD 580 million in 2023, and it is anticipated to reach USD 1.2 billion by 2032, exhibiting a compound annual growth rate (CAGR) of 8.5%. The rising need for secure and efficient credit card testing tools, driven by the expansion of e-commerce and digital transactions, forms a significant growth catalyst for this market. As online retail and digital financial services burgeon, the demand for reliable credit card generators continues to escalate, underscoring the importance of this market segment.
One of the pivotal growth drivers for the credit card generator market is the increasing complexity and sophistication of online payment systems. As e-commerce platforms and digital payment solutions proliferate worldwide, there is a growing need for comprehensive testing tools to ensure the reliability and security of these systems. Credit card generators play a crucial role in this context by providing developers and testers with the means to simulate various credit card scenarios, thereby enhancing the robustness of payment processing systems. Additionally, the rise in cyber threats and fraud necessitates stringent testing, further propelling market growth.
Another significant factor contributing to the market's expansion is the growing emphasis on fraud prevention and security. Financial institutions and businesses are increasingly investing in sophisticated tools to combat fraud and secure financial transactions. Credit card generators offer a practical solution for testing the efficacy of anti-fraud measures and ensuring that security protocols are adequately robust. By enabling the simulation of fraudulent activities and various transaction scenarios, these tools help organizations better prepare for and mitigate potential security breaches.
Furthermore, the marketing and promotional applications of credit card generators are also driving market growth. Companies leveraging digital marketing strategies use these tools to create dummy credit card numbers for various promotional activities, such as offering free trials or discounts, without exposing real customer data. This capability not only aids in marketing efforts but also ensures compliance with data privacy regulations, thereby enhancing consumer trust and brand reputation. The versatility of credit card generators in supporting both operational and marketing functions underscores their growing importance in the digital age.
Regionally, North America holds a significant share of the credit card generator market, driven by the high penetration of digital payment systems and advanced cybersecurity measures in the region. The presence of numerous financial institutions and technology companies further bolsters the market in North America. Meanwhile, Asia Pacific is expected to witness the fastest growth, fueled by the rapid digitalization of economies, increasing internet penetration, and burgeoning e-commerce activities. Europe also presents substantial opportunities due to stringent data protection regulations and the widespread adoption of digital transaction systems.
The credit card generator market can be segmented by type into software and online services. Software-based credit card generators are widely used by developers and testers within organizations to simulate credit card transactions and validate payment processing systems. These tools are typically integrated into the development and testing environments, providing a controlled and secure platform for generating valid credit card numbers. The demand for software-based generators is driven by their ability to offer customizable options and advanced features, such as bulk generation and API integration, which enhance the efficiency of testing processes.
Online services, on the other hand, cater to a broader audience, including individual users, small businesses, and marketers. These services are accessible via web platforms and provide an easy-to-use interface for generating credit card numbers for various purposes, such as testing, fraud prevention, and marketing promotions. The growing popularity of online credit card generators can be attributed to their convenience, accessibility, and the increasing need for temporary and disposable credit card numbers in the digital economy. These services are particularly useful for busin
This case requires to develop a customer segmentation to define marketing strategy. The sample Dataset summarizes the usage behavior of about 9000 active credit card holders during the last 6 months. The file is at a customer level with 18 behavioral variables.
Following is the Data Dictionary for Credit Card dataset :-
CUSTID : Identification of Credit Card holder (Categorical) BALANCE : Balance amount left in their account to make purchases ( BALANCEFREQUENCY : How frequently the Balance is updated, score between 0 and 1 (1 = frequently updated, 0 = not frequently updated) PURCHASES : Amount of purchases made from account ONEOFFPURCHASES : Maximum purchase amount done in one-go INSTALLMENTSPURCHASES : Amount of purchase done in installment CASHADVANCE : Cash in advance given by the user PURCHASESFREQUENCY : How frequently the Purchases are being made, score between 0 and 1 (1 = frequently purchased, 0 = not frequently purchased) ONEOFFPURCHASESFREQUENCY : How frequently Purchases are happening in one-go (1 = frequently purchased, 0 = not frequently purchased) PURCHASESINSTALLMENTSFREQUENCY : How frequently purchases in installments are being done (1 = frequently done, 0 = not frequently done) CASHADVANCEFREQUENCY : How frequently the cash in advance being paid CASHADVANCETRX : Number of Transactions made with "Cash in Advanced" PURCHASESTRX : Numbe of purchase transactions made CREDITLIMIT : Limit of Credit Card for user PAYMENTS : Amount of Payment done by user MINIMUM_PAYMENTS : Minimum amount of payments made by user PRCFULLPAYMENT : Percent of full payment paid by user TENURE : Tenure of credit card service for user
This data-set contains >300,000 anonymized transactions. The variables are anonymized to protect the consumers information but they represent fields such as how long has the consumer had the account in a way which protects the information. Each row represents a users transaction. This data-set was built so that using the classifier you can build a model which can use the anonymized variables to predict which transactions are potentially fraudulent.
The data-set contains a fraud rate of ~0.1% and thus is highly unbalanced.
The variables are as follows: Time, anonymized variables (30 variables), $ Amount, Class (Fraud Classifier)
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
During the period between 2016 and 2018, **** fraud cases took place per 10,000 credit cards from Postal Savings Bank of China, ranking first among the largest banks in China. Credit card fraud is one of the most common financial fraud type in China.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Market Analysis for Credit Card Fraud Detection Platform The global credit card fraud detection platform market is estimated to reach USD 25.2 billion by 2033, growing at a CAGR of 14.3% from 2025 to 2033. The increasing adoption of digital payment methods, rising incidences of cybercrime, and stringent regulations on data security drive the market growth. The adoption of advanced technologies like machine learning and artificial intelligence in fraud detection solutions further fuels market expansion. The market is segmented into application (personal, enterprise) and type (manual screening, automatic screening). The enterprise segment dominates the market due to the growing demand for fraud protection in corporate environments. Automatic screening solutions are gaining popularity as they automate the fraud detection process, reducing operational costs and improving efficiency. Key market players include Kount, ClearSale, Stripe Radar, Riskified, Sift, SEON, Visa Advanced Authorization, Mastercard, Akkio, and Grid Dynamics. North America holds the largest market share due to the high adoption of advanced fraud detection technologies and the presence of major financial institutions in the region.
Credit Card Payments Market Size 2025-2029
The credit card payments market size is forecast to increase by USD 181.9 billion, at a CAGR of 8.7% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing prevalence of online transactions. The digital shift in consumer behavior, fueled by the convenience and accessibility of e-commerce platforms, is leading to a surge in credit card payments. Another key trend shaping the market is the adoption of mobile biometrics for payment processing. This advanced technology offers enhanced security and ease of use, making it an attractive option for both consumers and merchants. However, the market also faces challenges. In developing economies, a lack of awareness and infrastructure for online payments presents a significant obstacle. Bridging the digital divide and educating consumers about the benefits and security of online transactions will be crucial for market expansion in these regions. Effective strategies, such as partnerships with local financial institutions and targeted marketing campaigns, can help overcome this challenge and unlock new opportunities for growth.
What will be the Size of the Credit Card Payments Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market continues to evolve, driven by advancements in technology and shifting consumer preferences. Payment optimization through EMV chip technology and payment authorization systems enhances security and streamlines transactions. Cross-border payments and chargeback prevention are crucial for businesses expanding globally. Ecommerce payment solutions, BNPL solutions, and mobile payments cater to the digital age, offering flexibility and convenience. Payment experience is paramount, with user interface design and alternative payment methods enhancing customer satisfaction. Merchant account services and payment gateway integration enable seamless transaction processing. Payment analytics and loyalty programs help businesses understand customer behavior and boost retention. Interchange fees, chargeback management, and dispute resolution are essential components of credit card processing.
Data encryption and fraud detection ensure payment security. Multi-currency support and digital wallets cater to diverse customer needs. Customer support and subscription management are vital for maintaining positive relationships and managing recurring billing. Processing rates, settlement cycles, and PCI compliance are key considerations for businesses seeking efficient and cost-effective payment solutions. The ongoing integration of these elements shapes the dynamic and evolving credit card payments landscape.
How is this Credit Card Payments Industry segmented?
The credit card payments industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. End-userConsumer or individualCommercialProduct TypeGeneral purpose credit cardsSpecialty credit cardsOthersApplicationFood and groceriesHealth and pharmacyRestaurants and barsConsumer electronicsOthersGeographyNorth AmericaUSCanadaEuropeGermanyUKAPACChinaIndiaJapanSouth KoreaSouth AmericaArgentinaBrazilRest of World (ROW).
By End-user Insights
The consumer or individual segment is estimated to witness significant growth during the forecast period.The market is a dynamic and evolving landscape that caters to businesses and consumers alike. Recurring billing enables merchants to automatically charge customers for goods or services on a regular basis, streamlining the payment process for both parties. EMV chip technology enhances payment security, reducing the risk of fraud. Payment optimization techniques help businesses minimize transaction costs and improve authorization rates. Cross-border payments facilitate international business, while chargeback prevention measures protect merchants from revenue loss due to disputed transactions. Ecommerce payment solutions provide convenience for consumers and merchants, with payment gateway integration ensuring seamless transactions. Rewards programs and buy now, pay later (BNPL) solutions incentivize consumer spending. Mobile payments and digital wallets offer flexibility and convenience. Merchants can accept various payment methods, including cryptocurrencies, and benefit from payment analytics and conversion rate optimization. Payment volume continues to grow, necessitating robust fraud detection systems and multi-currency support. Customer support is crucial for resolving disputes and addressing payment issues. Alternative payment methods cater to diverse consumer preferences. The payment experience is key
In 2024, damage caused by credit card fraud reported by Japanese companies amounted to **** billion Japanese yen, reaching a new decade high. Losses caused by illegal credit card use increased from about **** billion yen in the previous year.
In 2024, losses caused by credit card forgery reported by Japanese companies amounted to around *** million Japanese yen. Losses occurring outside of Japan amounted to about *** billion yen, accounting for the largest share of damage. The total amount of damage caused by credit card fraud increased to **** billion yen that year.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Delinquency Rate on Credit Card Loans, All Commercial Banks (DRCCLACBS) from Q1 1991 to Q1 2025 about credit cards, delinquencies, commercial, loans, banks, depository institutions, rate, and USA.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global credit card market, valued at $14.31 billion in 2025, is projected to experience steady growth, driven by increasing digitalization, rising e-commerce transactions, and a growing preference for cashless payments. The 3.67% CAGR from 2025 to 2033 indicates a consistent expansion, fueled by factors such as the increasing adoption of contactless payment technologies, the proliferation of rewards programs and financial incentives to encourage credit card usage, and the expansion of credit card acceptance across various industries and geographic regions. While potential economic downturns or regulatory changes could pose restraints, the overall trend points towards continued market expansion. The market is segmented by card type (general purpose and specialty), application (spanning from food and groceries to travel and entertainment), and provider (major players like Visa and Mastercard alongside regional banks). North America and Europe currently hold significant market share, but the Asia-Pacific region is expected to witness substantial growth due to increasing financial inclusion and rising disposable incomes. The competitive landscape is intense, with established players such as American Express, Visa, and Mastercard vying for market share against regional banks and emerging fintech companies. This competition will likely drive innovation in features, rewards programs, and security measures. The substantial growth projected for the credit card market is a reflection of evolving consumer behavior and technological advancements. The increasing availability of mobile payment applications integrated with credit cards further accelerates adoption. Furthermore, targeted marketing campaigns promoting the benefits of credit cards, such as cashback rewards, travel points, and purchase protection, further contribute to their popularity. However, challenges such as rising interest rates, concerns about debt management, and increasing fraud prevention measures are expected to influence the pace of market expansion. The success of credit card companies will depend on adapting to these challenges through innovative products and services, enhancing security features, and tailoring offerings to meet the diverse needs of evolving consumer segments. Recent developments include: May 2023: Singapore's DBS Bank looks to complete its retail product offering by adding a super-premium credit card as soon as this week as it seeks to consolidate its position two-and-a-half years after acquiring Lakshmi Vilas Bank (LVB)., May 2023: NPCI leans on bank partnerships to push RuPay credit cards.. Key drivers for this market are: Usage of Credit Card give the bonus and reward points. Potential restraints include: Usage of Credit Card give the bonus and reward points. Notable trends are: Increasing Number of Visa Credit Cards Internationally.
https://data.gov.tw/licensehttps://data.gov.tw/license
Statistics of various industries (food, clothing, accommodation, transportation, education and recreation, department stores) credit card transaction fraud amounts and numbers (Joint Credit Card Processing Center)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Malaysia Consumers: Security: Credit Card/Debit Card/Bank Fraud data was reported at 63.900 % in 2018. Malaysia Consumers: Security: Credit Card/Debit Card/Bank Fraud data is updated yearly, averaging 63.900 % from Dec 2018 (Median) to 2018, with 1 observations. Malaysia Consumers: Security: Credit Card/Debit Card/Bank Fraud data remains active status in CEIC and is reported by Malaysian Communications and Multimedia Commission. The data is categorized under Global Database’s Malaysia – Table MY.S026: E-Commerce Consumer Survey.
https://data.gov.tw/licensehttps://data.gov.tw/license
Statistic statistics of foreign cardholders using credit cards for various types of industries (food, clothing, housing, transportation, education and recreation, department stores) in our country for various fraud transaction types, amounts, and number of transactions (joint credit card processing center)
In 2022, the state of Bihar in India had the highest number of credit and debit card frauds, with approximately *** cases registered with the authorities. The country recorded over *** thousand cases of credit and debit card frauds that year. This category of crime came under the purview of Sections *** of the Indian Penal Code.
Payment card fraud - including both credit cards and debit cards - is forecast to grow by over ** billion U.S. dollars between 2022 and 2028. Especially outside the United States, the amount of fraudulent payments almost doubled from 2014 to 2021. In total, fraudulent card payments reached ** billion U.S. dollars in 2021. Card fraud losses across the world increased by more than ** percent between 2020 and 2021, the largest increase since 2018.