Facebook
TwitterRetirement Notice: This item is in mature support as of June 2023 and will be retired in December 2025. A replacement item has not been identified at this time. Esri recommends updating your maps and apps to phase out use of this item.This map shows the total crime index in the U.S. in 2022 in a multi-scale map (by state, county, ZIP Code, tract, and block group). The layer uses 2020 Census boundaries. The pop-up is configured to include the following information for each geography level:Total crime indexPersonal and Property crime indices Sub-categories of personal and property crime indices Permitted use of this data is covered in the DATA section of the EsriMaster Agreement (E204CW) and these supplemental terms.
Facebook
TwitterThe data provided in this dataset is preliminary in nature and may have not been investigated by a detective at the time of download. The data is therefore subject to change after a complete investigation. This data represents only calls for police service where a police incident report was taken. Due to the variations in local laws and ordinances involving crimes across the nation, whether another agency utilizes Uniform Crime Report (UCR) or National Incident Based Reporting System (NIBRS) guidelines, and the results learned after an official investigation, comparisons should not be made between the statistics generated with this dataset to any other official police reports. Totals in the database may vary considerably from official totals following the investigation and final categorization of a crime. Therefore, the data should not be used for comparisons with Uniform Crime Report or other summary statistics.Data is broken out by year into separate CSV files. Note the file grouping by year is based on the crime's Date Reported (not the Date Occurred).Older cases found in the 2003 data are indicative of cold case research. Older cases are entered into the Police database system and tracked but dates and times of the original case are maintained.Data may also be viewed off-site in map form for just the last 6 months on communitycrimemap.comData Dictionary:Field NameField DescriptionIncident Numberthe number associated with either the incident or used as reference to store the items in our evidence roomsDate Reportedthe date the incident was reported to LMPDDate Occurredthe date the incident actually occurredBadge IDBadge ID of responding OfficerOffense ClassificationNIBRS Reporting category for the criminal act committedOffense Code NameNIBRS Reporting code for the criminal act committedNIBRS_CODEthe code that follows the guidelines of the National Incident Based Reporting System. For more details visit https://ucr.fbi.gov/nibrs/2011/resources/nibrs-offense-codes/viewNIBRS Grouphierarchy that follows the guidelines of the FBI National Incident Based Reporting SystemWas Offense CompletedStatus indicating whether the incident was an attempted crime or a completed crime.LMPD Divisionthe LMPD division in which the incident actually occurredLMPD Beatthe LMPD beat in which the incident actually occurredLocation Categorythe type of location in which the incident occurred (e.g. Restaurant)Block Addressthe location the incident occurredCitythe city associated to the incident block locationZip Codethe zip code associated to the incident block locationContact:LMPD Open Records lmpdopenrecords@louisvilleky.gov
Facebook
TwitterSerious violent crimes consist of Part 1 offenses as defined by the U.S. Department of Justice’s Uniform Reporting Statistics. These include murders, nonnegligent homicides, rapes (legacy and revised), robberies, and aggravated assaults. LAPD data were used for City of Los Angeles, LASD data were used for unincorporated areas and cities that contract with LASD for law enforcement services, and CA Attorney General data were used for all other cities with local police departments. This indicator is based on location of residence. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Neighborhood violence and crime can have a harmful impact on all members of a community. Living in communities with high rates of violence and crime not only exposes residents to a greater personal risk of injury or death, but it can also render individuals more susceptible to many adverse health outcomes. People who are regularly exposed to violence and crime are more likely to suffer from chronic stress, depression, anxiety, and other mental health conditions. They are also less likely to be able to use their parks and neighborhoods for recreation and physical activity.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Facebook
TwitterNote: Due to a system migration, this data will cease to update on March 14th, 2023. The current projection is to restart the updates on or around July 17th, 2023.Crime report data is provided for Louisville Metro Police Divisions only; crime data does not include smaller class cities.The data provided in this dataset is preliminary in nature and may have not been investigated by a detective at the time of download. The data is therefore subject to change after a complete investigation. This data represents only calls for police service where a police incident report was taken. Due to the variations in local laws and ordinances involving crimes across the nation, whether another agency utilizes Uniform Crime Report (UCR) or National Incident Based Reporting System (NIBRS) guidelines, and the results learned after an official investigation, comparisons should not be made between the statistics generated with this dataset to any other official police reports. Totals in the database may vary considerably from official totals following the investigation and final categorization of a crime. Therefore, the data should not be used for comparisons with Uniform Crime Report or other summary statistics.Data is broken out by year into separate CSV files. Note the file grouping by year is based on the crime's Date Reported (not the Date Occurred).Older cases found in the 2003 data are indicative of cold case research. Older cases are entered into the Police database system and tracked but dates and times of the original case are maintained.Data may also be viewed off-site in map form for just the last 6 months on Crimemapping.comData Dictionary:INCIDENT_NUMBER - the number associated with either the incident or used as reference to store the items in our evidence roomsDATE_REPORTED - the date the incident was reported to LMPDDATE_OCCURED - the date the incident actually occurredUOR_DESC - Uniform Offense Reporting code for the criminal act committedCRIME_TYPE - the crime type categoryNIBRS_CODE - the code that follows the guidelines of the National Incident Based Reporting System. For more details visit https://ucr.fbi.gov/nibrs/2011/resources/nibrs-offense-codes/viewUCR_HIERARCHY - hierarchy that follows the guidelines of the FBI Uniform Crime Reporting. For more details visit https://ucr.fbi.gov/ATT_COMP - Status indicating whether the incident was an attempted crime or a completed crime.LMPD_DIVISION - the LMPD division in which the incident actually occurredLMPD_BEAT - the LMPD beat in which the incident actually occurredPREMISE_TYPE - the type of location in which the incident occurred (e.g. Restaurant)BLOCK_ADDRESS - the location the incident occurredCITY - the city associated to the incident block locationZIP_CODE - the zip code associated to the incident block locationID - Unique identifier for internal databaseContact:Crime Information CenterCrimeInfoCenterDL@louisvilleky.gov
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update Frequency: Daily
Current year to date. The data included in this dataset has been reviewed and approved by a Milwaukee Police Department supervisor and the Milwaukee Police Department’s Records Management Division. This approval process can take a few weeks from the reported date of the crime. For preliminary crime data, please visit the Milwaukee Police Department’s Crime Maps and Statistics dashboard at https://city.milwaukee.gov/police/Information-Services/Crime-Maps-and-Statistics.
Wisconsin Incident Based Report (WIBR) Group A Offenses.
The Crime Data represents incident level data defined by Wisconsin Incident Based Reporting System (WIBRS) codes. WIBRS reporting is a crime reporting standard and can not be compared to any previous UCR report. Therefore, the Crime Data may reflect:
Neither the City of Milwaukee nor the Milwaukee Police Department guarantee (either express or implied) the accuracy, completeness, timeliness, or correct sequencing of the Crime Data. The City of Milwaukee and the Milwaukee Police Department shall have no liability for any error or omission, or for the use of, or the results obtained from the use of the Crime Data. In addition, the City of Milwaukee and the Milwaukee Police Department caution against using the Crime Data to make decisions/comparisons regarding the safety of or the amount of crime occurring in a particular area. When reviewing the Crime Data, the site user should consider that:
This data is not intended to represent a total number/sum of crimes, rather 1 = True and 0 = False.
The use of the Crime Data indicates the site user's unconditional acceptance of all risks associated with the use of the Crime Data.
To download XML and JSON files, click the CSV option below and click the down arrow next to the Download button in the upper right on its page. XY fields in data is in projection Wisconsin State Plane South NAD27 (WKID 32054).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The following datasets contain the crime rate for cities in the United States. The four datasets are separated based on population ranges.
File names: - 'crime_40 _60.csv': dataset for population ranging from 40,000 to 60,000. - 'crime_60 _100.csv': dataset for population ranging from 60,000 to 100,000. - 'crime_100 _250.csv': dataset for population ranging from 100,000 to 250,000. - 'crime_250 _plus.csv': dataset for population greater than 250,000.
For file: crime_40 _60.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ The following datasets contain the crime rate for cities in the United States. The four datasets are separated based on population ranges.
File names: - 'crime_40 _60.csv': dataset for population ranging from 40,000 to 60,000. - 'crime_60 _100.csv': dataset for population ranging from 60,000 to 100,000. - 'crime_100 _250.csv': dataset for population ranging from 100,000 to 250,000. - 'crime_250 _plus.csv': dataset for population greater than 250,000.
For file: crime_40 _60.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft
crime_60 _100.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft
crime_100 _250.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft
crime_250 _plus.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'total_crime': total crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'total_violent _crime': total violent crime - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft - 'tot_prop _crime': total property crime - 'arson': arson
Photo by David von Diemar on Unsplash
Facebook
TwitterCrime report data is provided for Louisville Metro Police Divisions only; crime data does not include smaller class cities.The data provided in this dataset is preliminary in nature and may have not been investigated by a detective at the time of download. The data is therefore subject to change after a complete investigation. This data represents only calls for police service where a police incident report was taken. Due to the variations in local laws and ordinances involving crimes across the nation, whether another agency utilizes Uniform Crime Report (UCR) or National Incident Based Reporting System (NIBRS) guidelines, and the results learned after an official investigation, comparisons should not be made between the statistics generated with this dataset to any other official police reports. Totals in the database may vary considerably from official totals following the investigation and final categorization of a crime. Therefore, the data should not be used for comparisons with Uniform Crime Report or other summary statistics.Data is broken out by year into separate CSV files. Note the file grouping by year is based on the crime's Date Reported (not the Date Occurred).Older cases found in the 2003 data are indicative of cold case research. Older cases are entered into the Police database system and tracked but dates and times of the original case are maintained.Data may also be viewed off-site in map form for just the last 6 months on Crimemapping.comData Dictionary:INCIDENT_NUMBER - the number associated with either the incident or used as reference to store the items in our evidence roomsDATE_REPORTED - the date the incident was reported to LMPDDATE_OCCURED - the date the incident actually occurredUOR_DESC - Uniform Offense Reporting code for the criminal act committedCRIME_TYPE - the crime type categoryNIBRS_CODE - the code that follows the guidelines of the National Incident Based Reporting System. For more details visit https://ucr.fbi.gov/nibrs/2011/resources/nibrs-offense-codes/viewUCR_HIERARCHY - hierarchy that follows the guidelines of the FBI Uniform Crime Reporting. For more details visit https://ucr.fbi.gov/ATT_COMP - Status indicating whether the incident was an attempted crime or a completed crime.LMPD_DIVISION - the LMPD division in which the incident actually occurredLMPD_BEAT - the LMPD beat in which the incident actually occurredPREMISE_TYPE - the type of location in which the incident occurred (e.g. Restaurant)BLOCK_ADDRESS - the location the incident occurredCITY - the city associated to the incident block locationZIP_CODE - the zip code associated to the incident block locationID - Unique identifier for internal databaseContact:Crime Information CenterCrimeInfoCenterDL@louisvilleky.gov
Facebook
TwitterImportant information: detailed data on crimes recorded by the police from April 2002 onwards are published in the police recorded crime open data tables. As such, from July 2016 data on crimes recorded by the police from April 2002 onwards are no longer published on this webpage. This is because the data is available in the police recorded crime open data tables which provide a more detailed breakdown of crime figures by police force area, offence code and financial year quarter. Data for Community Safety Partnerships are also available.
The open data tables are updated every three months to incorporate any changes such as reclassifications or crimes being cancelled or transferred to another police force, which means that they are more up-to-date than the tables published on this webpage which are updated once per year. Additionally, the open data tables are in a format designed to be user-friendly and enable analysis.
If you have any concerns about the way these data are presented please contact us by emailing CrimeandPoliceStats@homeoffice.gov.uk. Alternatively, please write to
Home Office Crime and Policing Analysis
1st Floor, Peel Building
2 Marsham Street
London
SW1P 4DF
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset aggregates Seattle Police Department crime statistics with spatial ZIP code boundaries and US Census data to determine the property crime rate per 1,000 residents. The following sources were used to create this dataset:
Source: https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::zip-codes/explore
King County provides approximate ZIP code boundaries, updated quarterly and published by the city of Seattle.
Source: https://data.seattle.gov/Public-Safety/SPD-Crime-Data-2008-Present/tazs-3rd5
The Seattle Police Department publishes data for reported crimes from 2008 to the present, refreshed daily. This data includes whether the crime is classified as against a person, against property, or against society.
The US Census Department American Community Survey (ACS) publishes 5-year estimates of population by a variety of geographies, including ZIP Code Tabulation Areas (ZCTAs), geographic approximations of each ZIP code.
Using the pandas and geopandas libraries within python, the following processing steps were followed to prepare this dataset: - Converted the date and time reported field in the SPD dataset to a datetime object and extracted the year - Filtered to crimes reported between 2008 and 2021 - Filtered to only crimes against property - Dropped rows with null values for year, crime against category, longitude, or latitude - Performed a spatial join using the latitude and longitude for each report in the SPD data to append a ZIP code from the King County ZIP Code boundary shapefile - Summarized to calculate a count of property crimes reported for each combination of year and ZIP code - Summarized by ZIP code to calculate the count of years with at least one crime reported and the total number of property crimes reported - Calculated the average number of property crimes reported per year in each ZIP code - Merged with the ACS population estimates - Calculated the number of property crimes reported per year per 1,000 population for each zip code
Photo by Justus Hayes: https://www.pexels.com/photo/a-bicycle-chained-to-a-metal-post-6355944/
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on the rate of violent crime (crimes per 1,000 population) for California, its regions, counties, cities and towns. Crime and population data are from the Federal Bureau of Investigations, Uniform Crime Reports. Rates above the city/town level include data from city, university and college, county, state, tribal, and federal law enforcement agencies. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Ten percent of all deaths in young California adults aged 15-44 years are related to assault and homicide. In 2010, California law enforcement agencies reported 1,809 murders, 8,331 rapes, and over 95,000 aggravated assaults. African Americans in California are 11 times more likely to die of assault and homicide than Whites. More information about the data table and a data dictionary can be found in the About/Attachments section.
Facebook
TwitterCrime severity index (violent, non-violent, youth) and weighted clearance rates (violent, non-violent), Canada, provinces, territories and Census Metropolitan Areas, 1998 to 2024.
Facebook
Twitterhttps://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-licensehttps://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-license
This dataset consists of gun violence within Jefferson county that may fall within LMPDs radar, including non-fatal shootings, homicides, as well as shot-spotter data. The mapping data points where there are victims have been obfuscated to maintain privacy, while still being accurate enough to be placed in its correct boundaries, particularly around, neighborhoods, ZIP Codes, Council districts, and police divisions. The data also excludes any victim information that could be used to identify any individual. this data is used to make the public aware of what is going on in their communities. The data consists of only criminal incidents, excluding any cases that are deemed non-criminal.Field NameField DescriptionCase numberPolice report number. For ShotSpotter detections, it is the ShotSpotter ID.DateTimeDate and time in which the original incident occurred. Time is rounded down.AddressAddress rounded down to the one hundred block of where the initial incident occured. Unless it is an intersection.NeighborhoodNeighborhood in which the original incident occurred.Council DistrictCouncil district in which the original incident occurred.LatitudeLatitude coordinate used to map the incidentLongitudeLongitude coordinate used to map the incidentZIP CodeZIP Code in which the original incident occurred.Crime Typea distinction between incidents, whether it is a non-fatal shooting, homicide, or a ShotSpotter detection.CauseUsed to differentiate on the cause of death for homicide victims.SexGender of the victim of the initial incident.RaceRace/Ethnicity of the victim in a given incident.Age GroupCategorized age groups used to anonymize victim information.Division NamePolice division or department where the initial incident occurred.Crime report data is provided for Louisville Metro Police Divisions only; crime data does not include smaller class cities, unless LMPD becomes involved in smaller agency incident.The data provided in this dataset is preliminary in nature and may have not been investigated by a detective at the time of download. The data is therefore subject to change after a complete investigation. This data represents only calls for police service where a police incident report was taken. Due to the variations in local laws and ordinances involving crimes across the nation, whether another agency utilizes Uniform Crime Report (UCR) or National Incident Based Reporting System (NIBRS) guidelines, and the results learned after an official investigation, comparisons should not be made between the statistics generated with this dataset to any other official police reports. Totals in the database may vary considerably from official totals following the investigation and final categorization of a crime. Therefore, the data should not be used for comparisons with Uniform Crime Report or other summary statistics.Contact:Ivan Benitez, Ph.D.Gun Violence Data FellowOffice for Safe and Healthy Neighborhoodsivan.benitez@louisvilleky.gov
Facebook
TwitterData for violent crimes per Police Incident Data taken from the records managment sysmte
Facebook
TwitterFor the latest data tables see ‘Police recorded crime and outcomes open data tables’.
These historic data tables contain figures up to September 2024 for:
There are counting rules for recorded crime to help to ensure that crimes are recorded consistently and accurately.
These tables are designed to have many uses. The Home Office would like to hear from any users who have developed applications for these data tables and any suggestions for future releases. Please contact the Crime Analysis team at crimeandpolicestats@homeoffice.gov.uk.
Facebook
TwitterThe Justice Equity Need Index (JENI), by Advancement Project California, offers a means to map out the disparate burden that criminalization and a detention-first justice model place on specific communities. The index includes the following indicators:System Involvement: The system-involved population by ZIP Code results in direct needs for justice equity, as measured by adult and youth probation. Indicators: Adult Probation (per 1,000 people); Youth Probation (per 1,000 people) Inequity Drivers: Root inequities across communities that contribute to racial and economic disparities as seen in incarceration and policing. Indicators: Black, Latinx, AIAN, and NHPI Percentages of Population (average percentile); Unemployment Rate (%); Population aged 25+ without a High School Diploma (%); Population below 200% of the Federal Poverty Level (%); Violent Crime Rate (per 1,000 people) Criminalization Risk: Conditions where the criminal justice system has historically taken a detention-first, prevention-last approach. Indicators: Mental Health Hospitalizations (per 1,000 people); Substance Use-Related Hospitalizations (per 1,000 people); Homelessness Rate (per 1,000 people) Learn more at https://www.catalystcalifornia.org/campaign-tools/maps-and-data/justice-equity-need-index.Supervisorial Districts, SPAs, and CSAs determined by ZIP Code centroid.
Facebook
TwitterIncident-based crime statistics (actual incidents, rate per 100,000 population, percentage change in rate, unfounded incidents, percent unfounded, total cleared, cleared by charge, cleared otherwise, persons charged, adults charged, youth charged / not charged), by detailed violations (violent, property, traffic, drugs, other Federal Statutes), police services in Ontario, 1998 to 2024.
Facebook
TwitterThe .csv file can be found here -- scroll down to "Additional Datasets" and then click the "Hate Crime" link and then download the zip file. The zip file will contain the .csv file and a .pdf file that contains more information regarding the scope and limitations of the data collected.
Please keep in mind, given what is communicated in the methodology file from the .zip file, be wary about drawing particular conclusions from this data.
I have not made any changes to this file. All preprocessing was done after creating a dataframe via the Pandas library.
There are 28 columns in the dataset. There are 219,073 entries in this data. There are no duplicate values in this data. The following eight columns have null values (PUB_AGENCY_UNIT, ADULT_VICTIM_COUNT, JUVENILE_VICTIM_COUNT, ADULT_OFFENDER_COUNT, JUVENILE_OFFENDER_COUNT, OFFENDER_RACE, OFFENDER_ETHNICITY, and TOTAL_INDIVIDUAL_VICTIMS).
This dataset has the Apache 2.0 license.
Some questions that I have about the data:
Why are there so many columns with large amounts of NaN values? Could this be related to inconsistences in reporting?
For the columns related to race and ethnicity, why is the largest category "Unknown"? Could it be that information was not gathered during the time the hate crime was initially recorded?
How can this data, especially when worked on by data analysts and data scientists, help law enforcement agencies in better understanding and ultimately reducing hate crimes in the US?
Facebook
TwitterThis statistic shows the crime severity index value of metropolitan areas in Canada in 2023. As of 2023, the crime severity index in Saskatoon, Saskatchewan, stood at 116.31.
Facebook
Twitter***Starting on March 7th, 2024, the Los Angeles Police Department (LAPD) will adopt a new Records Management System for reporting crimes and arrests. This new system is being implemented to comply with the FBI's mandate to collect NIBRS-only data (NIBRS — FBI - https://www.fbi.gov/how-we-can-help-you/more-fbi-services-and-information/ucr/nibrs). During this transition, users will temporarily see only incidents reported in the retiring system. However, the LAPD is actively working on generating new NIBRS datasets to ensure a smoother and more efficient reporting system. *** **Update 1/18/2024 - LAPD is facing issues with posting the Crime data, but we are taking immediate action to resolve the problem. We understand the importance of providing reliable and up-to-date information and are committed to delivering it. As we work through the issues, we have temporarily reduced our updates from weekly to bi-weekly to ensure that we provide accurate information. Our team is actively working to identify and resolve these issues promptly. We apologize for any inconvenience this may cause and appreciate your understanding. Rest assured, we are doing everything we can to fix the problem and get back to providing weekly updates as soon as possible. ** This dataset reflects incidents of crime in the City of Los Angeles dating back to 2020. This data is transcribed from original crime reports that are typed on paper and therefore there may be some inaccuracies within the data. Some location fields with missing data are noted as (0°, 0°). Address fields are only provided to the nearest hundred block in order to maintain privacy. This data is as accurate as the data in the database. Please note questions or concerns in the comments.
Facebook
Twitterhttps://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-licensehttps://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-license
Crime report data is provided for Louisville Metro Police Divisions only; crime data does not include smaller class cities.The data provided in this dataset is preliminary in nature and may have not been investigated by a detective at the time of download. The data is therefore subject to change after a complete investigation. This data represents only calls for police service where a police incident report was taken. Due to the variations in local laws and ordinances involving crimes across the nation, whether another agency utilizes Uniform Crime Report (UCR) or National Incident Based Reporting System (NIBRS) guidelines, and the results learned after an official investigation, comparisons should not be made between the statistics generated with this dataset to any other official police reports. Totals in the database may vary considerably from official totals following the investigation and final categorization of a crime. Therefore, the data should not be used for comparisons with Uniform Crime Report or other summary statistics.Data is broken out by year into separate CSV files. Note the file grouping by year is based on the crime's Date Reported (not the Date Occurred).Older cases found in the 2003 data are indicative of cold case research. Older cases are entered into the Police database system and tracked but dates and times of the original case are maintained.Data may also be viewed off-site in map form for just the last 6 months on Crimemapping.comData Dictionary:INCIDENT_NUMBER - the number associated with either the incident or used as reference to store the items in our evidence roomsDATE_REPORTED - the date the incident was reported to LMPDDATE_OCCURED - the date the incident actually occurredUOR_DESC - Uniform Offense Reporting code for the criminal act committedCRIME_TYPE - the crime type categoryNIBRS_CODE - the code that follows the guidelines of the National Incident Based Reporting System. For more details visit https://ucr.fbi.gov/nibrs/2011/resources/nibrs-offense-codes/viewUCR_HIERARCHY - hierarchy that follows the guidelines of the FBI Uniform Crime Reporting. For more details visit https://ucr.fbi.gov/ATT_COMP - Status indicating whether the incident was an attempted crime or a completed crime.LMPD_DIVISION - the LMPD division in which the incident actually occurredLMPD_BEAT - the LMPD beat in which the incident actually occurredPREMISE_TYPE - the type of location in which the incident occurred (e.g. Restaurant)BLOCK_ADDRESS - the location the incident occurredCITY - the city associated to the incident block locationZIP_CODE - the zip code associated to the incident block locationID - Unique identifier for internal databaseContact:Crime Information CenterCrimeInfoCenterDL@louisvilleky.gov
Facebook
TwitterRetirement Notice: This item is in mature support as of June 2023 and will be retired in December 2025. A replacement item has not been identified at this time. Esri recommends updating your maps and apps to phase out use of this item.This map shows the total crime index in the U.S. in 2022 in a multi-scale map (by state, county, ZIP Code, tract, and block group). The layer uses 2020 Census boundaries. The pop-up is configured to include the following information for each geography level:Total crime indexPersonal and Property crime indices Sub-categories of personal and property crime indices Permitted use of this data is covered in the DATA section of the EsriMaster Agreement (E204CW) and these supplemental terms.