Facebook
TwitterRetirement Notice: This item is in mature support as of June 2023 and will be retired in December 2025. A replacement item has not been identified at this time. Esri recommends updating your maps and apps to phase out use of this item.This map shows the total crime index in the U.S. in 2022 in a multi-scale map (by state, county, ZIP Code, tract, and block group). The layer uses 2020 Census boundaries. The pop-up is configured to include the following information for each geography level:Total crime indexPersonal and Property crime indices Sub-categories of personal and property crime indices Permitted use of this data is covered in the DATA section of the EsriMaster Agreement (E204CW) and these supplemental terms.
Facebook
TwitterThis map shows the total crime index in the U.S. in 2020 in a multi-scale map (by state, county, ZIP Code, tract, and block group). The pop-up is configured to include the following information for each geography level:Total crime indexPersonal and Property crime indices Sub-categories of personal and property crime indicesThe values are all referenced by an index value. The index values for the US level are 100, representing average crime for the country. A value of more than 100 represents higher crime than the national average, and a value of less than 100 represents lower crime than the national average. For example, an index of 120 implies that crime in the area is 20 percent higher than the US average; an index of 80 implies that crime is 20 percent lower than the US average.Additional Esri Resources:Esri DemographicsU.S. 2020/2025 Esri Updated DemographicsEssential demographic vocabularyEsri's arcgis.com demographic map layersPermitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.
Facebook
TwitterSerious violent crimes consist of Part 1 offenses as defined by the U.S. Department of Justice’s Uniform Reporting Statistics. These include murders, nonnegligent homicides, rapes (legacy and revised), robberies, and aggravated assaults. LAPD data were used for City of Los Angeles, LASD data were used for unincorporated areas and cities that contract with LASD for law enforcement services, and CA Attorney General data were used for all other cities with local police departments. This indicator is based on location of residence. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Neighborhood violence and crime can have a harmful impact on all members of a community. Living in communities with high rates of violence and crime not only exposes residents to a greater personal risk of injury or death, but it can also render individuals more susceptible to many adverse health outcomes. People who are regularly exposed to violence and crime are more likely to suffer from chronic stress, depression, anxiety, and other mental health conditions. They are also less likely to be able to use their parks and neighborhoods for recreation and physical activity.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Facebook
TwitterThis map shows the total crime index in the U.S. in 2021 in a multi-scale map (by state, county, ZIP Code, tract, and block group). The pop-up is configured to include the following information for each geography level:Total crime indexPersonal and Property crime indices Sub-categories of personal and property crime indicesThe values are all referenced by an index value. The index values for the US level are 100, representing average crime for the country. A value of more than 100 represents higher crime than the national average, and a value of less than 100 represents lower crime than the national average. For example, an index of 120 implies that crime in the area is 20 percent higher than the US average; an index of 80 implies that crime is 20 percent lower than the US average.For more information about the AGS Crime Indices, click here. Additional Esri Resources:Esri DemographicsU.S. 2021/2026 Esri Updated DemographicsEssential demographic vocabularyEsri's arcgis.com demographic map layersPermitted use of this data is covered in the DATA section of the EsriMaster Agreement (E204CW) and these supplemental terms.
Facebook
Twitterhttps://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-licensehttps://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-license
The data provided in this dataset is preliminary in nature and may have not been investigated by a detective at the time of download. The data is therefore subject to change after a complete investigation. This data represents only calls for police service where a police incident report was taken. Due to the variations in local laws and ordinances involving crimes across the nation, whether another agency utilizes Uniform Crime Report (UCR) or National Incident Based Reporting System (NIBRS) guidelines, and the results learned after an official investigation, comparisons should not be made between the statistics generated with this dataset to any other official police reports. Totals in the database may vary considerably from official totals following the investigation and final categorization of a crime. Therefore, the data should not be used for comparisons with Uniform Crime Report or other summary statistics.Data is broken out by year into separate CSV files. Note the file grouping by year is based on the crime's Date Reported (not the Date Occurred).Older cases found in the 2003 data are indicative of cold case research. Older cases are entered into the Police database system and tracked but dates and times of the original case are maintained.Data may also be viewed off-site in map form for just the last 6 months on communitycrimemap.comData Dictionary:
Field Name
Field Description
Incident Number
the number associated with either the incident or used as reference to store the items in our evidence rooms
Date Reported
the date the incident was reported to LMPD
Date Occurred
the date the incident actually occurred
Badge ID
Badge ID of responding Officer
Offense Classification
NIBRS Reporting category for the criminal act committed
Offense Code Name
NIBRS Reporting code for the criminal act committed
NIBRS_CODE
the code that follows the guidelines of the National Incident Based Reporting System. For more details visit https://ucr.fbi.gov/nibrs/2011/resources/nibrs-offense-codes/view
NIBRS Group
hierarchy that follows the guidelines of the FBI National Incident Based Reporting System
Was Offense Completed
Status indicating whether the incident was an attempted crime or a completed crime.
LMPD Division
the LMPD division in which the incident actually occurred
LMPD Beat
the LMPD beat in which the incident actually occurred
Location Category
the type of location in which the incident occurred (e.g. Restaurant)
Block Address
the location the incident occurred
City
the city associated to the incident block location
Zip Code
the zip code associated to the incident block location
Contact:LMPD Open Records lmpdopenrecords@louisvilleky.gov
Facebook
TwitterCrime severity index (violent, non-violent, youth) and weighted clearance rates (violent, non-violent), Canada, provinces, territories and Census Metropolitan Areas, 1998 to 2024.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The following datasets contain the crime rate for cities in the United States. The four datasets are separated based on population ranges.
File names: - 'crime_40 _60.csv': dataset for population ranging from 40,000 to 60,000. - 'crime_60 _100.csv': dataset for population ranging from 60,000 to 100,000. - 'crime_100 _250.csv': dataset for population ranging from 100,000 to 250,000. - 'crime_250 _plus.csv': dataset for population greater than 250,000.
For file: crime_40 _60.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ The following datasets contain the crime rate for cities in the United States. The four datasets are separated based on population ranges.
File names: - 'crime_40 _60.csv': dataset for population ranging from 40,000 to 60,000. - 'crime_60 _100.csv': dataset for population ranging from 60,000 to 100,000. - 'crime_100 _250.csv': dataset for population ranging from 100,000 to 250,000. - 'crime_250 _plus.csv': dataset for population greater than 250,000.
For file: crime_40 _60.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft
crime_60 _100.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft
crime_100 _250.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft
crime_250 _plus.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'total_crime': total crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'total_violent _crime': total violent crime - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft - 'tot_prop _crime': total property crime - 'arson': arson
Photo by David von Diemar on Unsplash
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset aggregates Seattle Police Department crime statistics with spatial ZIP code boundaries and US Census data to determine the property crime rate per 1,000 residents. The following sources were used to create this dataset:
Source: https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::zip-codes/explore
King County provides approximate ZIP code boundaries, updated quarterly and published by the city of Seattle.
Source: https://data.seattle.gov/Public-Safety/SPD-Crime-Data-2008-Present/tazs-3rd5
The Seattle Police Department publishes data for reported crimes from 2008 to the present, refreshed daily. This data includes whether the crime is classified as against a person, against property, or against society.
The US Census Department American Community Survey (ACS) publishes 5-year estimates of population by a variety of geographies, including ZIP Code Tabulation Areas (ZCTAs), geographic approximations of each ZIP code.
Using the pandas and geopandas libraries within python, the following processing steps were followed to prepare this dataset: - Converted the date and time reported field in the SPD dataset to a datetime object and extracted the year - Filtered to crimes reported between 2008 and 2021 - Filtered to only crimes against property - Dropped rows with null values for year, crime against category, longitude, or latitude - Performed a spatial join using the latitude and longitude for each report in the SPD data to append a ZIP code from the King County ZIP Code boundary shapefile - Summarized to calculate a count of property crimes reported for each combination of year and ZIP code - Summarized by ZIP code to calculate the count of years with at least one crime reported and the total number of property crimes reported - Calculated the average number of property crimes reported per year in each ZIP code - Merged with the ACS population estimates - Calculated the number of property crimes reported per year per 1,000 population for each zip code
Photo by Justus Hayes: https://www.pexels.com/photo/a-bicycle-chained-to-a-metal-post-6355944/
Facebook
TwitterNote: Due to a system migration, this data will cease to update on March 14th, 2023. The current projection is to restart the updates on or around July 17th, 2023.Crime report data is provided for Louisville Metro Police Divisions only; crime data does not include smaller class cities.The data provided in this dataset is preliminary in nature and may have not been investigated by a detective at the time of download. The data is therefore subject to change after a complete investigation. This data represents only calls for police service where a police incident report was taken. Due to the variations in local laws and ordinances involving crimes across the nation, whether another agency utilizes Uniform Crime Report (UCR) or National Incident Based Reporting System (NIBRS) guidelines, and the results learned after an official investigation, comparisons should not be made between the statistics generated with this dataset to any other official police reports. Totals in the database may vary considerably from official totals following the investigation and final categorization of a crime. Therefore, the data should not be used for comparisons with Uniform Crime Report or other summary statistics.Data is broken out by year into separate CSV files. Note the file grouping by year is based on the crime's Date Reported (not the Date Occurred).Older cases found in the 2003 data are indicative of cold case research. Older cases are entered into the Police database system and tracked but dates and times of the original case are maintained.Data may also be viewed off-site in map form for just the last 6 months on Crimemapping.comData Dictionary:INCIDENT_NUMBER - the number associated with either the incident or used as reference to store the items in our evidence roomsDATE_REPORTED - the date the incident was reported to LMPDDATE_OCCURED - the date the incident actually occurredUOR_DESC - Uniform Offense Reporting code for the criminal act committedCRIME_TYPE - the crime type categoryNIBRS_CODE - the code that follows the guidelines of the National Incident Based Reporting System. For more details visit https://ucr.fbi.gov/nibrs/2011/resources/nibrs-offense-codes/viewUCR_HIERARCHY - hierarchy that follows the guidelines of the FBI Uniform Crime Reporting. For more details visit https://ucr.fbi.gov/ATT_COMP - Status indicating whether the incident was an attempted crime or a completed crime.LMPD_DIVISION - the LMPD division in which the incident actually occurredLMPD_BEAT - the LMPD beat in which the incident actually occurredPREMISE_TYPE - the type of location in which the incident occurred (e.g. Restaurant)BLOCK_ADDRESS - the location the incident occurredCITY - the city associated to the incident block locationZIP_CODE - the zip code associated to the incident block locationID - Unique identifier for internal databaseContact:Crime Information CenterCrimeInfoCenterDL@louisvilleky.gov
Facebook
TwitterImportant information: detailed data on crimes recorded by the police from April 2002 onwards are published in the police recorded crime open data tables. As such, from July 2016 data on crimes recorded by the police from April 2002 onwards are no longer published on this webpage. This is because the data is available in the police recorded crime open data tables which provide a more detailed breakdown of crime figures by police force area, offence code and financial year quarter. Data for Community Safety Partnerships are also available.
The open data tables are updated every three months to incorporate any changes such as reclassifications or crimes being cancelled or transferred to another police force, which means that they are more up-to-date than the tables published on this webpage which are updated once per year. Additionally, the open data tables are in a format designed to be user-friendly and enable analysis.
If you have any concerns about the way these data are presented please contact us by emailing CrimeandPoliceStats@homeoffice.gov.uk. Alternatively, please write to
Home Office Crime and Policing Analysis
1st Floor, Peel Building
2 Marsham Street
London
SW1P 4DF
Facebook
TwitterEsri's Crime Indexes data incorporates information from the AGS national CrimeRisk database that is based on an extensive analysis of several years of crime incidents reported by most US law enforcement jurisdictions. The Crime Indexes database includes standardized indexes for a range of serious crimes against both persons and property. The data vintage is 2019. All attributes are available at the following geography levels: State, County, Tract, Block Group, ZIP Code, Place, CBSA and DMA. Attributes include total crime index, personal crime index, and other indexes for serious crimes. To view ArcGIS Online items using this service, including the terms of use, visit http://goto.arcgisonline.com/demographics5/USA_Crime.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update Frequency: Daily
Current year to date. The data included in this dataset has been reviewed and approved by a Milwaukee Police Department supervisor and the Milwaukee Police Department’s Records Management Division. This approval process can take a few weeks from the reported date of the crime. For preliminary crime data, please visit the Milwaukee Police Department’s Crime Maps and Statistics dashboard at https://city.milwaukee.gov/police/Information-Services/Crime-Maps-and-Statistics.
Wisconsin Incident Based Report (WIBR) Group A Offenses.
The Crime Data represents incident level data defined by Wisconsin Incident Based Reporting System (WIBRS) codes. WIBRS reporting is a crime reporting standard and can not be compared to any previous UCR report. Therefore, the Crime Data may reflect:
Neither the City of Milwaukee nor the Milwaukee Police Department guarantee (either express or implied) the accuracy, completeness, timeliness, or correct sequencing of the Crime Data. The City of Milwaukee and the Milwaukee Police Department shall have no liability for any error or omission, or for the use of, or the results obtained from the use of the Crime Data. In addition, the City of Milwaukee and the Milwaukee Police Department caution against using the Crime Data to make decisions/comparisons regarding the safety of or the amount of crime occurring in a particular area. When reviewing the Crime Data, the site user should consider that:
This data is not intended to represent a total number/sum of crimes, rather 1 = True and 0 = False.
The use of the Crime Data indicates the site user's unconditional acceptance of all risks associated with the use of the Crime Data.
To download XML and JSON files, click the CSV option below and click the down arrow next to the Download button in the upper right on its page. XY fields in data is in projection Wisconsin State Plane South NAD27 (WKID 32054).
Facebook
TwitterThis map shows the total crime index in the U.S. in 2018 in a multi-scale map (by state, county, ZIP Code, tract, and block group). The pop-up is configured to include the following information for each geography level:Total crime indexPersonal and Property crime indices Sub-categories of personal and property crime indicesThe values are all referenced by an index value. The index values for the US level are 100, representing average crime for the country. A value of more than 100 represents higher crime than the national average, and a value of less than 100 represents lower crime than the national average. For example, an index of 120 implies that crime in the area is 20 percent higher than the US average; an index of 80 implies that crime is 20 percent lower than the US average.Additional Esri Resources:Esri DemographicsU.S. 2018/2023 Esri Updated DemographicsEssential demographic vocabularyEsri's arcgis.com demographic map layers
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on the rate of violent crime (crimes per 1,000 population) for California, its regions, counties, cities and towns. Crime and population data are from the Federal Bureau of Investigations, Uniform Crime Reports. Rates above the city/town level include data from city, university and college, county, state, tribal, and federal law enforcement agencies. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Ten percent of all deaths in young California adults aged 15-44 years are related to assault and homicide. In 2010, California law enforcement agencies reported 1,809 murders, 8,331 rapes, and over 95,000 aggravated assaults. African Americans in California are 11 times more likely to die of assault and homicide than Whites. More information about the data table and a data dictionary can be found in the About/Attachments section.
Facebook
TwitterCrime report data is provided for Louisville Metro Police Divisions only; crime data does not include smaller class cities.The data provided in this dataset is preliminary in nature and may have not been investigated by a detective at the time of download. The data is therefore subject to change after a complete investigation. This data represents only calls for police service where a police incident report was taken. Due to the variations in local laws and ordinances involving crimes across the nation, whether another agency utilizes Uniform Crime Report (UCR) or National Incident Based Reporting System (NIBRS) guidelines, and the results learned after an official investigation, comparisons should not be made between the statistics generated with this dataset to any other official police reports. Totals in the database may vary considerably from official totals following the investigation and final categorization of a crime. Therefore, the data should not be used for comparisons with Uniform Crime Report or other summary statistics.Data is broken out by year into separate CSV files. Note the file grouping by year is based on the crime's Date Reported (not the Date Occurred).Older cases found in the 2003 data are indicative of cold case research. Older cases are entered into the Police database system and tracked but dates and times of the original case are maintained.Data may also be viewed off-site in map form for just the last 6 months on Crimemapping.comData Dictionary:INCIDENT_NUMBER - the number associated with either the incident or used as reference to store the items in our evidence roomsDATE_REPORTED - the date the incident was reported to LMPDDATE_OCCURED - the date the incident actually occurredUOR_DESC - Uniform Offense Reporting code for the criminal act committedCRIME_TYPE - the crime type categoryNIBRS_CODE - the code that follows the guidelines of the National Incident Based Reporting System. For more details visit https://ucr.fbi.gov/nibrs/2011/resources/nibrs-offense-codes/viewUCR_HIERARCHY - hierarchy that follows the guidelines of the FBI Uniform Crime Reporting. For more details visit https://ucr.fbi.gov/ATT_COMP - Status indicating whether the incident was an attempted crime or a completed crime.LMPD_DIVISION - the LMPD division in which the incident actually occurredLMPD_BEAT - the LMPD beat in which the incident actually occurredPREMISE_TYPE - the type of location in which the incident occurred (e.g. Restaurant)BLOCK_ADDRESS - the location the incident occurredCITY - the city associated to the incident block locationZIP_CODE - the zip code associated to the incident block locationID - Unique identifier for internal databaseContact:Crime Information CenterCrimeInfoCenterDL@louisvilleky.gov
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Much research has examined how crime rates vary across urban neighborhoods, focusing particularly on community-level demographic and social characteristics. A parallel line of work has treated crime at the individual level as an expression of certain behavioral patterns (e.g., impulsivity). Little work has considered, however, whether the prevalence of such behavioral patterns in a neighborhood might be predictive of local crime, in large part because such measures are hard to come by and often subjective. The Facebook Advertising API offers a special opportunity to examine this question as it provides an extensive list of “interests” that can be tabulated at various geographic scales. Here we conduct an analysis of the association between the prevalence of interests among the Facebook population of a ZIP code and the local rate of assaults, burglaries, and robberies across 9 highly populated cities in the US. We fit various regression models to predict crime rates as a function of the Facebook and census demographic variables. In general, models using the variables for the interests of the whole adult population on Facebook perform better than those using data on specific demographic groups (such as Males 18-34). In terms of predictive performance, models combining Facebook data with demographic data generally have lower error rates than models using only demographic data. We find that interests associated with media consumption and mating competition are predictive of crime rates above and beyond demographic factors. We discuss how this might integrate with existing criminological theory.
Facebook
TwitterThis statistic shows the crime severity index value of metropolitan areas in Canada in 2023. As of 2023, the crime severity index in Saskatoon, Saskatchewan, stood at 116.31.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is the most current information as of the date of upload. This provides the user the ability to view the most current crime information within Kansas City, Missouri. The displayed information is the most current information from the data source as of the date of upload. The data source is dynamic and therefore constantly changing. Changes to the information may occur, as incident information is refined. While the Board of Police Commissioners of Kansas City, Missouri (Board) makes every effort to maintain and distribute accurate information, no warranties and/or representations of any kind are made regarding information, data or services provided. The Board is not responsible for misinterpretation of this information and makes no inference or judgment as to the relative safety to any particular area or neighborhood. In no event shall the Board be liable in any way to the users of this data. Users of this data shall hold the Board harmless in all matters and accounts arising from the use and/or accuracy of this data.
Facebook
TwitterThe .csv file can be found here -- scroll down to "Additional Datasets" and then click the "Hate Crime" link and then download the zip file. The zip file will contain the .csv file and a .pdf file that contains more information regarding the scope and limitations of the data collected.
Please keep in mind, given what is communicated in the methodology file from the .zip file, be wary about drawing particular conclusions from this data.
I have not made any changes to this file. All preprocessing was done after creating a dataframe via the Pandas library.
There are 28 columns in the dataset. There are 219,073 entries in this data. There are no duplicate values in this data. The following eight columns have null values (PUB_AGENCY_UNIT, ADULT_VICTIM_COUNT, JUVENILE_VICTIM_COUNT, ADULT_OFFENDER_COUNT, JUVENILE_OFFENDER_COUNT, OFFENDER_RACE, OFFENDER_ETHNICITY, and TOTAL_INDIVIDUAL_VICTIMS).
This dataset has the Apache 2.0 license.
Some questions that I have about the data:
Why are there so many columns with large amounts of NaN values? Could this be related to inconsistences in reporting?
For the columns related to race and ethnicity, why is the largest category "Unknown"? Could it be that information was not gathered during the time the hate crime was initially recorded?
How can this data, especially when worked on by data analysts and data scientists, help law enforcement agencies in better understanding and ultimately reducing hate crimes in the US?
Facebook
TwitterFor the latest data tables see ‘Police recorded crime and outcomes open data tables’.
These historic data tables contain figures up to September 2024 for:
There are counting rules for recorded crime to help to ensure that crimes are recorded consistently and accurately.
These tables are designed to have many uses. The Home Office would like to hear from any users who have developed applications for these data tables and any suggestions for future releases. Please contact the Crime Analysis team at crimeandpolicestats@homeoffice.gov.uk.
Facebook
TwitterRetirement Notice: This item is in mature support as of June 2023 and will be retired in December 2025. A replacement item has not been identified at this time. Esri recommends updating your maps and apps to phase out use of this item.This map shows the total crime index in the U.S. in 2022 in a multi-scale map (by state, county, ZIP Code, tract, and block group). The layer uses 2020 Census boundaries. The pop-up is configured to include the following information for each geography level:Total crime indexPersonal and Property crime indices Sub-categories of personal and property crime indices Permitted use of this data is covered in the DATA section of the EsriMaster Agreement (E204CW) and these supplemental terms.